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Abstract: The presence of escaped fish in aquaculture facilities as a result of harsh meteorological
conditions (more pressing in the face of climate change) requires a better understanding of this
dynamic behaviour through vigilant monitoring and validated numerical models. In this context, data
from strain and stress sensors as well as meteorological and current sensors installed at an aquaculture
farm in the Region of Murcia (Spain) were collected, processed and analysed. Among them, the first
results on the relationship between load and current sensors are presented. Due to the complexity
of the time series, various analyses were conducted to examine their interrelation, encompassing
the regression analysis of raw data and data segmented into different time intervals. Through this
analysis, it was observed that employing distinct time windows better elucidated the data variability.
Furthermore, an optimal data window of 240 data points was identified, demonstrating a significantly
improved explanatory power, with the coefficient of determination (R2) increasing by approximately
0.8 depending on the section. This paves the way for optimising the monitoring features that must be
carried out to relate cause-and-effect variables in the behaviour of these offshore infrastructures.

Keywords: offshore aquaculture; escapes; adverse climatic events; load sensors; current meters;
linear regression; window data method

Key Contribution: This study makes a significant advancement in the field of offshore aquaculture
management by providing detailed insights into the dynamic stress experienced by aquaculture
infrastructures under varying oceanographic conditions in order to prevent fish escapes.

1. Introduction

In 2020, the global aquaculture industry achieved a historic milestone, reaching a
record production of 122.6 million tons, valued at USD 281.5 billion [1]. Furthermore,
projections anticipate a substantial upswing in marine animal production, consumption
and trade by 2030, with an estimated surge to 202 million tons. This surge is attributed to
the sustained growth and expansion of the aquaculture sector [1]. As a result, the trans-
formative trajectory of the marine aquaculture sector entails a shift towards establishing
production facilities in the open sea [2]. In these offshore locations, the oceanographic
and meteorological conditions pose heightened challenges [3]. The vulnerability of key
structural elements, particularly mooring lines and nets, is significantly elevated compared
to installations situated in more sheltered areas near the shore [4].

In numerical terms, just in Norway between 2010 and 2018, a total of 305 escape
incidents were documented, involving Atlantic salmon (Salmo salar) and rainbow trout
(Oncorhynchus mykiss), accounting for 1,960,000 registered escapes [5]. The Mediterranean
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region faced a more substantial challenge, with 7,645,700 fish escaping from sea cages
between 2007 and 2009, while the UK reported 1350 escapes during the same timeframe.
Moreover, the associated financial toll (based on the value at the point of first sale) of these
escapes in Europe was estimated at approximately EUR 47.5 million annually [6].

1.1. Effects of Escapes

It is imperative to recognise that escapes not only entail significant economic repercus-
sions for aquaculture practitioners but also pose severe ecological, genetic, pathogenic and
socioeconomic consequences, as underscored [7]. For example, escape incidents heighten
the potential for disease and parasite transfer and contribute to their amplification within
aquaculture settings. Indeed, it was demonstrated [8] that escapes from salmon aquaculture
in Norway in 2021 served as reservoirs for sea lice in coastal waters. Public health concerns
may arise post escape, as farmed fish are often medicated, potentially resulting in escaped
fish containing active substances [9]. Additionally, escapes can exert profound effects
on wild populations. The hybridisation of farmed fish with their wild counterparts has
the capacity to genetically alter populations, diminishing local adaptation and adversely
impacting population viability and integrity [10]. Cultivated fish, accustomed to consum-
ing feed pellets in sea cages, undergo a dietary shift to natural prey upon escape. This
adaptation introduces the potential for competition with local counterparts or other wild
species for food and habitat [11]. For instance, escaped seabreams have been captured
in fishing grounds and habitats, such as seagrass, sand, or rocky bottoms, where their
wild conspecifics reside, thus preying on natural species [12]. Moreover, the impacts are
particularly challenging if the escaped species are not native from the area [13], as they can
lead to alterations in habitat complexity [14].

The aftermath of escape incidents extends to conflicts between the aquaculture and fish-
ery industries. Escaped species are frequently captured by fisheries, resulting in heightened
tensions and increased catches in local fisheries [12]. The comprehensive understanding
and management of escape incidents are crucial for mitigating their ecological, economic
and public health ramifications.

