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Abstract: High temperatures are important environmental stressors affecting the metabolism, growth,
immunity, and mortality of Chinese mitten crabs (Eriocheir sinensis). In this study, Chinese mitten
crabs were divided into two groups and exposed to temperatures of 35 ◦C (thermal stress group)
or 25 ◦C (control group) for 24 h, and the transcriptome of the heart was analyzed. There were
4007 differentially expressed genes (DEGs) between the thermal stress and the control groups, includ-
ing 2660 upregulated and 1347 downregulated genes. Heat shock proteins (HSPs) and transcription
factors (TFs) were temperature-sensitive DEGs in Chinese mitten crabs. DEGs mainly focused on
protein processing in the endoplasmic reticulum, ribosome biogenesis, glycine, serine, and threonine
metabolism, protein export, and insect hormone biosynthesis pathways. A total of 28,916 SSRs and
59 TF families, including 851 TFs, were detected among all unigenes of E. sinensis transcripts. The
qRT-PCR results for the HSPs and apoptotic DEGs from the heart exhibited the same trends as those
in the E. sinensis transcriptome data. Results of light microscopy analyzing histological sections of the
heart indicated that most myocardial fibers were lysed, and the number of nuclei and the connective
tissue contents between the myocardial layers were both reduced following 35 ◦C exposure for 24 h.

Keywords: Eriocheir sinensis; transcriptome; heat shock protein; histology; immune

Key Contribution: Four thousand and seven DEGs and protein processing in the endoplasmic
reticulum pathway are modulated at high temperatures in Chinese mitten crabs, thus indicating their
importance in crab adaptation to high-temperature stress.

1. Introduction

Temperature is an important environmental factor that affects the physiological pro-
cesses of aquatic organisms [1]. With global warming, extremely high temperatures occur
in China and other regions during the summer [2]. Aquatic organisms are ectothermic
animals whose temperatures fluctuate depending on the water temperature [3]. Heat stress
commonly occurs in aquaculture, ultimately resulting in high mortality rates. However,
the mechanisms underlying thermal stress in aquatic organisms are not fully understood.
When water temperature fluctuates, the synthesis and release of stress hormone-related
genes in European sea bass (Dicentrarchus labrax) can be affected [4]. Furthermore, acute or
chronic thermal stress can alter the stress axis functions and other stress responses [5]. Once
the water temperature exceeds the normal range for crustaceans and fish, their growth,
survival, and immunity are negatively affected [6–9].

The Chinese mitten crab Eriocheir sinensis is one of the most popular crustaceans in
China due to its economic and nutritional properties and its pleasant aroma [10]. The
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production of E. sinensis reached 815,318 tons in 2022 [11]. With the Earth getting warmer
in recent years, water temperatures have also increased and this may significantly affect the
immunity, metabolism, and survival of E. sinensis. In China, most E. sinensis are cultured in
earthen ponds filled with submerged macrophytes (Hydrilla verticillata) and Nuttall’s water-
weed (Elodea nuttallii), and the depth of the water is approximately 1.5 m. Chinese mitten
crabs rest at the bottom of the pond and are surrounded by aquatic weeds. Although the
water temperature on the surface of the pond can reach 37 ◦C or even higher in the summer,
the water temperature at the bottom of the pond surrounding aquatic weeds can be 35 ◦C
or even lower. A previous study demonstrated that E. sinensis could molt normally at 35 ◦C,
and the changes in diel water temperature from 28 ◦C to 35 ◦C did not affect molting [12].
Thus, 35 ◦C can be used as the thermal stress temperature. According to Li et al. [13],
immune-related enzymes peaked at 12 h or 24 h and then decreased following thermal
stress. When the temperature was elevated from 18 ◦C to 30 ◦C, E. sinensis grew faster, the
molting period shortened, and the survival rate decreased from 100% to 97.2% [14]. Recent
research revealed that all E. sinensis died after 10 min in 40 ◦C water, while in response
to 35 ◦C water temperature stress, they began to die at 3 d [15]. Thus, water temperature
should be controlled in E. sinensis aquaculture during the high-temperature season.

