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Abstract: Traditional fish farming methods suffer from backward production, low efficiency, low
yield, and environmental pollution. As a result of thorough research using deep learning technology,
the industrial aquaculture model has experienced gradual maturation. A variety of complex factors
makes it difficult to extract effective features, which results in less-than-good model performance.
This paper proposes a fish detection method that combines a triple attention mechanism with a You
Only Look Once (TAM-YOLO)model. In order to enhance the speed of model training, the process of
data encapsulation incorporates positive sample matching. An exponential moving average (EMA) is
incorporated into the training process to make the model more robust, and coordinate attention (CA)
and a convolutional block attention module are integrated into the YOLOv5s backbone to enhance
the feature extraction of channels and spatial locations. The extracted feature maps are input to
the PANet path aggregation network, and the underlying information is stacked with the feature
maps. The method improves the detection accuracy of underwater blurred and distorted fish images.
Experimental results show that the proposed TAM-YOLO model outperforms YOLOv3, YOLOv4,
YOLOV5s, YOLOvSm, and SSD, with a mAP value of 95.88%, thus providing a new strategy for
fish detection.

Keywords: YOLOVS5s; attention mechanism; coordinate attention; convolutional block attention
module; fish detection

Key Contribution: The proposed TAM-YOLO model enhances the YOLO framework with a triple
attention mechanism, improving the accuracy and robustness of fish detection in various environ-
mental conditions.

1. Introduction

With the advent of smart fishery [1] and precision farming [2], fish farming is tending
toward industrialization [3]. However, the industrial farming model has the problem of
low automation. Fish detection is a prerequisite for the realization of intelligent aquacul-
ture [4]. The positioning data obtained from fish detection can provide support for the
subsequent analysis of fish tracking behavior. The number of detection frames obtained by
fish detection can reflect the aggregation of fish at the current moment, and the indicator
of aggregation is one of the important criteria for analyzing fish activity and realizing
intelligent feeding systems. Fish size data can be obtained from fish detection, which makes
a significant contribution to the real-time monitoring of fry growth. The main difficulties of
the fish detection algorithm follow.

(1) Experimental data collection has problems, such as uneven illumination, the turbidity
of the water environment, obstruction of underwater cameras, and shooting angles.
As a result, the collected data cannot provide sufficient information to match the
target, thus resulting in unstable and inconsistent target detection.
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(2) With changes in fish aggregation, the obscured area between the fish also changes,
which presents a challenge to detection performance.

This article has five parts. Section 1 describes the application of computer vision
in fisheries and summarizes work related to traditional and deep learning fish detection
algorithms. Section 2 describes the construction method of the You Only Look Once
(YOLOVb5s) network with a triple attention mechanism. Section 3 builds the dataset, sets
the model hyperparameters, and evaluates the method. Section 4 discusses the ablation
experiments and experimentally compares model performance. Section 5 relates our
conclusions and discusses future research work.

2. Related Work

In the process of fish farming, it is necessary to pay close attention to various elements.
The slightest carelessness can cause irreparable losses and increase the risks and costs. In
the past, these problems were difficult to solve due to technological limitations. However,
with computer vision technology, equipment can be relied on to automate the management
and control of these elements, reducing risks and costs, and intelligent fish farming is
becoming a trend [5].

Research on fish identification has produced many results, such as appearance identi-
fication, classification, density estimation, body length measurement, and healthy growth
monitoring [6]. Identification algorithms have developed from traditional to deep learning-
based, a good research ecology has been formed, and accurate fish detection pairs are the
basis of the fish identification task [7]. This is helpful for research on fish activity analysis,
disease diagnosis, and feeding behavior.

The development of traditional vision algorithms and deep learning algorithms has
promoted the research of fish detection algorithms. Traditional visual algorithms, such as
color feature extraction [8], texture feature extraction [9], geometric feature extraction [10],
and other methods, combined with the experience of fish keepers [11], use a classifier to
process fish targets. When the fish aggregation degree is small and the artificially designed
extractor conforms to the specific feeding situation, the detection accuracy is higher [12].
However, with a high degree of fish aggregation, the increase in fish species, and the change
of the fish locus caused by external factors, the detection accuracy will be reduced, and the
robustness of the model will be low.

