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Abstract: Crab aquaculture is an important component of the freshwater aquaculture industry in
China, encompassing an expansive farming area of over 6000 km2 nationwide. Currently, crab farmers
rely on manually monitored feeding platforms to count the number and assess the distribution of
crabs in the pond. However, this method is inefficient and lacks automation. To address the problem
of efficient and rapid detection of crabs via automated systems based on machine vision in low-
brightness underwater environments, a two-step color correction and improved dark channel prior
underwater image processing approach for crab detection is proposed in this paper. Firstly, the
parameters of the dark channel prior are optimized with guided filtering and quadtrees to solve the
problems of blurred underwater images and artificial lighting. Then, the gray world assumption, the
perfect reflection assumption, and a strong channel to compensate for the weak channel are applied
to improve the pixels of red and blue channels, correct the color of the defogged image, optimize
the visual effect of the image, and enrich the image information. Finally, ShuffleNetV2 is applied to
optimize the target detection model to improve the model detection speed and real-time performance.
The experimental results show that the proposed method has a detection rate of 90.78% and an
average confidence level of 0.75. Compared with the improved YOLOv5s detection results of the
original image, the detection rate of the proposed method is increased by 21.41%, and the average
confidence level is increased by 47.06%, which meets a good standard. This approach could effectively
build an underwater crab distribution map and provide scientific guidance for crab farming.

Keywords: underwater crab image processing; dark channel prior; color correction; channel compensation;
target detection

Key Contribution: The article proposes a novel underwater crab image processing algorithm and
applies an improved object detection model to detect crabs, which enables the acquisition of a crab
distribution map. This method effectively enhances the crab detection rate, contributes to precise
feeding, and improves the economic benefits of crab farming.

1. Introduction

With an area of more than 6000 km2, an annual production of more than 800,000 tons,
and a total production value of more than RMB 80 billion, crab farming is developing
rapidly and has become the largest freshwater aquaculture product in China [1–3]. The
breeding cycle of crab is about 7 months [4]. The main method of obtaining crab growth
information is through traditional manual sampling. Nowadays, crab farmers rely on
manually monitored feeding platforms to count the number and assess the distribution
of crabs in a pond. This method requires a significant amount of labor and resources,
is consuming and laborious, and lacks automation. Therefore, it is necessary to have
a comprehensive and accurate automated system to count the number and assess the
distribution of crabs during the process of crab aquaculture. With the development of
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science and technology, image processing, target recognition and other technologies are
widely applied in the process of crab farming.

To obtain the number and distribution of crabs in crab ponds, target recognition
algorithms are applied to detect the crabs. The special characteristics of the underwater
environment cause deficiencies in the images of crab ponds captured using underwater
cameras. On one hand, the depth of crab ponds varies from 0.5 m to 2 m [5,6]. Consequently,
the images of crab ponds at different depths have low contrast and low brightness and
are foggy, showing a bluish-green color. The term “foggy underwater images” refers to
underwater images that appear blurry and make it difficult to clearly identify the species or
boundaries of objects. On the other hand, underwater crab images taken with the assistance
of artificial light source have bright spots in the center and uneven colors. Therefore, direct
detection of the original images with deep learning algorithms will leave out a large number
of crabs and have large data errors. Intuitively, Figure 1 shows that the three color channels
have a low number of pixels and a concentrated distribution, with the red channel having
a more pronounced distribution. The pixels in the center of the green and blue channels
are better rendered, while the surrounding area has lower pixel values. Therefore, it is
necessary to develop crab image processing algorithms to improve the quality and color of
underwater crab detection images.

With the development of neural network technology, many researchers have used
underwater animal recognition based on image preprocessing to count numbers of under-
water animal species and observe their growth. Both Li et al. [7] and Zhai et al. [8] employed
a combination of traditional image processing and the YOLO series algorithms to recognize
and count organisms such as underwater fish and sea cucumbers. Zhao et al. [9] applied
the appropriate techniques to detect abnormal behavior and monitor the growth of fish.
Currently, there are relatively few approaches to investigate the growth and population
distribution of crabs. Sun et al. [10] constructed a crab growth model and predicted the total
amount of bait to be fed using neural networks, which saved bait and improved farming
efficiency. Siripattanadilok and Siriborvornratanakul [11] proposed a deep learning method
to identify and count harvestable mud shell crabs. Chen et al. [12] constructed a crab gender
detection model with more than 96% accuracy to classify crab gender non-destructively
and efficiently. The general model is divided into two parts: image processing and tar-
get recognition. Image processing lays the foundation for target recognition. The target
recognition provides concretization support for the subsequent industrial development.