The heart is an important organ in fish and crustaceans and pumps blood or hemolymph
containing cytokines, nutrition, and oxygen to the entire body [16]. To adapt to heat or cold
stress, heart morphology may change to maintain its function. When male rainbow trout
(Oncorhynchus mykiss) were cultured in warm water (20 ◦C) for eight weeks, the thickness of
the compact myocardium increased, and connective tissue contents and spongy myocardium
number decreased [17]. Temperature can also alter the heart rate and stroke volume. As the
temperature increases, the heartbeat strength decreases and the frequency increases [18,19].
A previous study demonstrated that the stroke volume of Dungeness crabs (Cancer magister)
decreased as the temperature changed from 4 ◦C to 12 ◦C but remained stable between 12 ◦C
and 20 ◦C [20].

Transcriptome analysis is widely used to analyze differentially expressed genes (DEGs)
in various biological processes [21,22]. A previous study revealed that EsTreh transcript
levels are inhibited under hot or cold stress in Chinese mitten crabs [23]. To date, transcrip-
tome analysis in response to thermal stress remains scarce, and DEGs responding to heat
stress in the heart require further study. Therefore, it is essential to conduct transcriptome
analyses to identify DEGs in response to heat stress.

In this study, the effects of heat stress on the transcriptome of the Chinese mitten crab
heart were investigated. Eight DEGs were used to validate the transcriptome results by
qRT-PCR, and histological sections of the heart were analyzed.

2. Materials and Methods
2.1. Crabs

The experiment was conducted at the Fisheries Institute, Anhui Academy of Agri-
cultural Sciences, in June 2022. Healthy male E. sinensis individuals (60.1 ± 2.6 g) were
obtained by cage traps from our experiment station ponds and acclimated in 20,000 L plastic
tanks containing recycling aerated tap water. The temperature of the water was 24 ◦C, and
one-quarter of the water volume was changed daily. The crabs were fed with sinking pellets
twice daily. This study was conducted according to the Experimental Animal Welfare and
Ethical Review Board of Anhui Academy of Agricultural Sciences guidelines of animals for
research (AAAS2022-20).

2.2. Experimental Design and Sampling

After acclimation for seven days, the crabs were randomly divided into two groups,
including the thermal stress group (TSG) and the control group (CG), each with three
replicate tanks (185 L) with 20 individuals each. The water temperatures in the thermal
stress group and the control group were maintained at 35 ◦C and 25 ◦C, respectively,
using aquarium heaters and air conditioners. Water temperature was increased at a rate
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of 1 ◦C/24 h. The temperature of the water in the control group was increased from 24 ◦C
to 25 ◦C and maintained at 25 ◦C for 24 h. In the thermal stress group, water temperature
was increased from 24 ◦C to 35 ◦C and maintained at each integer temperature for 24 h.
One-quarter of the water in the six experimental tanks was replaced with same-temperature
water each day and aerated continuously. Food was not provided during the study period.
The complete hearts of 5 individuals from each tank were collected from the control group
and the thermal stress group 24 h after the water temperature reached 25 ◦C and 35 ◦C,
respectively. Five hearts from each group were separately placed in liquid nitrogen and
then stored at −80 ◦C for transcriptome analysis. The other hearts were placed in 4%
paraformaldehyde for histology.

2.3. Total RNA Extraction and cDNA Library Construction

Total RNA was extracted from the hearts of E. sinensis using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA), and the quantity was assessed using a NanoPhotometer spectropho-
tometer and agarose gel electrophoresis. RNA integrity was evaluated using an Agilent
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Oligo(dT) beads were used
to extract total RNA. Total mRNA was fragmented using ultrasound, and the fragmented
mRNA was reverse-transcribed into first-strand cDNA using M-MuLV reverse transcrip-
tase (Promega, Madison, WI, USA) and random primers (Promega, Madison, WI, USA).
Total RNA was then degraded using RNaseH. Second-strand cDNA was synthesized using
DNA polymerase I (Promega, Madison, WI, USA), and the double-stranded cDNAs were
purified. After adding poly(A), the cDNAs were connected to sequencing adapters and
approximately 200 bp ligations were acquired and amplified.