With the development of deep learning algorithms in underwater biometrics [4], the
model can automatically extract effective features according to the actual image of fish
farming and constantly adjust weights to realize strong robustness.

A deep learning algorithm has two stages. The second stage is represented by models
such as R-CNN [13], with high detection accuracy and slow speed. Zhao et al. [14] proposed
an unsupervised adversarial domain-adaptive fish detection model based on interpolation
that combines Faster R-CNN and three adaptive modules to achieve cross-domain detection
of fish in different aquaculture environments. Mathur et al. [15] proposed a method for
fish species classification in underwater images based on migrating ResNet-50 weight-
optimized convolutional neural networks. In order to achieve fish identification and
localization in complex underwater environments, Zhao et al. [16] proposed a fish detection
method based on a composite backbone and enhanced path aggregation network by
improving the residual network (ResNet) and path aggregation network.

The single stage is represented by models such as YOLO [17], with a fast detection
speed and lower detection accuracy. To solve the problem of finding the location of dead
fish in the real environment, Yu et al. [18] proposed a dead fish detection method based
on SSD-MobileNet on the water surface. Zhao et al. [19] improved a high-precision and
lightweight end-to-end target detection model based on deformable convolution and
improved YOLOv4. Wang et al. [20] proposed a YOLOV5 diseased fish detection model
with a C3 structure for the backbone network and improved with a convolutional attention
module. Wang et al. [21] improved YOLOV5s to provide location information for fish
anomaly analysis. To solve the problem of a low recognition rate due to high aggregation
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of underwater organisms, Li et al. [22] proposed CME-YOLOVS5L, which introduces a CA
attention mechanism to YOLOV5L to improve the loss function; this is better for dense
fish detection. Li et al. [23] proposed DCM-ATM-YOLOV5X, which uses a deformable
convolution module (DCM) to extract fish features and an adaptive threshold module
(ATM) to detect fish occlusion in Takifugu rubripes, but it still had a manually set threshold
of 0.5. Zhao Meng et al. [24] proposed a farmed fish detection SK-YOLOv5x model that
fuses the SKNet (selective kernel networks) visual attention mechanism with YOLOv5x
to form a feature extraction network focusing on pixel-level information, which enhances
the recognition of fuzzy fish bodies. The model somewhat improves detection accuracy,
but it requires more model parameters, and the single fish species being detected differs
significantly from the background. Thus, the model should also be available considered for
use in practical detection. To handle multiple fish recognition in a single image in real time,
Han et al. [25] proposed a group behavior discrimination method based on a convolutional
neural network and spatiotemporal information fusion, which can effectively identify and
classify the normal state, group stimulation state, individual disturbance state, and feeding
state of fish. In Alaba et al. [26], a backbone network was proposed as MobileNetv3-large
combined with an SSD detection head. It used the class-aware loss function to deal with the
class imbalance problem. Automatic fish detection will help realize intelligent production
and scientific management of precision farming [27].

To achieve the accurate detection of fish targets in an environment similar to the
background, we propose a zebrafish school detection method that integrates the triple
attention mechanism with YOLOv5s. The method can provide rich theoretical data for the
intelligent monitoring of fish swarms.

We make the following contributions: (1) The pretraining weights of the VOC dataset
are migrated, positive sample matching is incorporated in the data encapsulation process,
and the exponential moving average (EMA) [28] is added to the model training process.
(2) To extract effective features, we improve the structure of the YOLOv5s network. Co-
ordinate attention (CA) [29] and a convolutional block attention module (CBAM) [30] are
integrated into the YOLOv5s backbone to form a coordinate—channel-space chain attention
model, and the attention network model parameters are fine-tuned for the extraction of
more effective and accurate features.