1.2. Causes of Escapes

Regarding the causes of escapes, the documented incidents in recent years include
the wrecking of installations, inadequate technical conditions of the facilities, human error,
predation by predators, collisions, poor inspection and working procedures, the lack of
control systems and a deficit in competence among salmon farmers, as outlined in the
strategy for sustainable aquaculture [6,7]. Among these causes, storms emerge as the most
significant catalysts for structural failures, leading to low performance in moorings and
cages and subsequent escape incidents as well as net holes [5].

Moreover, it is expected that climate change will further exacerbate the threat to
offshore aquaculture [15]. Storms are expected to escalate in frequency and severity due
to climate change, posing a substantial risk to aquaculture operations [6,7]. For instance,
the storm Gloria in January 2020 along the Mediterranean coast surpassed previous events
with unprecedented wave heights, durations and storm intensities, challenging established
understanding of the wave climate in the Spanish Mediterranean [16]. This event, in turn,
led to substantial damage to fish farms, freeing millions of fish into the wild [17].

1.3. Mitigation Measures

Among mitigation measures to avoid fish escapes, the implementation of a rigorous
monitoring plan for all components, including anchorages, frameworks, buoys and both
deep and surface anchors, has become a common practice in the fish farms. Nonetheless,
these practices should be executed with sufficient frequency to detect potential issues
and enable timely repairs or replacements before system failure, which is expensive and
time-consuming [18]. In contrast, weather prediction models and dynamic simulations
have been developed [19–21]. However, these models are not exempt from criticism. Some
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of them do not adjust exactly to reality, and empirical experiments in real scenarios must
be performed to demonstrate the models [22].

To prove the developed model, in situ experiments should be performed, but they are
expensive and difficult to carry out. For instance, in Norway, full-scale commercial sea cage
experiments assessing net deformation revealed that currents have the potential to diminish
the net volume by 20–40%, underscoring the pivotal role of currents as a significant factor
influencing the behaviour of sea cages [23]. Likewise, an empirical study also located in a
Scandinavian county revealed that the presence of the sea cage significantly reduces the
flow near the area and increases the turbulence in the upper water column [24].

The scarcity of empirical studies on sea cages, with most of them being concentrated
in Norway, and the absence of comprehensive data for comparing hydrodynamics models
leave many studies incomplete and uncertain. Moreover, the paucity of experiments in the
Mediterranean exacerbates the lack of knowledge, impeding precision and security in the
installation of the offshore sea cages, and therefore elevating the risk of structural failures
in these areas where heavy storms are becoming more and more frequent [16].

Thus, this paper goes a step further beyond the advancements and developments
previously made at CTN-Marine Technology Center [25,26] introducing a technology
whose objective is to decrease the risk of breakages in aquaculture sea cages. By deploying
a cutting-edge method to assess the infrastructure’s condition and quantify potential
breakages, this innovative approach marks a significant advancement in enhancing the
safety and reliability of aquaculture installations.

2. Materials and Methods
2.1. Study Area

The pilot was developed in one of the meagre farms located in the Region of Murcia
(Spain). The sea cage chosen was located 9 km from the coast and 45 m deep with strong
exposure to waves and currents. This sea cage contained meagre, a species that, with its
movement, can cause deformations in the net due to its large size, which can reach 2 m in
length [27]. The net pen also contained an anti-current ring to prevent excessive movement
due to current.

2.2. Sources and Data Collection

For monitoring the sea-cage infrastructure, four load cells in each of the main mooring
lines and six net-moving sensors were deployed in the net-pen. In addition, oceanographic
parameters were monitored with an oceanographic buoy, and data from the marine currents
were collected using a current meter. In Figure 1, these sensors and their arrangement can
be seen on the network.

In the present paper, we focus on the results obtained by two of the load cells (namely
load sensors 1 and 3), and the data obtained in the current meter. Load cells 2 and 4 stopped
working immediately after the installation and, therefore, the data could not be used.