Nowadays, underwater image processing is mainly categorized into two types: tradi-
tional image processing algorithms and neural network-based image processing algorithms.
Traditional image processing algorithms directly modify the pixel values of the image or
construct models for processing. The commonly employed algorithms are HE (histogram
equalization), DCP (dark channel prior), and Retinex. Zhu et al. [13] employed homomor-
phic filtering, MSRCR, and CLAHE (contrast limited adaptive histogram equalization) for
linear fusion to remove fog, which resulted in a shallow-water underwater image with clear
edges and balanced colors. Li et al. [14] proposed a marine underwater image enhancement
approach combining Retinex and a multiscale fusion framework to obtain clear and fog-
free images. Zhou et al. [15] incorporated mean square error and color restoration factor
into the Retinex algorithm to improve the color of underwater images, and then applied
simulated annealing optimization algorithm to enhance the details of underwater images.
However, these approaches fail to consider the effect of artificial light sources, which leads
to over-enhancement. Zhou et al. [16] applied a perfect reflection enhanced red channel and
an improved dark channel to optimize the blue-green transmittance map to eliminate color
deviation and retain more details. Combining traditional image processing algorithms is
considered one of the current mainstream underwater image processing methods.

Neural network-based machine vision approaches play an important role in different
applications and providing new methods for image processing. Perez et al. [17] first
applied a CNN model to process foggy underwater images and achieved effective results.
Li et al. [18] constructed an unsupervised generative adversarial network, called WaterGAN,
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for color correction of underwater images, which effectively solved the problem of neural
networks requiring a large amount of data, since underwater data are difficult to obtain.
However, there are two problems with neural network-based image processing in practical
applications. Firstly, the acquired underwater images of crab ponds are blurred with fog
and uneven colors. It is impossible to obtain clear images in advance to train the neural
network model. Secondly, the underwater environment and turbidity of different areas
are different, resulting in different parameters of the trained network. The generalization
ability of the neural network is limited, so the trained network cannot handle images of
different crab ponds.

Crab identification technology is an important foundation for constructing underwa-
ter crab distribution models and optimizing and improving baiting methods. With the
rapid development of graphics processor unit (GPU) performance, deep neural networks
play a significant role in target detection. The YOLO series of algorithms with excellent
performance and convenient deployment are widely applied in various target detection
scenarios. Zhang et al. [19] improved the YOLOv4 model by utilizing MobileNetV2 and the
attention mechanism, aiming to improve the real-time and fast detection of small targets
in complex marine environments. Wen et al. [20] embedded the channel attention (CA)
and squeeze-and-excitation (SE) attention modules in YOLOv5s to improve the detection
accuracy of underwater targets. Zhao et al. [21] optimized YOLOv4-tiny using the sym-
metric extended convolution and attention module FPN-Attention to effectively capture
valuable features of underwater images. However, the model has limitations, such as
applying a single underwater dataset and slow inference speed. Similarly, Mao et al. [22],
Liu et al. [23], and Zhang et al. [24] have improved modules to reduce model size and
improve detection speed. Unfortunately, little research has been conducted to effectively
develop a lightweight YOLO-based target detection algorithm for underwater crabs.
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Figure 1. An example of underwater images of crabs in a pond. (a) Original image of underwater
crab, (b) 3D color distribution map; (c) 3-channel pixel histogram. The red, green, and blue colors
in (b) and (c) represent the pixels of the red, green, and blue channels of the image, respectively.

To address the problem of blurring and low brightness of underwater images of crab
ponds, a two-step color correction and improved underwater image processing method of
crab ponds is proposed. Then, the improved crab identification algorithm is employed to
identify and count the number of crabs in the image-processed underwater image dataset
of crab ponds. The main contributions of this paper are as follows.

(1) Guided filtering and quadtrees are fused to optimize transmittance and atmospheric
light values for the dark channel prior, removing fog and preserving image detail.

(2) A new color correction approach for underwater images is proposed to address
the problem of color imbalance in underwater images. Firstly, the approach combines the
gray world and perfect reflections to construct a color correction equation to correct the red
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channel. Secondly, the strong channel compensates for the weak channel to compensate for
the red and blue channels.

(3) A K-means++ clustering algorithm, ShuffleNetV2 lightweight model, and distance
intersection over union (DIoU) prediction box are proposed to optimize the YOLOv5 model.
The improved YOLOv5 model effectively improves the model training convergence speed,
enhances the model speed and real-time performance, and provides a technical foundation
for underwater crab distribution construction.