3. The YOLOv5s Network with Triple Attention Mechanism

The YOLOVS5 series includes four models with the same main network structure but
use different width and depth parameters: s (depth 0.33, width 0.5), m (depth 0.67, width
0.75), 1 (depth 1, width 1), and x (depth 1.33, width 1.25). We select YOLOv5s as the
basic model when performing fish image detection experiments, taking into account the
detection accuracy and detection speed of the model [31]. We aim to improve the detection
accuracy of YOLOv5s and reduce the influence of background interference. The encoder-
decoder structure of the path aggregation network (PANet) is based on the characteristics
of output feature maps of different layers of the backbone feature extraction network, and
the enhanced feature information of different layers is integrated. By fusing CA and CBAM
into the Csp_2 layer and Csp_4 layer of the YOLOv5s backbone, it can focus on the fish
area and suppress interference. The model structure is shown in Figure 1; see Sections 3.2
and 3.3 of this paper for a detailed discussion of the triple attention mechanism.

We integrated positive sample matching in the data encapsulation process and adopted
the EMA and Mosaic data enhancement in model training. The backbone of TAM-YOLO
is a feature extraction network, which consists of Focus, CSP, SPP, CBS, CA, and CBAM
structures for feature extraction. Three effective feature layers, Featurel (80 x 80 x 128),
Feature2 (40 x 40 x 256), and Feature3 (20 x 20 x 512), are output. The neck of TAM-YOLO
is a PANet for enhanced feature extraction, which integrates feature information of different
scales by up—-down sampling of Featurel, Feature2, and Feature3. The head of TAM-YOLO
is used to judge whether objects correspond to the feature points.
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Figure 1. YOLOv5s network with triple attention mechanism.

3.1. Exponential Moving Average

The EMA smooths the model weights, which can result in better generalization. The
calculation formulas are shown in Equation (1) [28], where wgj,,40 is the EMA weight,
generally also known as the shadow weight, and « is the recession rate, generally taking a
number close to 1, such as 0.999 or 0.9999. This keeps the shadow weight from changing
drastically and always moving slowly around the optimal weight. The parameter w is the
model weight.

Wshadow, = & * Wshadow; , T (1 - 0C)ZUt @

The shadow weights are accumulated by the weighted average of the historical model
weight indices. Each shadow weight update is influenced by the previous shadow weight,
so the shadow weights are updated with the inertia of the previous model weights. The
older the historical weights are, the less important they are, which can make weight updates
smoother [28].

In this paper, the « decay rate was selected as 0.9999. The value of the EMA is stored
in the last storage model, and the approximate average of the last n times is taken to realize
better performance indicators and stronger generalization.

3.2. Coordinate Attention Module

While extracting channel information, the CA mechanism performs one-dimensional
feature encoding that is based on width or height. It first integrates the feature space
position information, and then it aggregates the features in two directions. The long-term
dependencies are obtained in one direction, and accurate coordinate information is obtained
in the other direction, thus forming a pair of direction-aware and position-sensitive features.
The CA module is shown in Figure 2.
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Figure 2. Coordinate attention module.

The CA module is added after the Csp_2 layer of the YOLOv5s backbone. To preserve
the spatial structure information, the input, F (80 x 80 x 128), is globally pooled based on
width or height, and a pair of one-dimensional feature codes obtains two feature maps
(80 x 1 x 128 and 1 x 80 x 128). The features of the aggregated two directions are
spliced to obtain a feature map with both channel and spatial information, and a series of
transformations are performed to obtain f(D>*1*(H+W) ywhere ris 0.3, and 9 is the sigmoid
activation function. The calculation formulas are shown in Equations (2)—(4).