The load cells were installed in the joints between the mooring lines and the mooring
buoys. Load cell number 1 was deployed facing northeast, continuing with 2, 3 and 4 in a
clockwise direction in a symmetric order with a 28.29 m sea cage diameter. The data were
transmitted through a cable to the data logger installed on the surface, recorded on an SD
card and removed during the field work. The load cells have a maximum weight that can
support of 85 t.

The current meter was deployed to 27.5 m depth under the sea cage and facing up.
The current meter collected data on current speed [m/s] and direction [◦] every 2 m in the
water column. The data were stored in internal memory and collected each time we went
to the field.

Data collection period spanned during summer from 23 June to 8 August 2023. The
sampling rate varied depending on the sensor. Load cells transmitted data to a data logger
every second, while the current meters recorded data at 20 min intervals.
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Figure 1. In situ monitoring devices within a fish farm cage located in the Region of Murcia, Spain.
(a) Load sensor, (b) network sensor, (c) buoy and (d) current meter.

2.3. Statistical Analysis

In this study, data were collected from various sources, encompassing oceanographic
variables, as well as sensor data from a marine aquaculture facility. The data types included
load measurements (from load cells) and current data (from different current meters).

2.3.1. Preprocessing

Initially, we performed data cleaning to rectify inconsistencies and remove anomalies.
This included the identification and imputation of missing values, ensuring no data point
was disregarded without due justification. To address the issue of outliers and reduce noise,
we employed an Interquartile Range (IQR) method for the load sensor features. Then,
observations outside ±1.5 IQR bounds were deemed non-representative of the underlying
pattern and thus excluded from further analysis. A proportion of 1% of data were removed
using this method.

Special attention was given to synchronising the load and current meter data to ensure
temporal alignment each minute. However, all datasets were aggregated by the hourly
mean, facilitating analysis and reducing data volume.

2.3.2. Processing

Our data processing methodology was compartmentalised into three distinct sections,
each addressing a separate aspect of this study. The sections were constructed to elucidate
the interplay between sensor load data and current velocities, with the ultimate aim of
enhancing our understanding of the underlying physical phenomena.

• Sensor comparative analysis. In the first section, we conducted a temporal analysis for
each sensor individually. Time series graphs were generated to delineate the behaviour
of each sensor over the study period. This visual inspection facilitated the identifi-
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cation of any anomalous or periodic behaviour that warranted further investigation.
Subsequently, a comparative analysis was initiated wherein the load data from two
opposing sensors were juxtaposed in a scatter plot. A quadratic regression model was
fitted to these paired data to capture any non-linear relationship between the sensors’
readings. This model was selected based on preliminary analyses that suggested a
quadratic relationship offered the best fit, thereby enabling the characterisation of the
load response with greater fidelity than a linear model.

• Descriptive analysis of currents. The second section was dedicated to a descriptive
analysis of the current velocities and their association with sensor load data. A
correlation matrix was constructed encompassing all current velocities variables,
allowing us to quantify the degree of linear relationship between current velocities
at different depths. The matrix was extended to include the sensor load data, aiming
to reveal any potential correlation between the dynamic behaviour of the currents
and the sensor loads. This comprehensive analysis served to identify patterns and
relationships that might not be readily apparent from isolated data points.

• Windowed data analysis for regression enhancement. The final section of our data
processing involved the application of a windowing technique to the dataset. Data
windows were established with the intention of refining the accuracy of the regression
models. By segmenting the data into smaller subsets based on time intervals (data per
minute), we aimed to enhance the granularity of our analysis. This approach allowed
us to investigate whether the inclusion of more localised data subsets could explain a
greater variability in the sensor data in relation to the currents. The size and overlap
of the windows were methodically determined to balance the model’s sensitivity to
temporal variations against the risk of overfitting.

2.3.3. Postprocessing

The residual plots were meticulously scrutinised to detect any patterns or systematic
deviations that could indicate violations of the model assumptions. The analysis of residuals
also extended to verifying homoscedasticity and ensuring that the residuals were randomly
distributed and independent of the predicted values for most models, which is paramount
for the reliability of the regression models.