2. Materials and Methods
2.1. Database Acquisition

Since crabs live at fixed water depths, constructing a crab-centric target dataset pro-
vides an image basis for crab recognition and effectively builds a crab distribution map.
Figure 2a shows the top 6 provinces in terms of distribution of crab freshwater aquaculture
in China in 2022. River crab freshwater aquaculture is mainly concentrated in the middle
and lower reaches of the Yangtze River, and the northeast is also a major production area.
Crab freshwater aquaculture in Jiangsu Province accounts for 45.88% of the country’s
freshwater aquaculture, ranking the first in the country, and is an important part of crab
aquaculture. The dataset of underwater images of crab in the pond that are applied in
the experiment is from a demonstration base of crab farming in Changzhou City, Jiangsu
Province, from May to August in 2022. The crab breeding area of the Changzhou crab
breeding demonstration base is about 0.73 km2, and the water depth of the crab pond is
about 0.5–2 m. Since crab feeding is concentrated at night and early morning, based on
this characteristic, underwater cameras and low-light auxiliary lighting equipment are
employed for image acquisition. Figure 2b shows the trajectory planning of the automatic
baiting boat operation. Figure 2c shows an automatic baiting boat, in which two under-
water cameras are deployed at the rear of the boat for crab image acquisition. Figure 2d
shows the manual compensation acquisition equipment to prevent some areas from being
missed by the automatic baiting boat collection. The crab images captured in the dataset
have a resolution of 1920 × 1080 pixels. The image maintains its original size during the
enhancement process. The input image size of YOLOv5s is selected to be 640 × 640. We
constructed a dataset of 3000 underwater images of crabs. The algorithm was run on a
device with a processor AMD R9-6900HX, 16 GB of RAM, a graphics card RTX3070Ti, and
an operating system of Windows 10.
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2.2. Overview of the Methodology

To address the problem of blurring and low brightness of underwater images of crab
ponds, a two-step color correction and improved underwater image processing method of
crab ponds is proposed in this paper to improve the quality of underwater image dataset of
crab ponds. Then, the improved crab identification algorithm is employed to identify and
count the number of crabs in the image-processed underwater image dataset of crab ponds.
An overview of the proposed method is shown in Figure 3. Our underwater enhancement
method consists of four main steps: (1) After slicing and filtering the captured video, we
obtain images that meet the experimental conditions and then perform pre-processing.
(2) The improved DCP algorithm is employed to defog the underwater images of the crabs
in the pond to obtain clear and high-quality fog-free images. (3) In the first step of color
correction, the gray world assumption and perfect reflection assumption are combined
to enhance the red channel. (4) In the second step of color correction, strong channels
compensating for weak channels are employed to enhance the red and blue channels,
ultimately resulting in color-balanced, information-rich crab images.
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2.3. Improved Dark Channel Prior Approach

Image processing algorithms based on the dark channel prior (DCP) pioneered a new
idea of image defogging. DCP is a simple approach in an algorithmic implementation and
is effective in removing the sense of fog from fogged images under water. It is assumed
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that there are certain regions in the image in which at least one channel has a pixel value
tending to zero. However, due to the influence of artificial light sources, underwater crab
images have uneven colors and inadequate edge information extraction, and the original
DCP algorithm fails to meet the application environment. In this paper, we apply guided
filtering and quadtree to optimize transmittance and atmospheric light, respectively, to
enhance edge information extraction and weaken the effect of uneven illumination. The
underwater image dataset of the crabs acquired using the underwater camera also fits
this property. He et al. statistically summarized the solution for clear images with fog
images. Since the underwater image and the image with fog possess the same properties,
Equation (1) is employed to obtain a clear image J(x). To solve for the original underwater
fog-free image of the crabs, the atmospheric light value A and transmission t(x) need to
be calculated. Transmittance is the ratio between the amount of incoming light and the
amount leaving from the other side of the incident side of the water. Atmospheric light
value is an atmospheric light at infinity.

I(x) = J(x)t(x) + A(1 − t(x)) (1)

where I(x) denotes fog image, J(x) denotes clear image, A denotes the atmospheric light
value, t(x) denotes transmission.

When estimating the atmospheric light in DCP, the mean value of the candidate region
with the larger value of image pixels is adopted to approximate the real atmospheric light.
However, due to the influence of the artificial light source, the center brightness of the
underwater crab image is larger, which leads to an excessive higher atmospheric light
value of the solution and affects the real image solution. The quadtree algorithm [25,26] is
employed to optimize the atmospheric light solution candidate region of the underwater
crab image to reduce the data of the atmospheric light value and ensure the effectiveness
of the image processing. The algorithm sets the quartiles of standard deviation as the
evaluation function and selects the suitable quartile threshold after the experiment. At each
image segmentation, the standard deviation of the four regions is calculated to compare
with each other and to satisfy the interquartile threshold. The operation of image delineation
for the candidate regions is continued and repeated until the final delineated alternative
regions satisfy the evaluation metric threshold.

The transmittance of the localized region is assumed to be constant, where the trans-
mittance is denoted by t(x). Since there are some impurities interfering in the underwater
environment of the crab pond and the underwater camera acquires images with a sense of
fog, a correction parameter ω for the transmittance is introduced, and ω is taken as 0.95.
We obtain as follows:

t(x) = 1 − ωmin
Ω

(
min

C

J(x)
A

)
(2)

where Ω denotes random window areas, C denotes color channel. t(x) is applied to indicate
transmittance. A low transmittance can lead to overexposure in certain areas of the image.
To prevent this situation, the minimum threshold of transmittance is set, expressed as
t0 = 0.1. Guided filtering is applied to further optimize transmittance [27–29]. The formula
for obtaining the final clear image is as follows:

J(x) =
I(x)− A

max(t(x), t0)
+ A (3)

2.4. First-Step Color Correction

DCP effectively addresses the fogging problem of underwater crab images. The
gray world assumption [30] and the perfect reflection assumption [31] are combined in
color correction [32]. In the underwater crab image, a linear color correction equation is
constructed to compensate for the color balance of the red channels.