2.4. RNA Sequencing and Transcriptome De Novo Assembly

The amplified cDNA was sequenced using an Illumina sequencing platform at Gene-
Denovo Biotechnology Co., Ltd. (Guangzhou, China). Fastp (version 0.18.0) [24] was used
to filter the original data of adapters, unknown nucleotides exceeding 10%, or low-quality
bases (q value ≤ 20) exceeding 50% before assembly and analyses. After filtering, high-
quality reads were prepared to assemble a de novotranscriptome using Trinity (version
v2.8.4) [25]. BUSCO (version 3) [26] was used to evaluate the completeness of the E. sinensis
de novo transcriptome.

2.5. Transcription Factor (TF) and Structure Analysis

Protein-coding sequences in unigenes were aligned to the Animal TFdb (http://
www.bioguo.org/AnimalTFDB/, accessed on 2 March 2023) to predict TF families us-
ing BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=
BlastSearch&LINK_LOC=blasthome, accessed on 2 March 2023). Simple sequence re-
peats (SSR) in the transcriptome were predicted using the MIcroSAtellite (v2.1) (http:
//pgrc.ipk-gatersleben.de/misa/, accessed on 2 March 2023).

2.6. Correlation and PCA Analysis

Pearson’s correlation coefficient and principal component analysis (PCA) for sam-
ple replicates and sample stability were performed using the cor() function [27] in the
R environment.

2.7. DEGs and Their Functional Analysis

Unigenes were identified using BLASTx (http://www.ncbi.nlm.nih.gov/BLAST/,
accessed on 3 March 2023) with an e-value < 0.00001, and this aligned sequence was
queried against databases of nonredundant proteins (Nr) in NCBI, Kyoto Encyclopedia
of Genes and Genomes (KEGG), COG/KOG, and Swiss-Prot protein. Protein functional
annotation was then conducted according to the best alignment results. Unigenes and
their expression levels were calculated and normalized to RPKM (reads per kilobase
per million reads) [28]. Differential RNA expression between the thermal stress and the

http://www.bioguo.org/AnimalTFDB/
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control groups was analyzed using DESeq [29]. The genes with a parameter of false
discovery rate (FDR) below 0.05 and absolute fold-change (FC) ≥ 2 were considered to be
differentially expressed genes (DEGs). To further analyze the biological functions of the
DEGs, all DEGs were blasted to the Gene Ontology (GO) terms in the GO database (http:
//www.geneontology.org/, accessed on 3 March 2023). Significantly enriched GO terms for
the DEGs were analyzed using the Omicsshare platform (https://www.omicshare.com/,
accessed on 3 March 2023).

2.8. Quantitative Real-Time PCR (qRT-PCR)

Eight DEGs associated with immunity or apoptosis were selected to verify the RNA-
seq results using qRT-PCR. RNA used for heart qRT-PCR was the same as that used
for transcriptome analysis. qRT-PCR was performed using a SYBR Premix Ex Taq kit
(Invitrogen) according to the manufacturer’s instructions. All reactions were performed
in triplicate. β-actin was selected as a housekeeping gene. The relative expression of each
DEG was calculated using the 2−∆∆Ct method [30]. The primer sequences for the eight
DEGs and β-actin are listed in Table 1.

Table 1. Primer sequences used for qRT-PCR.