Upon completion of the regression analyses, we proceeded to a detailed postprocessing
phase to thoroughly examine the significance of the regression coefficients and to evaluate
the adequacy of the model fits. Post hoc analyses were conducted to assess the statistical
significance of the regression coefficients. This involved computing p-values using the
standard t-tests for each coefficient at the level of significance of 0.05.

3. Results

In this work, we have undertaken a comprehensive analysis of load data from two
distinct sensors. Initially, we collected an extensive dataset comprising over 2.5 million
individual readings across 16 variables which include the loads from both sensors and
13 current velocities from the surface to 27.5 m. To enhance the clarity and interpretability of
the trends, we have aggregated these data points into hourly averages, thereby condensing
the dataset to a more manageable 716 data points for each sensor. This reduction allowed
for a more streamlined and focused examination of load variations over time.

3.1. Sensor Comparative Analysis

This scatter plot tracks the load data captured by the first sensor over time (Figure 2).
The vertical axis represents the load and the horizontal axis denotes the date in month
and year (MM-YY) format. Due to some issues with the weight sensors calibration, it has
been decided to express the load in arbitrary units [a.u.]. The data points exhibit a positive
trend, suggesting a gradual increase in load over the examined time frame. Despite some
variability, the general direction is upwards, with the load increasing from below 1000 [a.u.]
to nearly 3000 [a.u.].
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Figure 2. Load sensor 1 represented every minute (black) and every hour (grey).

The second scatter plot illustrates the readings from the third load sensor across the
same temporal span (Figure 3). The trend in this graph is downwards, with the load
decreasing from around −250 [a.u.] to below −1500 [a.u.]. The data points are more
clustered in the early part of the graph and spread out as the load decreases.
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Figure 4 presents a scatter plot that compares the loads recorded by load sensor 1 (x-
axis) and sensor 3 (y-axis). It can be shown that below 1500 [a.u.] of sensor 1, the response
of sensor 3 is nearly flat but, for higher loads, there is a quadratic relationship between
them. Indeed, the data from both sensors are correlated (−0.86). They also represent a
black curve with an adjusted second-degree polynomial.
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The quadratic regression model applied to the relationship between the loads detected
by the two sensors is characterised by the following equation:

y = ax2 + bx + c (1)

The coefficients obtained from the model fitting are as follows, a = 1.21, b = −5.05−4

and c = −1131.39, where x represents the load from sensor 1, and y corresponds to
the load from sensor 3. The model’s intercept at −1131.39 sets the initial calibration
for the relationship. The mean squared error (MSE) of the model is 18,733.29, which
quantifies the average squared difference between the observed actual outcomes and the
outcomes predicted by the model. Nonetheless, the coefficient of determination, or R2, is
0.8446, suggesting that approximately 84.46% of the variance in the sensor 3 load can be
explained by the quadratic model based on sensor 1’s load. This strong R2 value indicates
a high level of predictive power and a substantial correlation between the two sensors’
load measurements, validating the model’s effectiveness in capturing the underlying
relationship within the data.

3.2. Descriptive Analysis of Current Velocities

The initial analysis revealed an absence of direct correlation between the data obtained
from load sensors and the measurements of water current at varying depths, except for the
contiguous currents which show a maximum correlation of 0.63.

The correlation matrix heatmap (Figure 5) delineates the degree of linear relationship
between sensor loads (Load 1—NE, Load 3—SW) and current velocities at varying depths
(velocities at surface to velocities at 24.5 m). Notably, the contiguous current speed readings
exhibit relatively high positive correlations, suggesting a pattern of coherent movement
among adjacent water strata. This coherence likely reflects the influence of uniform hydro-
dynamic forces acting upon proximate depths. In contrast, the sensor loads (Load 1—NE,
Load 3—SW) manifest a pronounced negative correlation, indicating an inverse relationship
between the loading conditions detected by the two sensors. Such a negative correlation
could be indicative of differing load responses to the same environmental stimuli or may
reflect the positioning and orientation of the sensors relative to the current flow.
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In the observed dataset, a notable discontinuity is present at a depth of 12.5 m. The
collected data at this juncture indicate a distinct shift in the current speed, a phenomenon
that coincides with the location of the thermocline. The thermocline is characterised
by a rapid change in water temperature with depth, which can significantly affect the
water’s density and, consequently, its movement. The alignment of this sensor’s data with
the expected position of the thermocline suggests that the thermocline’s presence at this
specific depth influences the current speed. This confluence is critical for understanding
the stratification of water columns and the dynamic interactions between temperature and
current flow.