Ia−r(x, y) = µI2
r (x, y) + vIr(x, y) (4)



Fishes 2024, 9, 60 7 of 18

where Ia−r(x, y) denotes the average of R channel pixels, µ and v are the channel correction
factor, Ir(x, y) denotes the r pixel value of the channel in the image.

The gray world assumption holds that the average value of the R, G, and B compo-
nents converge to the same grayscale value in a color-rich image. The perfect reflection
assumption supposes that the brightest point in the image is the white point and sets the
value of that point to the maximum value as the sum of the R, G, and B channel values.
To solve for the correction factor of the linear expression, a joint equation based on two
assumptions is described as follows:

µ
M
∑

x=1

N
∑

y=1
I2
r (x, y) + v

M
∑

x=1

N
∑

y=1
Ir(x, y) =

M
∑

x=1

N
∑

y=1
Ig(x, y)

µmax
x,y

{
I2
r (x, y)

}
+ vmax

x,y
{Ir(x, y)} = max

x,y

{
Ig(x, y)

} (5)

where M and N are the width and height of the requested image. According to Equation (5),
the gray world assumption and the perfect reflection assumption are combined to enhance
the red channel. Therefore, an innovative image correction method combining the gray
world assumption and the perfect reflection assumption effectively enhances the red
channel pixel values in the underwater crab images.

2.5. Second-Step Color Correction

First-step color correction is designed to compensate for some deficiencies of the
red channel, but with insufficient enhancement. In consideration of the characteristics of
the green channel’s low loss in the light scattering process, the compensation equation
is constructed to realize the green channel to compensate for the red and blue channels.
Via double-scale decomposition of single channel images with massive equalization fil-
tering, the strong channel compensates for the weak channel. The dual-scale decomposi-
tion divides the image into structure and texture. The filter size is adapted according to
the experiment.

The implementation steps are introduced as follows:
(1) After first-step color correction processing, the underwater crab image is channel-

separated, which facilitates the pre-processing of the R, G, and B channels individually.
The R channel is obtained as the original layer after double-scale decomposition, followed
by median filtering to obtain the final R channel original layer RF. The same operation is
taken for the B channel and G channel to obtain the original layers BF and GF. The original
G channel and the G channel original layer GF are subtracted to obtain the G channel detail
layer GD.

(2) Equation (6) indicates how the G channel detail layer GD is superimposed onto
the R channel original layer RF and the B channel original layer BF to construct the com-
pensation equation. This compensation approach can solve the detail degradation problem
of the red and blue channels and prevent overcompensation. However, applying average
filtering in the R channel reduces pixel information, and thus a compensation equation is
adopted to achieve color balance.

GD = G − GF
RNEW = RF + GD + k1 × R1
BNEW = BF + GD + k2 × B1

(6)

where k1 and k2 are the coefficients of the compensation equation. k1 is set to 0.85, k2 is set
to 0.55.

(3) The image after second-step color correction is obtained by summing the obtained
RNEW and BNEW with the unprocessed G. The outcome has a significant enhancement in
the R and B channels in the RGB histogram distribution to achieve color balance.
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2.6. Crab Identification Algorithm Based on Improved YOLOv5s

After image processing, the crab images show clarity and color balance, which pro-
vides the basis for the algorithm to identify and count the number of river crabs [33,34].
The YOLO series [35–38] is widely cited as a classical algorithm in the first stage for target
detection in various environments. However, the YOLOv5s model is large, and therefore
its detection speed in crab recognition cannot satisfy the need for rapidity and real-time
performance. Therefore, in engineering applications, it is necessary to reduce model size
and improve image detection speed while ensuring detection precision. The K-means++
clustering algorithm, ShuffleNetV2 lightweight model, and DIoU prediction box were
proposed in this paper to optimize the YOLOv5s model. To improve the convergence speed
of the pre-selected boxes and ground truth boxes in the model and accelerate network train-
ing, the K-means++ algorithm is employed to cluster the same crab labels in the self-built
underwater crab dataset. This results in 9 pre-selected boxes that are tailored to this dataset.
To decrease the size of the crab detection model and increase detection speed and real-time
performance, a lightweight model, ShuffleNetV2, was employed to replace the backbone
of the original network, ensuring the crab accuracy while reducing the model parameters.
Finally, the DIOU loss function was adopted to solve the problem of the target box in GIOU
wrapping the prediction box and being unable to distinguish between the relative positions.
Figure 4 shows the improved YOLOv5s model by ShuffleNetV2.
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The K-means algorithm [39] is applied by the YOLOv5s model to cluster the publicly
available COCO dataset. K-means essentially involves a loop that iterates over the centroids
of the pre-selected box types, calculating the distance from each pre-selected box to the
centroid of the new pre-selected box type and re-classifying them according to the closest
distance. The loop stops when the intra-class distance is minimized and the inter-class
distance is maximized. However, the K-means algorithm is susceptible to the influence
of the initial center of mass which is prone to empty clusters, which results in inaccurate
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clustering and unrepresentative pre-selected boxes. The anchor boxes generated from the
COCO dataset cannot be adapted to the crab dataset because of the large variation in the
size of the pre-selected anchor boxes. To address the above two problems, the K-means++
algorithm [40] was employed to optimize the selection of the center of mass. The K-means++
algorithm was applied to perform anchor box clustering on the crab dataset. To increase the
convergence speed of the model, the YOLOv5s algorithm presets nine pre-selected boxes
and categorizes the nine pre-selected boxes into three different dimensions. Therefore, the
core of the clustering algorithm is set to nine. The labels of the dataset were clustered, and
the clustering results are shown in Table 1.