Full Name of Gene Abbreviated Name Primer Sequences

cytochrome c’ Cyt-c-p F: CAAGGCGTCGGGTTATGTGT
R: AGGTAGGCGATGAGGTCTGC

Eukaryotic translation
initiation factor 5

eIF5
F: CAAGGTAGAGGGCAAAGGCA
R: GGTCTCAGGGTTCTCGCACT

Apoptosis inhibitor 5 api5-b F: GCCCCCAAAGGAACGCT
R: ACGAGATGAGGCGATGAACC

Cytochrome c CYC
F: CCAACAAGTCCAAGGGCATC

R: CGAGGTAGGCGATAAGGTCTG
Member of heat shock protein

60 family
Hsp60A F: ACCCCAGCCAATGAAGACC

R: ATGATTCCCGCCTCCACAAG
Heat shock 70 kDa
proteincognate 5 Hsc70-5

F: ATGCCCAAGGTGATTTCGCT
R: TCGTGTTCCTGTTGATGAGC

Lysosome-associated
membrane glycoprotein 1

Lamp1 F: CATCTGCCGCTCCTCCATTAC
R: CCGACTGGTATGCTCCCGAC

Member of the
transmembrane tetraspanin

protein family

Tspan11 ACGACATCTGGGAGGAAGC
ACATCCAGACGCCGACCA

beta-Actin β-Actin F: GGCTCGGGGATGGTCAA
R: CCAGTTGGTAATGATGCCGT

2.9. Analyses of Histological Sections of the Heart

Chinese mitten crab hearts that were used for histological sections were fixed in 4%
paraformaldehyde for 12 h, embedded in paraffin wax, and serially sectioned using a mi-
crotome (Leica Microsystems, Ankara, Turkey). Cut sections (5 µm thick) were immersed in
sequence in Environmentally Friendly Dewaxing Transparent Liquid I (Servicebio, Wuhan,
China) for 20 min, Environmentally Friendly Dewaxing Transparent Liquid II (Servicebio,
Wuhan, China) for 20 min, Anhydrous ethanol I for 5 min, anhydrous ethanol II for 5 min,
75% ethyl alcohol for 5 min, and finally rinsed with tap water. The sections were then
placed in a hematoxylin solution for 3–5 min and then rinsed with tap water. We then
placed the sections, in sequence, in 85% ethanol for 5 min, 95% ethanol for 5 min, and eosin
dye for 5 min. Sections were then placed in absolute ethanol I for 5 min, absolute ethanol
II for 5 min, absolute ethanol III for 5 min, xylene I for 5 min, and xylene II for 5 min. All
sections were mounted on glass slides with neutral gum. An Olympus light microscope
(BX51) was used to microscopically examine all stained sections, and digital images were
photographed using a cellSens Entry (Olympus Corporation, Tokyo, Japan).

http://www.geneontology.org/
http://www.geneontology.org/
https://www.omicshare.com/
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3. Results and Discussion
3.1. Transcriptome and Unigene Annotation

When low-quality sequences were removed from the thermal stress group and the
control group libraries, the raw reads number ranged from 37.73 M to 55.73 M, the clean
reads numbers ranged from37.33 M to 55.48 M, and clean bases ranged from 5.57 G to 8.28 G.
Values for Q20 and Q30 of the sequenced libraries ranged from 96.82% to 98.14% and from
91.67% to 94.31% individually, and the GC content ranged from 38.54% to 43.95% (Table S1),
thus indicating that the sequence data were high quality and reliable for further study.

High-quality clean sequences were first assembled into contigs, and the assembled con-
tigs were further assembled into unigenes. In this study, 43,606 unigenes were identified.
The maximum, minimum, and average unigene lengths were 36,785 bp, 201 bp, and 1190 bp,
respectively. The number and length of the N50 for unigenes were 6491 and 2190 bp, respec-
tively. Of all unigenes, 14,800 (33.93%) surpassed 1 kb in length and 7353 (16.86%) surpassed
2 kb in length (Figure S1). In the E. sinensis transcriptomic assembly, BUSCO (Benchmarking
Universal Single-Copy Orthologs) analysis revealed 904 (92.4%) complete, 34 (3.5%) frag-
mented, and 40 (4.1%) missing genes (Table 2).

Table 2. BUSCO analysis of the Eriocheir sinensis transcriptome.

Number of Genes BUSCO Categorization

904 Complete (C)
810 Complete and single copy (S)
94 Complete and duplicated (D)
34 Fragmented (F)
40 Missing (M)

978 Total BUSCO groups searched (n)

The sequences of 43,606 unigenes were compared to those of genes in four protein
databases: Swiss-Prot, KEGG, KOG, and Nr. There were 11,687 (26.80%), 17,141 (39.31%),
10,395 (23.84%), and 17,048 (39.10%) unigenes annotated using the Swiss-Prot, KEGG, KOG,
and Nr databases, respectively (Figure 1). Raw reads from E. sinensis have been deposited
in the NCBI database (accession number: PRJNA1064616).