1 .
z’é = WZogigw xc(h, i) ()
¢ = EZOSJ'SH xe(j, w) (3)

sz(Fle(cat«zlé,zzé’))) 4)

flenxIxH and flenx1xW are obtained by separating f(¢0*1xHW) hagsed on width or
height, and then the features in the two directions are upgraded. Fj and F,, with the
same size as the original input F (80 x 80 x 128), are output. After passing through the
activation function, the attention weights, gh and g%, of the feature map for the height and
width, respectively, are obtained. The CA feature is obtained by multiplying the features of
the two dimensions by the original feature image. The calculation formulas are shown in

Equations (5)~(7) below.
quations elow. g = B(Fh (fh)) )
8" = d(Fu(f")) (6)
ve = xe(i,j) x g2 (i) x g2 (j) @)

3.3. Convolution Block Attention Module

The convolution block attention mechanism forms an attention map in the channel and
space dimensions in turn, and it performs element-wise multiplication of the attention map
and feature map input from their respective dimensions, thus extracting a more effective
feature structure. The CBAM module is added after the Csp_4 layer of the YOLOvV5s
backbone. The spatiotemporal attention module is shown in Figure 3.

nput Channel . Output
| Attention Spangl
a1l Module Attentiol
Module

Convolution Block Attention Module

Figure 3. Convolution block attention module.
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(1) Channel Attention Module

For the input Csp_4_F (20 x 20 x 512) channel number 512, the different pooling
operations of global max pooling and global avg pooling are used to obtain two 1 x 1 x
512 richer high-level features, which are then input to the MLP (the number of neurons
in the first layer is 32, while the number of neurons in the second layer is 512). We obtain
two weights, W (WO (Facvg» and Wy (Wo(EFS4x)). We stack them to obtain the channel
and space dual weights, and the channel attention map Csp_4_F1 is obtained through the
activation function. The active function calculation formula is shown in Equation (8). The
channel attention module is shown in Figure 4.

Cspy, = OMLP ((AvgPoot (Cspy, ) ) + MLP(MaxPool (Csp, ) ) )
— oW (Wo (FS, ) ) + Wi (Wo (FS.)))

Csp_4_F Csp_4_F1 Csp_ 4 F’

®)

Sigmoid _—

g s

Avg Pool

Figure 4. Channel attention module.

(2) Spatial Attention Module

First, we input the result of bitwise multiplication of Csp_4_F1 and Csp_4_F (20 x
20 x 512) to global max pooling and global avg pooling based on channel 512 to obtain
two 20 x 20 x 1 features. Second, we concatenate the two features (20 x 20 x 2). Finally,
the spatiotemporal attention map Csp_4_F2 is obtained through a series of operations of
convolution, activation, and bitwise multiplication with Csp_4_F’". The spatiotemporal
attention map calculation formula is shown in Equation (9). The spatial attention module
is shown in Figure 5.

CSP4FN -5 (f7><7 ( {Angool (Csp4F’) ; MaxPool (FCsp4F')} ) >
= 5(7([Fag Fi])) ¥

Csp 4 F’ Csp_4 F” Csp_4 F2

Sigmoid

Conv (%
777777777777777 D =

Max Pool
Avg Pool

Figure 5. Spatial attention module.

CA extracts the location information of the target, global features, and feature depen-
dencies, thus forming the basis for subsequent extraction of key fish population features.
Spatiotemporal attention is divided into channel and spatial attention, which extracts local
features and can extract the overall features of the fish population over a period of time. If
the global features are extracted by the CA mechanism alone, or if the local features are
extracted by the spatiotemporal attention alone, the features extracted by the spatiotem-
poral attention mechanism will be missing global features, and the features extracted by
the CA mechanism will be missing local feature details when the feature fusion stage is
carried out. In addition, this process is slower than extracting local detail features based
on the global features, and it cannot be used to directly select the required information.
Therefore, we first use the global features extracted by the CA mechanism and then use the
spatiotemporal attention mechanism for local detail feature extraction, which can extract
more effective and critical features. In addition, it can effectively avoid the loss of some
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information as compared first with the scheme of the spatiotemporal attention mechanism
and then with the CA mechanism (local first, and then global).