Table 1. Clustering results of pre-selected anchor boxes.

Clustering Algorithms Datasets Pre-Selected Anchor Boxes

K-means COCO (10, 13), (16, 30), (33, 23), (30, 61), (62, 45),
(59, 119), (116, 90), (156, 198), (373, 326)

K-means Self-made
(333, 1079), (420, 968), (457, 1601), (506, 743),

(506, 1141), (587, 1299), (619, 977), (659,
1568), (723, 1228)

K-means++ Self-made
(328, 1062), (431, 1078), (447, 1581),

(469, 714), (528, 1018), (577, 1285), (657, 985),
(669, 1595), (756, 1256)

To decrease the size of the crab detection model and increase the detection speed and
real-time performance, the lightweight model ShuffleNetV2 was proposed. ShufflenetV2
studied the operation of ShuffleNetv1 and MobileNetv2 and combined theory and exper-
iment to obtain four practical guiding principles. First, equal channel width minimizes
memory access cost. As the number of point convolutions used in the network increases,
the network runs faster. Second, excessive group convolution increases the MAC. Group
convolution reduces complexity but decreases model capacity. Third, network fragmen-
tation reduces degree of parallelism and slows down the model. Fourth, element-wise
operations are non-negligible, replacing some modules of the residual unit to improve
speed. Compared to lightweight networks of the same type, ShufflenetV2 performs faster
training and detection on the GPU. It is more compatible and can be combined with mod-
ules such as squeeze excitation to improve model performance. Based on the four guiding
principles mentioned above, a new operation proposed by ShuffleNetV2 is channel splitting.
It divides the channel dimension of the input feature map into two parts after the channel
segmentation operation and represents them by A and B. The A module has the same
mapping with the same module input size, output size, and the same number of channels.
The B module first goes through a 1 × 1 convolution and then a 3 × 3 depth-separable
convolution. The depth-separable convolution has better computational power for the
same size features. To perform channel fusion, concat is employed to merge modules
A and B.

IoU stands for intersection over union, and it reflects the detection performance
between the predicted frame and the ground truth frame. It is a commonly used metric
in object detection. GIoU [41] is adopted in the YOLOv5s model to calculate the target
regression function. When there is a certain angle deviation between the real box and the
preselected box, the GIoU calculation is worse. We adopt DIoU [42,43] for optimization.
DIoU provides the change direction of the predicted box even when the real box and the
predicted box do not overlap and avoids the divergence of the training process.

3. Result and Discussion
3.1. Subjective Estimation

Figure 5 shows the comparison plots of 10 sets of randomly selected original images
with the results of applying dark channel prior (DCP), adaptive histogram equalization
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(AHE), multi-scale Retinex with chromaticity preservation (MSRCP) [44], gated context
aggregation network (GCANet) [45], and our proposed method.
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In Figure 5, the original images of the underwater crab exhibit low contrast, weak
lighting conditions, and fuzziness. However, the crabs in the original images were recog-
nizable by eye. The crab images processed using the DCP algorithm have low brightness
and dark colors. The edges and details of the crabs could not be seen clearly, which resulted
in the target recognition algorithm failing to accurately identify the crabs. The crab image
processed via the AHE algorithm presents a favorable visual effect. The outline of the
crab is clearly visible, which facilitates subsequent processing. However, the high pixel
count in the blue channel of the image processed via the AHE algorithm causes the image
to appear blue and deviate from the color of the real image. The crab images processed
using the MSRCP algorithm have serious noise, fuzzy contours, and poor image quality,
preventing clear identification of crab details. This indicates that the MSRCP algorithm is
poorly scalable and cannot be directly transferred from the above-water environment to
the underwater environment. The GCANet algorithm works with the weights given in the
paper, and it was trained with the water environment dataset. The crab images processed
with the GCANet algorithm have average processing effects and are susceptible to artificial
lighting sources. The crab images processed using the proposed method not only have
good image-defogging effects but the details of the crab are also highlighted, and the color
is balanced. The auxiliary light source has less influence, and the overall vision is better,
providing high-quality images for subsequent processing.