3.2. SSR

SSR markers are codominant, multi-allelic, and useful tools for genetic, evolution-
ary, and polymorphism studies [31]. In this study, 28,916 SSRs were detected within
E. sinensis unigenes. The most abundant repeat motifs were dinucleotides (13,356, 46.16%),
followed by trinucleotides (11,925, 41.08%), tetranucleotides (2834, 9.8%), and hexanu-
cleotides (136, 0.66%). Among the detected SSRs, the AC/GT motif was the most abundant
(31.36%), followed by AG/CT (13.34%), AGG/CCT (11.37%), and ACC/GGT (7.32%) motifs
(Figure 2).

3.3. TFs

In this study, 59 TF families, including 851 TFs, were detected among all unigenes of
E. sinensis transcripts. The most abundant TF family was zf-C2H2 (473), followed by bHLH
(35), HMG (30), ZBTB (29), MYB (28), TF_bZIP (24), THAP (23), homeobox (19), GCNF-like
(18), and ETS proteins (12).

3.4. DEG Analysis

Genes that were differentially expressed between the thermal stress group (35 ◦C) and
the control group (25 ◦C) were selected according to p-value < 0.05 and |log2 foldchange| ≥ 1.
A total of 4007 DEGs (Table S2) were identified between the two groups, and these included
2660 upregulated and 1347 downregulated genes. When the temperature was elevated to
35 ◦C for 24 h, DEGs of heat shock proteins and transcription factors were shown to be sensi-
tive to temperature. DEGS mainly focused on protein processing in the endoplasmic reticulum,
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ribosome biogenesis in eukaryotes, glycine, serine, and threonine metabolism, protein export,
and the insect hormone biosynthesis pathway. Molting and metamorphosis are essential
processes in the growth and development of Chinese mitten crabs. In insects, molting and
metamorphosis are primarily controlled by two hormones: ecdysone and juvenile hormones.
Ecdysone and juvenile hormones are conserved between crustaceans and insects [32,33]. In
this study, ecdysone and juvenile hormones in the insect hormone biosynthesis pathway
were downregulated under thermal stress, possibly due to the observation that more energy
was used for survival and not growth. When grass carp (Ctenopharyngodon idellus) were
cultured at 34 ◦C for 48 h and infected with Aeromonas hydrophila, 3355 DEGs in the spleen
were identified, including heat shock proteins and immune-related genes [34]. Transcriptome
analysis demonstrated that when turbot (Scophthalmus maximus) was maintained at normal
temperature (14 ◦C) or three different high temperatures (20 ◦C, 25 ◦C, 28 ◦C) for 24 h, DEGs
were enriched in seven different pathways, and the numbers of DEGs increased with the
increase in temperature [35]. After E. sinensis was exposed to hot (32 ◦C) or cold water (4 ◦C)
for 0, 2, 6, 12, or 24 h, EsTreh expression was gradually downregulated [23].
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Heat shock proteins (HSPs) are conserved proteins that are important for protein
folding, refolding, translocation, and degradation. HSP expression is regulated by thermal
stress [36], pH, ammonia–N stress [37], salinity, and bacteria [38]. In the present study,
the DEGs associated with HSPs included HSP60A, HSC70-3, HSP90AA1, HSP22, HSP110,
AHSA1, HSPA8, HSPe1, HSPbp1, andenpl-1. HSP60A, HSP90AA1, HSP110, HSP22, Hsc70-
3, AHSA1, HSPA8, HSPe1, HSPbp1, and enpl-1 (Table S2) were significantly upregulated
(p <0.05) in the thermal stress group, and the log2fold-changes were 4.94, 4.76, 7.61, 4.95,
3.27, 5.32, 7.62, 4.33, 3.65, and 3.14, respectively. According to Oksala et al. [39], HSPs
(HSP60, HSP70, HSP90, and HSC70) from doctor fish (Garra rufa) muscle were more highly
elevated in high-temperature water (34.4 ◦C) than in normal-temperature water (25.4 ◦C).
When pool barb (Puntius sophore) were fed curcumin and thermal-treated (36 ◦C) for 6 h,
the expressions of HSP60, HSP70, HSP90, and HSP110 were elevated in the gills, while
the expressions of HSP70 and HSP 110 were elevated in the liver [40]. When rainbow
trout (Oncorhynchus mykiss) were stressed by high temperature (24 ◦C), the expressions of
HSPa4L, HSPa8a, HSPa5, and HSP70a in the liver and HSPa4, HSPa4L, HSPa5, HSPa8b,
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HSPa8a, HSPa9 and HSP70a in the head kidney were upregulated compared with levels
in the normal temperature group (18 ◦C) [41]. HSP22 is a small heat shock protein that
protects organisms against high temperature [42] and apoptosis [43]. AHSA1 is a cofactor
of the HSP90 that can be upregulated by heat stress (24 ◦C) in rainbow trout [44]. HSPe1 is
a member of the HSP10 family and ismore highly expressed in the liver, brain, and head
kidney than in the gills, heart, and spleen under heat shock stress [45]. HSPbp1 is an HSP70-
binding protein that affects the expression of chaperones by inhibiting HSP70 proteasome
degradation and ubiquitylation [46]. HSPbp1 can be significantly upregulated in zebrafish
(Danio rerio) during gonadal differentiation when they are exposed to high temperatures
(35 ◦C) [47].
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A previous study demonstrated that high temperature upregulates the expression
of apoptotic genes [48]. In this study, Cyt-c-p, CYC, and eIF5 (Table S2) were detected
as apoptotic DEGs and were significantly upregulated in the thermalstress group, with
log2fold-changes of 3.07, 2.09, and 1.62, respectively. Cyt-c-p belongs to the cyt c family
of proteins. Deficiency of cyt-c-p in Drosophila can result in embryonic death due to its
respiratory function in the mitochondria [49]. Cytc is released from mitochondria and binds
to the apoptotic protease activating factor in the cytoplasm to activate the apoptosome [50].
Cytochrome c (CYC) is part of the respiratory chain and can be up-regulated in heart tissue.
For example, this can be observed in rainbow trout maintained at 4 ◦C for four weeks
compared with levels in the control group (18 ◦C) [51]. Eukaryotic translation initiation
factor 5 (eIF5) is a GTPase responsible for the initiation of protein translation, and reduced
eIF5B expression may disrupt proteostasis and trigger cellular processes associated with
stress responses. eIF5 was upregulated when eIF5B was knocked down in 293 T and HepG2
cells using the CRISPR/cas9 system [52].
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3.5. PCA