4. Model Training
4.1. Dataset Preparation

The zebrafish, as a model animal, has been widely used in the research of farmed
fish. During the swimming process of fry, they are easy to gather and block, and their
morphology changes greatly. Some fish bodies have the same color as the breeding envi-
ronment, which makes it a great challenge to accurately detect fish fry in a real breeding
environment [32]. The experimental data came from zebra fry with a length of 0.5-1.5 cm
raised in a glass tank. Fish school images in a real breeding scene were taken by a mobile
phone camera facing the glass tank every 5 s. Labellmg software v1.8.2 was used to label
the data. Through basic image processing methods, such as rotation, flipping, and cutting,
692 items of experimental data were obtained, with a total of 15,081 fish fry. The random
division ratio of the training, validation, and test sets was 5:1:1. The operations of the
experimental data are shown in Figure 6.

(a) (b)
Figure 6. Image processing: (a) original, (b) flipped, (c) cropped.

4.2. Hyperparameter Settings

The method is based on the YOLOv5s network model, and the model parameters are
shown in Table 1.

Table 1. Model parameters.

Layer Input Kernel Size Stride Output Channel Active Function

Input 640 x 640 x 3 1x1 2 12 SiLU
Focus 320 x 320 x 12 3x3 1 32 SiLU
CBS 320 x 320 x 32 3x3 2 64 SiLU
CBS 160 x 160 x 64 3x3 1 64 SiLU
Csp_1 160 x 160 x 64 1x1,3x3 2 128 SiLU
CBS 80 x 80 x 128 3x3 1 128 SiLU
Csp_2 80 x 80 x 128 1x1,3x3 1 128 SiLU

Backbone CA 80 x 80 x 128 1x1 2 256 H-Swish
CBS 40 x 40 x 256 3x3 1 256 SiLU
Csp_3 40 x 40 x 256 1x1,3x3 2 512 SiLU
CBS 20 x 20 x 512 3x3 1 512 SiLU
SPP 20 x 20 x 512 5x%x5,9%x9,13 x 13 1 512 SiLU
Csp_4 20 x 20 x 512 1x1,3x3 1 512 SiLU

CBAM 20 x 20 x 512 1x1,7x7 1 512 H-Swish
CBS 20 x 20 x 512 1x1 1 256 SiLU
UnSampling 20 x 20 x 256 1x1 1 256 SiLU
Concat+Csp 40 x 40 x 256 1x1,3x3 1 256 SiLU
CBS 40 x 40 x 256 1x1 1 128 SiLU
UnSampling 40 x 40 x 128 1x1 1 128 SiLU
Neck Concat+Csp 80 x 80 x 128 1x1,3x3 1 128 SiLU
DownSampling 80 x 80 x 128 3x3 2 128 SiLU
Concat+Csp 40 x 40 x 128 1x1,3x3 1 256 SiLU
DownSampling 40 x 40 x 256 3x3 2 512 SiLU
Concat+Csp 20 x 20 x 512 1x1,3x3 1 SiLU
Convl 80 x 80 x 128 1x1 1 18 SiLU
Head Conv 2 40 x 40 x 256 1x1 1 18 SiLU
Conv 3 20 x 20 x 512 1x1 1 18 SiLU
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The experimental environment is Linux, PyTorch is the GPU 1.2 version, and TITAN
RTX GPU is used for training. When the YOLOv5s network integrating the triple attention
mechanism is trained, some parameters are set as follows: In the training process, the input
image is normalized to 640 x 640 x 3, and the pre-training weight of the VOC dataset is
migrated. First, the trunk network training is frozen to 50 epochs, the batch size is 16, and
then the trunk network training is frozen to 100 epochs, with a batch size of 8. Mosaic data
enhancement is used in training, but it will be turned off at the 70th epoch of unfreezing
training. The maximum learning rate of the model is 1 x 1072, and the minimum learning
rate is 0.01 times the maximum learning rate. The learning rate decay strategy is cos.