3.3. Load Sensors with Current (Windows)

To test the relationship with other metrics, a univariate linear regression model was
run between the sensors and each of the velocities, giving a maximum R2 of 0.008. A
multivariate linear regression model was then run between sensor 1 and all currents and
sensor 3 and all currents, giving a R2 of 0.043 and 0.041 respectively.

These indicate a non-relationship between the load supported by the aquaculture
net and the currents at different depths. To delve deeper into the relationship between
these datasets, a multivariate regression analysis was performed by taking different time
intervals (60, 120, 180, 240 and 300). The results indicated an increase in the coefficient
of determination (R2) as the time interval increased, reaching values of 0.8. However, a
slight decrease in the R2 coefficient was observed when employing a 300-unit time interval.
Nevertheless, the R2 coefficient remained higher than that observed in the original dataset.

This minimal difference can best be seen by looking at the distribution of R2 for each
of the sensors for a window of 240, as shown in Figure 6. Here, it can be seen that the
calculated deviations around the data have a higher value, which is because most of the R2

values are higher.
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with 240 window data points, load sensor 3.

The optimal window discussed can be seen in the following figure, where it can be
observed that as the size of the window increases, the distribution of R2 becomes larger.
This holds true up to the optimal window (240), after which it slightly decreases at 300. The
fact that this is the case for both load sensors, i.e., that both have the same trend, is due to
their high inverse correlation.

To check this in a more interpretable way, the distribution of the window residuals of
the 60, 120, 240 and 300 data points is analysed. In the distribution of R2 (load sensor 1) in
Figure 7, it was observed that for window 60, most of the values are around 0.5 and increase
as we increase the window, with the majority of R2 being greater than 0.6 for window 240.
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Figure 7. (a) Distribution of R2 with 60, 120, 240 and 300 interval data points, load sensor 1; (b) distri-
bution of R2 with 60, 120, 240 and 300 interval data points, load sensor 3.

In Figure 7b, the behaviour of load sensor 3 shows the same trend as already mentioned
for load sensor 1. A small difference can be seen in the R2 values, which are slightly higher
for sensor 3, indicating that it explains the variability better, although the difference is
minimal.

After extensive analysis, it was determined that the optimal windows to capture the
variability of the data were 240 (Figure 8). These intervals showed a significant increase
in the metric R2 compared to the original dataset, meaning that the relationship between
load sensors and water flows was better captured. Showing that there is no evidence
of correlation in the previous analysis, multiple regressions are proposed to find better
data uses.
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Figure 8. (a) Boxplot load sensor 1; (b) boxplot load sensor 3.

4. Discussion

Load sensors 1 and 3 exhibit a strong negative correlation. This negative correlation
might suggest that when one sensor is experiencing a high load, the other tends to expe-
rience a lower load, or vice versa. This could be due to the sensors being positioned on
different parts of a structure that experiences differential loading depending on the current
speed and direction. It is also crucial to consider the magnitude of the correlations, as very
small positive or negative values (close to 0) may not represent a meaningful relationship
in a practical sense. Moreover, other factors such as the time of day, seasonal variations,
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geographical location and other geophysical variables could affect the currents and sensor
readings [28], which should be accounted for in a comprehensive analysis.

Load sensor 1 has supplied normalised data, exhibiting an initial deviation of ±85 kg
(0.83 kN). The recorded stress fluctuated between 593 kg (5.81 kN) and 809 kg (7.85 kN),
showcasing an ascending trend throughout the sampling period. Conversely positioned on
the opposite side, load sensor 3 affirms the data’s normality by capturing negative values
akin to the positive readings of load cell 1, reaching a maximum support of 224 kg (2.2 kN).
This supports the accurate initial interpretation of CTN opposition, i.e., negative tension in
the one not subjected to force and positive tension in the opposite, which bears some kind
of load. To confirm this possible cause, this observed behaviour of opposing sensors will
need to be compared with repeated situations under similar conditions.