After quality control, Pearson’s correlation analysis was conducted on the samples to
compare the thermal stress and control groups, and the results revealed that the samples
were reliable (Table S3). PCA demonstrated that five samples in the same group clustered
together and that the two groups were clearly separated (Figure 3).
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Figure 3. Principal component analysis of Eriocheir sinensis in the thermal stress group (35 ◦C)
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group, respectively.

3.6. Functional Annotation

DEGs in the hearts of samples in the thermal stress group were significantly en-
riched (p < 0.05) for 1377 GO terms. The three most-enriched biological process (BP)
items were “cellular process”, “metabolic process”, and “biological regulation”. The three
most-enriched cellular component (CC) items were “cellular anatomical entity”, “protein-
containing complex”, and “virion component”. A comprehensive sequence and structure
analysis of major virion proteins indicate that they evolved on about 20 independent occa-
sions, and in some of these cases, likely ancestors are identifiable among the proteins of
cellular organisms. Although the replication modules of at least some classes of viruses
might descend from primordial selfish genetic elements, bona fide viruses evolved on multi-
ple independent occasions throughout the course of evolution by the recruitment of diverse
host proteins that became major virion components [53]. The three most-enriched molec-
ular function (MF) items were “binding”, “catalytic activity”, and “transporter activity”
(Figure 4).