4.3. Evaluation Criteria

In this study, the mean average precision (mAP), precision rate, and recall rate of the
test set were evaluated under the premise that IoU was 0.5. Precision is the probability
of successfully detecting a fish target among all the detected targets. Recall refers to the
probability of being successfully detected as a fish among the detected fish targets. Average
precision (AP) is a plot ofa P-R curve with recall as the horizontal axis and accuracy as
the vertical axis. The result is obtained by integrating this curve, that is, calculating the
area between the curve and the coordinate axis. mAP is averaged over the APs of the C
categories. where TP (True Positives) is correctly located as the detection result of fish, FP
(False Positives) is incorrectly detected as the result of fish, and FN (False Negatives) is not
located as the detection result of fish. The calculation formula is as follows:

.. TP
Precision = TP+ FP (10)
TP
Recall = TP+ EN (11)
1
AP = / P(R)dR (12)
0
C
AP
mAP — % (13)

5. Analysis of Experimental Results
Ablation Experiment

The YOLOV5s backbone has four CSP layers. By comparing and integrating differ-
ent single attention mechanisms and mixed attention mechanisms, and fine-tuning the
model parameters, the effectiveness of the proposed triple attention mechanism model
was verified.

By comparing the Csp_2, Csp_3, and Csp_4 layers of the YOLOv5s backbone with a
single attention mechanism, global attention mechanism (GAM) [33], CBAM, normalization-
based attention (NAM) [34], and CA, the best integration model can be found. The experi-
mental results show that the CA model is integrated after the Csp_2 layer, and the CBAM,
NAM, and GAM models are integrated after the Csp_4 layer, which is an improvement
over the other models. An experiment involving the mixed attention mechanism is carried
out, and the results are shown in Table 2.

The CA model was added after the Csp_2 layer in the backbone of YOLOvS5s, and the
GAM model was added after the Csp_4 layer (designated model 2). Then, the CA model
was added after the Csp_2 layer in the backbone, and the NAM model was added after
the Csp_4 layer (model 3). In addition, the CA model was added after the Csp_2 layer in
the backbone, and the NAM model was added after the Csp_4 layer (model 4). Model 4
was selected as the base model by comparing the performances of models 1-4. Model 4
has a 0.79% increase in precision and 0.33% increase in recall compared to model 1, a 0.83%
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increase in precision compared to model 2, and a 0.85% increase in precision and 0.46%
increase in recall compared to model 3.

Table 2. The impact of different single attention mechanisms on model performance. The best results
are underlined.

Model Csp_2 Csp_3 Csp_4 mAP/% Precision/% Recall/%
Backbone 93.54 91.67 87.68
Vv 89.61 90.5 81.62
+GAM Vv 90.41 90.4 84.39
V4 93.59 92.64 87.88
Vv 93.48 91.94 87.88
+CBAM Vv 93.26 91.52 87.48
v 93.6 92.01 90.87
Vv 93.6 92.39 88.01
+NAM Vv 93.38 92.03 87.48
V4 93.68 92.4 87.75

v 93.63 91.67 88

+CA Vv 93.28 91.89 87.29
Vv 93.17 91.51 87.35

On the basis of model 4, the positive sample matching process was integrated into
the data encapsulation process, and the weight of the EMA model was improved. The
excitation factor, r, of the CBAM is 16, and the excitation factor, r, of the CA is 0.3 (model 5).
The proposed model 5 improves by 2.34%, 2.1%, 2.49%, and 2.02%, respectively, compared
to the mAP of models 1-4. The results are shown in Table 3 and Figure 7.

Table 3. The impact of hybrid attention mechanism on model performance. The best results are
underlined (The numbers 1-5 in the table represent different models).