Figure 6 represents the recognition results of improved YOLOv5s before and after
enhancement. In the original image, a single crab is easy to recognize, but multiple crabs
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or crabs with incomplete morphological information cannot be identified. The images
processed with the various algorithms were input into the Grad-CAM model for visual
analysis of the heat map, and the results are shown in Figure 7. The crab images processed
by the proposed method show a heat map with concentrated and correct heat areas on the
crab target. This indicates that the proposed method provides the basis for target detection.
The heat areas of other compared algorithms present as scattered or non-unique, which
affects the target detection results.
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3.2. Objective Estimation

To guarantee the detection of underwater crabs, image quality and structure similarity
are important criteria to measure the quality of various image processing algorithms.
Structural similarity (SSIM) [46], peak signal noise ratio (PSNR) [47], underwater color
image quality evaluate (UCIQE) [48], information entropy (IE) [49], and natural image
quality evaluator (NIQE) [50] were selected as image quality evaluation indicators. PSNR
indicates the comparison of image quality before and after processing by the algorithm,
with higher values indicating better image quality. SSIM indicates the similarity of an image
before and after processing to avoid corrupting the original image information through
image processing algorithms.

In the underwater crab image dataset, five groups of original images and algorithm-
processed images were randomly selected for statistical analysis of image parameter detection.
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Table 2 shows the objective estimation results of the processing results of various image
processing algorithms. As shown in Table 2, the SSIM and PSNR of crab images processed
using the proposed method perform better among the same type of algorithms. In particular,
the SSIM indicator ranks first in all five groups of images, with a mean value of 0.864. The
SSIM indicators of the crab images processed with the other comparative algorithms are
in the range of 0.037–0.709, which is worse than that of proposed method. This indicates
that the comparative algorithm corrupts the original images to different degrees, which
affects the rendering of the images. The PSNR indicator of the crab images processed
by the proposed method is within 14.662–16.467, ranking first among all five groups of
images. In UCIQE, IE, and NIQE, all five algorithms maintain a high level of quality. In
summary, the PSNR and SSIM indicators of the proposed method ranks first in the objective
estimation. The crab images processed using the proposed method have good effect and
retain the similar structure to the original image, which provides a good foundation for the
subsequent target recognition.

Table 2. Quantitative analysis results of underwater crab images. The five parametric quantitative
evaluation metrics, SSIM (structural similarity), PSNR (peak signal noise ratio), UCIQE (underwater
color image quality evaluate), IE (information entropy) and NIQE (natural image quality evaluator),
are employed to evaluate the dark channel prior (DCP), adaptive histogram equalization (AHE),
multi-scale Retinex with chromaticity preservation (MSRCP) [47], gated context aggregation network
(GCANet), and proposed method processed images, respectively.

Image Indicators Proposed
Method DCP AHE MSRCP GCANet

1

SSIM ↑ 0.893 0.453 0.770 0.041 0.475
PSNR ↑ 15.189 14.916 14.061 7.306 9.866

UCIQE ↑ 0.632 0.596 0.629 0.631 0.650
IE ↑ 6.342 6.002 6.752 7.459 7.606

NIQE ↓ 14.839 13.074 16.949 18.240 14.270

2

SSIM ↑ 0.879 0.424 0.709 0.051 0.442
PSNR ↑ 15.724 14.176 15.200 7.273 9.573

UCIQE ↑ 0.644 0.634 0.598 0.610 0.653
IE ↑ 6.251 5.895 6.536 7.328 7.845

NIQE ↓ 15.983 13.030 16.453 18.531 15.334

3

SSIM ↑ 0.887 0.433 0.769 0.037 0.478
PSNR ↑ 15.202 14.965 14.163 7.156 9.316

UCIQE ↑ 0.636 0.614 0.610 0.628 0.624
IE ↑ 6.243 5.778 6.740 7.504 7.593

NIQE ↓ 15.734 13.393 19.625 18.467 15.383

4

SSIM ↑ 0.805 0.519 0.618 0.044 0.472
PSNR ↑ 16.467 13.478 10.834 6.116 8.613

UCIQE ↑ 0.648 0.625 0.638 0.663 0.668
IE ↑ 6.595 5.728 7.297 7.430 7.692

NIQE ↓ 15.058 12.597 16.400 16.456 12.635

5

SSIM ↑ 0.855 0.432 0.734 0.038 0.355
PSNR ↑ 14.662 14.260 13.514 6.067 8.506

UCIQE ↑ 0.633 0.609 0.618 0.631 0.671
IE ↑ 6.104 5.473 6.552 7.392 7.712

NIQE ↓ 16.078 13.205 17.417 17.539 13.637
Note: ↑ indicates that a higher value of this parameter leads to better performance, while ↓ indicates that a lower
value of this parameter leads to better performance. The bold values in Table 2 indicate that the metric represents
the best performance among all algorithms.