The load sensors are supported in the following way: at one end, we have the an-
choring line formed by PROFLEX [29] rope with eight strings with a total Ø of 62 mm
and breaking load of 665 kN, from which the grid lines (reticular grid of 50 m × 50 m) are
formed by PROFLEX strings of eight ropes with a total Ø of 72 mm and breaking load of
885 kN (at the vertices of one of the grids is where the load sensors have been installed). At
the other end of the load sensor are the cage mooring ropes, made up of a total of twelve
ropes, three in each corner and thus three at the other end of each load sensor. The material
of each of the twelve ropes is 8-string Nylon with a total Ø of 38 mm and breaking load of
269 kN.

The tension forces recorded by these two opposing sensors, 1 and 3, seem to indicate
that during the sampling period, the fastenings and structures were not subjected to risky
situations, as they did not exceed 10 kN. This is significantly below the breaking load data
for the cables used, which are 269 kN, 665 kN and 885 kN, as provided by the manufacturer.
Nevertheless, the experiment was performed during the summer season; therefore, more
measurements during at least one year would give better insight into the efforts supported
by the sea cage.

The importance of testing the drag forces of a full-scale net cage lies in the fact that they
usually do not adjust to the models. Fredriksson and colleagues showed that when strong
currents exist, the drag on the cage increases tension in the mooring lines restricting the
cage’s horizontal motion and influencing the nonlinear component of the surge response.
As a result, the real behaviour was not presented in the numerical models [22]. Moreover,
the same study showed that the models used were usually more conservative and the load
cell values were higher compared to field observations, probably due to the increase in
viscous effects associated with lower Reynolds numbers at the model scale. Additionally,
another study analysing the drag forces realised that values derived from full-scale net
cage testing, when converted from model-scale testing, surpassed those estimated based on
depth data. Nevertheless, conversely, the converted cross-sectional areas from model-scale
testing were found to be smaller than the estimated values obtained in full-scale testing [30],
showing again that numerical models and empirical studies do not always adjust to reality.
If, as shown in the data, sensor 1 tends to support more load, a greater reinforcement of
the ropes that are attached to the bottom line of the northeast face would be beneficial. In
addition, costs can be saved on the southwest face, which does not receive as much impact.
Information of this nature is crucial to work towards a precision aquaculture which aims to
optimise resources and enhance the overall efficiency in the cultivation process, thereby
promoting sustainable practices and mitigating environmental impacts.

The correlation between the adjacent currents is slightly high, but as they move away,
the correlation decreases noticeably. This shows that depths that are close to each other
have similar velocities, while as soon as the distance increases, the velocity between the
currents becomes distinguishable. It has been shown that in the same area, different depths
have different values [31], considerably affecting the force supported by the components of
the sea cage at different parts (top vs. bottom). This again emphasises the necessity to fully
determine the oceanographic parameters at different depths in a specific area using real
data to obtain more precise models.
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5. Conclusions

The results indicate that the relationship between the load on the underwater network
and the current velocities is complex and influenced by the temporal scale of measurement.
However, the negative correlation between the two sensors suggests a significant inverse
relationship, indicating dynamic interactions within the underwater monitoring system.
The spatial correlation between contiguous currents declines with distance, highlighting
variable current conditions across depths, particularly around the thermocline. The lack of
correlation between sensors and current velocities implies that other factors may influence
the infrastructure’s load. Regression analysis with current velocities as predictors yielded
low R2 values; however, the window data method seems to be the best method to explain
these results and could be used in the future for further analysis, adding new oceanographic
variables. This paper emphasises the significance of conducting experiments in authen-
tic, real-world scenarios to comprehensively grasp the dynamics of offshore aquaculture
sea cages. This approach is essential to prevent fish escapes and the associated adverse
outcomes highlighted in the introduction. Our proposal suggests the preliminary instal-
lation and monitoring of a single sea cage using load cells before establishing a complete
offshore facility. This step allows an assessment of whether the specific area meets the
necessary parameters, ensuring a secure installation aligned with the financial resources of
the aquaculture company.
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