Model Csp_2+CA Csp_4+CBAM Csp_4+NAM Csp_4+GAM mAP/% Precision/% Recall/%
Backbone ! 93.54 91.67 87.68
+CA+GAM 2 v v 93.78 91.63 88.01
+CA+NAM 3 v v 93.39 92.61 87.55
+CA+CBAM 4 Vv Vv 93.86 92.46 88.01
TAM-YOLO (Ours)® v Vv 95.88 93.73 90.97
98.0% 1
—e— Backbone
o/ | —+— +CA+GAM
96.0% —r— +CA+NAM
+CA+CBAM
94.0% 1 —¥ TAM-YOLO(Ours)
92.0% A
90.0% A
88.0% A
86.0% +— ; .
mAP Precision Recall

Figure 7. Ablation experiment comparison.

The mAP of the model in this paper is improved by 2.18%, 16.54%, 2.34%, and 1.41%
compared to the YOLOv3, YOLOv4, YOLOv5s, and YOLOv5m models, respectively. Our
model detects an HD image with a resolution of 1214 x 800 at a speed of 2.57 /s, which is
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faster than the other models. The Yolov4 model does not perform well in detecting our
dataset, with low detection accuracy and a high miss rate. The average accuracy is reduced
by 0.07%, and the precision is improved by 0.98%, as compared to the YOLOvV5] model,
which is sufficient to verify the effectiveness of the proposed model. The depth of the
YOLOvV5s model is 0.33 of the YOLOVS5], and the width of the YOLOv5s model is 0.5 of
the YOLOVSI. With fewer convolutional layers and parameters, the model performance is
closer and the detection speed is faster. It is shown in Table 4, Figures 8 and 9.

—+— Time

2 4

1 T T T T T T
YOLOv3 YOLOv4 YOLOvSs YOLOvSm YOLOVvSI SSD  TAM-YOLO

Figure 8. The time comparison of different models.

90.0% A
85.0% A
YOLOvV3
80.0% 14— — —+— YOLOvV4
—— YOLOVS5s
75.0% - YOLOv5m
Y—¥— YOLOvS51
70.0% - SSD
—r— TAM-YOLO(Ours)
ijXP Preclision Relcall
(@)
98.0% 1
—o— YOLOV3
—— YOLOV4
0/ 4
96.0% —— YOLOVS5s
YOLOv5m
94.0% 1 '\ - —¥— YOLOVSI
SSD
92.0% - < —— TAM-YOLO(Ours)
\v
90.0% A
88.0% 1
86.0% -— T T
mAP Precision Recall

(b)

Figure 9. The performance comparison of different models: (a) global, (b) local.
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Table 4. The performance comparison of different models. The results of TAM-YOLO are shown in
bold, and the best results are underlined.

Model mAP/% Precision/% Recall/% Time/s
YOLOvV3 93.7 92.34 87.3 2.88
YOLOv4 79.34 80.13 71.24 4.3
YOLOvV5s 93.54 91.67 87.68 4.19

YOLOvV5m 94.47 92.96 89.59 3.23
YOLOvV51 95.95 93.4 91.3 5.87

SSD 81.23 93.82 67 4.66
TAM-YOLO (Ours) 95.88 93.73 90.97 2.57

The results of the fish images detected by YOLOv4, YOLOV5s, SSD, and the model in
this paper are shown in Figure 10. The fish detected by the model in this paper are more
accurate and have a lower missed detection rate.

(a)

(b)

(0)

(d)

Figure 10. The experimental results: (a) YOLOv4, (b) YOLOV5s, (c) SSD, (d) TAM-YOLO (ours).

6. Conclusions

We proposed the TAM-YOLO method with a triple attention mechanism for fish
school detection. Positive sample matching was transferred to the data encapsulation
process, and the EMA was added during the model training, which reduces pretraining
time and improves detection accuracy. The CA and spatiotemporal attention mechanisms
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were integrated into the YOLOv5s backbone, which strengthens the feature extraction
of channels and spatial positions. The more effective features were aggregated, and the
model performance was optimized. Compared with the original model, mAP, precision,
and recall increased by 2.34%, 2.06%, and 3.29%, respectively. In future work, it will be
necessary to collect more fish images and compress the model to ensure its accuracy and
real-time performance.
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