3.3. Engineering Application Assessment

In engineering applications, underwater crab image processing is the practical foun-
dation for identifying crabs, counting the number of crabs in the pond, and analyzing the
current growth of crabs. Due to the complex underwater environment of crab ponds, there
are numerous water plants and plankton interfering with crab detection. In engineering ap-
plication assessment, the crab detection rate and average confidence level in the processed
images are important reference indicators for evaluating image processing algorithms.
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3.3.1. Comparison of Target Detection Algorithms

To objectively analyze the performance of the target detection algorithm, the num-
ber of parameters, giga floating-point operations per second (GFLOPs), precision, recall,
mean average precision (mAP), and frames per second (FPS) are taken as algorithm op-
eration characteristics to evaluate the target detection algorithm. To test the practicality
of the improved YOLOv5s algorithm for detecting underwater crab targets in the ponds,
YOLOv3, YOLOv3 + Shuffle, YOLOv5s, YOLOv5s + Shuffle, YOLOv5s + MobileNetV3,
and YOLOv5s + PP-LCNet training comparison were performed. The model has an epoch
of 100, a batch size of 8, and an input image size of 640 × 640. In Figure 8a, the model
outputs the features map of the backbone of the SPFF and detection head front C3. In
Figure 8b, the average loss of each model training, YOLOv5, and improved YOLOv5 are
faster to converge and the average loss function is smaller.
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Table 3 shows the reference metrics of different target detection algorithms. The
improved YOLOv5s model adopting ShuffleNetV2 shows improvements in parameters,
GFLOPs, and FPS. The YOLOv5s model with ShuffleNetV2 has 3.20 million parameters,
with GFLOPs of 5.9 and FPS of 50. Compared with the original YOLOv5s model, the
YOLOv5s model with ShuffleNetV2 reduced the number of parameters by 54.58%, reduced
GFLOPs by 63.13%, and increased FPS by 21.95%. However, the precision, recall, and
mAP of the improved model have a small decrease, which does not affect the engineering
application of the model. The YOLOv3 model optimized with ShuffleNetV2 shows the
same trend. This indicates that the lightweight ShuffleNetV2 module effectively reduces
the number of parameters and GFLOPs of the model and improves the FPS. There are
greater improvements in model training and more rapid detection of images, which is
promising for applications in rapid and complex projects.

Table 3. The performance parameters of the six-output network model. Parameters, giga floating-
point operations per second (GFLOPs), precision, recall, mean average precision (mAP), and
frames per second (FPS) indicators for YOLOv3, YOLOv3 + SHU, YOLOv5s, YOLOv5s + SHU,
YOLOv5s + MobileNetV3s, and YOLOv5s + PP-LCNet algorithms are counted.

Algorithm Parameters
(Million) GFLOPs Precision (%) Recall (%) mAP (%) FPS

(f/s)

YOLOv3 61.55 155.3 0.957 0.995 0.988 34
YOLOv3 + SHU 5.53 9.2 0.919 0.982 0.978 44

YOLOv5s 7.04 16 0.973 0.978 0.991 41
YOLOv5s + SHU 3.20 5.9 0.914 0.991 0.977 50

YOLOv5s + MobileNetV3s 3.56 6.4 0.962 0.962 0.985 36
YOLOv5s + PP-LCNet 13.42 24.9 0.947 0.987 0.984 41

Note: The bold values in Table 3 indicate that the metric represents the best performance among all algorithms.
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Among the ShuffleNetV2, MobileNetV3s, and PP-LCNet lightweight models, Shuf-
fleNetV2 not only had a smaller number of model parameters, but also had a higher FPS
with better real-time performance. PP-LCNet is a complex model with twice the number of
parameters as the original model and cannot be adapted to real-time systems. Compared
with the original model, the FPS of MobileNetV3s model was reduced by 12.20%. In
summary, among the lightweight networks, ShuffleNetV2 model is smaller and had better
real-time detection capability, which can be better adapted to the engineering application
of the crab detection.

3.3.2. Engineering Application Evaluation

An underwater crab image dataset was constructed with 2000 images. In the engi-
neering application evaluation, the dataset was fed into the improved YOLOv5s model for
crab identification with the aim of measuring the quality of the underwater crab image
processing algorithm proposed in this paper. The dataset was divided into a training and
testing set in the ratio of 7:3. Then the whole underwater crab image dataset was fed
into improved YOLOv5s model with trained parameters to verify the performance of the
network. A total of 1800 crabs in the dataset were identified via manual identification.
The detection rate and average confidence in the engineering detection results were taken
as reference indicators for the quality of the underwater image processing algorithm. In
engineering applications, the model metrics are classified into two criteria, qualifying and
good, through statistical experiments. The qualifying standard for detection rate is 60%,
and the good standard is 85%. For the average confidence, the qualifying standard is
0.5 and the good standard is 0.7.