The top 20 KEGG pathways included protein processing in the endoplasmic reticulum,
ribosome biogenesis in eukaryotes, peroxisome, glycine serine and threonine metabolism,
aminoacyl-tRNA biosynthesis, arginine and proline metabolism, pyruvate metabolism,
N-glycan biosynthesis, and tryptophan metabolism (Figure 5).
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3.7. qRT-PCR

Eight DEGs (Cyt-c-p, eIF5, api5-b, CYC, Hsp60A, Hsc70-5, Lamp1, and Tspan11) involving
apoptosis or heat stress proteins were selected for qRT-PCR analysis. The qRT-PCR results
revealed that the expression levels of the eight DEGs in the heart (Figure 6B) were in
accordance with the results of RNA-Seq analysis (Figure 6A). These results indicated that
the E. sinensis transcriptome data were reliable.

3.8. Correlation between RN-seq and qRT-PCR Analyses

The correlation between the RNA-seq and qRT-PCR results for the eight DEGs in
E. sinensis heart tissue was analyzed using the cor() function in R. The R2 values were 0.50,
0.63, 0.47, 0.66, 0.44, 0.63, 0.70, and 0.63 for Cyt-c-p, eIF5, api5-b, CYC, Hsp60A, Hsc70-5,
Lamp1, and Tspan11, respectively. All eight DEGs in the E. sinensis heart demonstrated a
linear correlation between qRT-PCR and RNA-seq (Figure 7).
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Figure 7. Correlation between qRT-PCR and RNA-seqresults for the eight DEGs in the Eriocheir
sinensis heart. The x axis and y axis indicate RNA-seq and qRT-PCR results, respectively. (A), Cyt-c-p.
(B), eIF5. (C), api5-b. (D), CYC. (E), Hsp60A. (F), Hsc70-5. (G), Lamp1. (H), Tspan11.

3.9. Heart Tissue Histology

For male E. sinensis cultured at 25 ◦C for 24 h, horizontal strips of myocardial fibers
and nuclei were clear in histological sections of heart tissue (Figure 8A). Most myocardial
fibers were lysed, and the number of nuclei and the connective tissue contents between the
myocardial layers reduced after 24 h at 35 ◦C (Figure 8B). This result indicates that high
temperatures damaged myocardial fibers and cells. When rainbow trout were acclimated in
warm water (17 ◦C) for eight weeks, cardiac muscle cross-sectional areas decreased 0.8-fold
and the thickness of the myocardium increased [17].
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Figure 8. Light microscopic image of a stained Eriocheir sinensis histological cardiac section (HE-
staining). (A), crab myocardium at 25 ◦C, horizontal strips of myocardial fiber and nuclei are clear;
(B), crab myocardium at 35 ◦C, some myocardial fibers appear degraded, and horizontal strips are
not clear. Bar markers = 20 µm in (A,B). SM: striated muscle; Nu: nuclei.

4. Conclusions and Prospects

In conclusion, transcriptome data from the hearts of male E. sinensis were analyzed
at 35 ◦C and 25 ◦C. There were 4007 DEGs between the thermal stress group and the
control group, and these included 2660 upregulated and 1347 downregulated genes. Heart
DEGs in the thermal stress group were significantly enriched for 1377 GO terms, and
the top 20 KEGG pathways included protein processing in the endoplasmic reticulum.
Transcriptome quality, SSR, and TFs were also analyzed. RNA-seq and qRT-PCR revealed a
significant (p < 0.05) correlation for the eight DEGs. This study demonstrated that DEGs
of heat shock proteins, transcription factors, and pathways of protein processing in the
endoplasmic reticulum were sensitive to high temperatures in male E. sinensis. These
results will contribute to our understanding of the adaptation of Chinese mitten crabs to
high temperatures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes9030092/s1, Table S1: Quality of heart transcriptome in
thermal stress group (35 ◦C) (TSG) and the control group (25 ◦C) (CG).; Table S2: DEGs identified
between thermal stress group (35 ◦C) and the control group (25; Table S3: Sample correlation between
the thermal stress group (35 ◦C) and the control group (25 ◦C). Figure S1: Length distribution of the
assembled unigenes.
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