In this paper, the improved YOLOv5s algorithm is adopted to perform crab detection
for the five image processing results of DCP, AHE, MSRCP, GCANet, and proposed method.
The number of crabs in the underwater crab image data set is 1800 by manual statistics.
There are situations in the dataset where the water plants were completely obscured, and
the crabs could not be seen clearly. As shown in Table 4, a total of 1345 crabs were detected
in the original images, with a detection rate of 74.72%, in which the average confidence level
of crabs is 0.51. Among the five image processing algorithms, the crab images processed
with the proposed method detected a total of 1634 crabs, ranking first in the number
of detections. It had a detection rate of 90.78% and an average confidence level of 0.75.
Compared with the detection results of the original image, detection rate of the proposed
method increased by 21.41%, and the average confidence level increased by 47.06%. The
detection rate and average confidence level reached a good standard, which can be better
applied to engineering applications and provide technology upgrades for the industry.
Among the comparison algorithms, the crab images processed using the DCP algorithm
show a slight improvement in detection rate and average confidence, which only reaches
the “qualifying” standard. The results of AHE, MSRCP, and GCANet do not meet the
qualifying standard for some of the indicators. Therefore, the underwater crab image
dataset processed using the proposed method performs well in engineering applications
which can satisfy the application requirements of crab farming.

Table 4. Detection results of improved YOLOv5s.

Number Image DCP AHE MSRCP GCANet Proposed Method

Number of detections 1800 1345 1439 1249 928 1321 1634
Average confidence level - 0.51 0.63 0.47 0.43 0.51 0.75

Detection rate - 74.72% 79.94% 69.39% 51.56% 73.39% 90.78%

Note: The bold values in Table 4 indicate that the metric represents the best performance among all algorithms.

The subjective estimation, objective estimation, and engineering application assess-
ment of the five image processing algorithms are synthesized and summarized as follows.
The crab images processed using the DCP algorithm have low brightness, invisible details,
and general objective estimation indicators. The crab images processed with the DCP



Fishes 2024, 9, 60 15 of 18

algorithm show a slight improvement in the detection rate and average confidence level.
The crab images processed with the AHE algorithm deviate from the color of the real
image, and the engineering detection rate is reduced by 7.13% compared to the detection
results of original image. The crab images processed with the MSRCP algorithm have
severe noise, fuzzy outlines, and poor image quality, which seriously interferes with the
detection of the target detection algorithm and impossible for engineering applications. The
UCIQE performance of the crab images processed using the GCANet algorithm is better,
but the results of engineering applications are normal. The crab images processed with the
proposed method exhibit the defogging effect, outstanding details, and balanced colors,
presenting high quality visual effects. The SSIM and PSNR of the crab images processed
with the proposed method perform the best among the same type of algorithms. It has an
average SSIM of 0.864 and a PSNR indicator between 14.662 and 16.467. The proposed
method detected a total of 1634 crabs in the database, which shows a detection rate of
90.78% and an average confidence level of 0.75, which meet the “good” standard. Com-
pared with the detection results of the original image, the detection rate of the proposed
method increased by 21.41%, and the average confidence level increased by 47.06%. The
results processed with the proposed method achieved better results in subjective estimation,
objective estimation, and engineering application assessment. The approach effectively
captures the density distribution of crabs and constructs a submerged crab distribution
map, providing science and technology for fine-grained farming.

4. Conclusions

A two-step color correction and improved dark channel prior image processing ap-
proach is proposed for underwater crab images with low contrast, weak light conditions,
color imbalance, and interference from auxiliary light sources. Dark channel prior is im-
proved with guided filtering and quadtree to overcome the problems of blurred underwater
images and artificial lighting sources. The color correction approach combining the gray
world assumption, the perfect reflection assumption, and strong channels to compensate
for weak channels is employed to optimize the underwater image color. To satisfy the
rapidity and real-time performance requirements of detection for engineering applications,
the YOLOv5 model is improved by adopting the ShuffleNetV2 network. The experimental
results show that the proposed method processes the resultant images to achieve better re-
sults in subjective evaluation, objective evaluation, and engineering application assessment,
which effectively addresses the problems existing in the underwater images and meets the
engineering requirements. As mentioned above, the proposed image processing method
and improved YOLOv5s algorithm will be deployed on an embedded board and applied to
an automated baiting boat. This method can effectively improve real-time detection accu-
racy of crabs in ponds under various environments and conditions, including nighttime and
daytime.The real-time crab population detection device can accurately obtain the density
distribution of crabs in a crab pond and construct an underwater crab distribution map.
Combined with information such as water quality parameters, pond area, and the current
growth stage of crabs, the appropriate amount of baiting can be scientifically determined.

The approach in this paper also has certain limitations. To better suit the project crab
farming environment with a high degree of concentration, the algorithm is developed
based on a self-built crab dataset, which is not widely applied for target identification
in different underwater environments. It is also influenced by artificial light sources, of
which there are two, forming points in the central area of the image, which has an effect
on the processing quality. This causes the image to present too-vivid color blocks after
processing, which affects the visual experience of the image and can be further optimized
subsequently. In the future, we will also focus on the following two issues. Firstly, we will
expand the dataset to prevent problems such as misidentification or failure to recognize
crabs due to poor shooting angles and improve the recognition of crabs with different
morphologies. Additionally, based on the research conducted in this article, we will build a
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deep learning algorithm to monitor crab growth. This will contribute to the intelligent and
refined development of the aquaculture industry.
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