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Abstract: The distribution of fish eggs and larvae (ichthyoplankton) reflects spawning and nursery
areas as well as dispersal routes. This study’s goal is to demonstrate how the identification of
ichthyoplankton species and stages and their spatial distribution among natural reefs (NRs) and
artificial reefs (ARs) may serve as decision-making tools in conservation and fishery management.
Natural reefs exhibited an eight-times higher abundance of eggs, as well as the highest abundance of
larvae in the yolk-sac and preflexion phases. In contrast, ARs had the highest abundance of larvae
in the flexion and postflexion phases. Natural reefs may serve as breeding grounds for Scaridae,
Labridae, and Mugilidae; whereas, ARs may serve as breeding sites for Lutjanidae, Synodontidae,
Carangidae, Fistularidae, and Haemulidae. Our study revealed differences between ARs and NRs,
which demonstrate the potential of artificial reefs to expand the supply and settlement options
of reef fishes and consequently can lead to increased fish production with potential benefits to
adjacent fishing areas through connectivity. Thus, ARs as no-take sites can be effective tools for
both fishery management and biodiversity conservation. The findings highlight the potential use of
ichthyoplankton tools and the importance of considering both types of reefs in marine conservation
and management efforts.

Keywords: fish eggs and larvae; Gulf of California; spawning areas; shipwrecks; marine
protected area

Key Contribution: Natural reefs may serve as breeding grounds for Scaridae, Labridae, and Mugili-
dae; whereas, ARs may serve as breeding sites for Lutjanidae, Synodontidae, Carangidae, Fistularidae,
and Haemulidae. Our study revealed differences between ARs and NRs, which demonstrate the
potential of artificial reefs to expand the supply and settlement options of reef fishes and con-
sequently can lead to increased fish production with potential benefits to adjacent fishing areas
through connectivity.

1. Introduction

Dispersal stages (e.g., the egg and larval stages) may have significant effects on the
life cycle dynamics and ecology of reef fish populations, including economically important
species [1–6].

Since the eggs and larvae (ichthyoplankton) of most marine fishes are found in the
epipelagic zone, it was assumed that the ocean dynamics and the planktonic phase du-
ration determine the dispersion distance (passive dispersal) [7,8]. Nevertheless, recent
observations highlight the synchronization between spawning processes and hydrographic
mesoscale structures (e.g., fronts and eddies) that can retain eggs and larvae or transport

Fishes 2024, 9, 166. https://doi.org/10.3390/fishes9050166 https://www.mdpi.com/journal/fishes

https://doi.org/10.3390/fishes9050166
https://doi.org/10.3390/fishes9050166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fishes
https://www.mdpi.com
https://orcid.org/0000-0003-3332-4020
https://orcid.org/0000-0002-8637-5107
https://doi.org/10.3390/fishes9050166
https://www.mdpi.com/journal/fishes
https://www.mdpi.com/article/10.3390/fishes9050166?type=check_update&version=1


Fishes 2024, 9, 166 2 of 12

them to favorable sites and consequently may determine recruitment success by decreasing
the random distribution of eggs and larvae [9–11]. Beyond flow patterns, the distribution
and abundance of ichthyoplankton are primarily influenced by the distribution, abundance,
and fecundity of the reproductive stocks [12–14], reflecting the spawning and nursery areas
of the species, along with their dispersal routes [15–17].

Previous studies have shown that the distribution of fish eggs and larvae may vary
depending on their developmental stages [16,18–20]. A high abundance of fish eggs and
yolk-sac larvae is interpreted as an outcome of the production (biomass) of relevant reefs
(natural and artificial reefs) [21–25]. A high presence of preflexion and flexion larvae
cooccurring in areas with a high zooplankton concentration may indicate a favorable
feeding habitat [26–28], whereas late postflexion larvae may indicate successful recruitment
outcomes [15,29,30]. Therefore, the reliable identification of the early life stages of fish
according to their different developmental stages and spatial distributions may reflect
critical sites for the species ecology and, therefore, may be essential for the protection of the
breeding and nursery areas of reef fish species [5,23].

The establishment of ARs can increase resource availability, provide protection from
predation, and serve as breeding grounds for diverse fish species [23]. Recent analyses
suggest artificial reefs may have aggregation and refugia effects on ichthyoplankton [22–25]
and have shown high similarity in dominant species composition with natural reefs [31,32].
However, despite the apparent benefits of artificial reefs and their potential role as produc-
tive marine habitats, it remains difficult to determine the contribution of these new habitats
to fish production within the relevant ecosystem’s range and in a conservation context.

The ongoing debate between “attraction” and “production” examines whether fish
are primarily attracted to the new structure or whether artificial reefs increase fish pro-
duction [33–35]. Quantifying egg production can serve as an initial step in assessing the
potential for recruitment subsidies [5]. If artificial structures produce additional fish, reef
deployment could help increase fishery yields. Conversely, if they function just as fish
attractors, artificial reefs could inadvertently facilitate overexploitation by simplifying
extraction for fishers [35–38].

Understanding the dual attraction versus production roles of artificial reefs is essential
for their effective management as well as their role as potential conservation and restoration
tools [39,40]. The role of ARs in affecting the distribution of the early stages of fish and
their contribution to biomass production in the Gulf of California remain unknown.

The overall goal of this study is to identify the different developmental stages of
ichthyoplankton (eggs and larvae) and compare their richness and abundance among
artificial and natural reefs on the Espiritu Santo Archipelago (ESA) throughout an annual
cycle. The differences in richness and abundance between natural and artificial reefs are
expected to indicate the main spawning and favorable recruitment areas of fish species; that
is, if ARs do indeed present favorable conditions for reproduction, it is reasonable to assume
newly produced individuals will settle on the artificial reefs, contributing to biomass
production. This study’s findings can provide valuable insights for conservation and
fishery management, particularly in the context of marine protected area (MPA) planning.

2. Materials and Methods
2.1. Study Area

Taking into account that we do not consider a record of adult fish, the present
study was conducted on four natural reefs and four artificial reefs in the Espiritu Santo
Archipelago, southern Gulf of California (Figure 1). The natural reefs include La Ballena, a
large islet with a shallow rocky reef (7 m), El Gallo with coral patches on a rocky slope (9 m),
El Corralito with corals on a vertical wall (17 m), and Swany Rock with coral communities
at 12 m depth. The artificial reefs in the area are the Lapas 03 and Fang Ming shipwrecks
deployed intentionally at 18 m and 20 m depths, respectively, in 1999; the Gunner C–59
wreck deployed at 20 m depth in 2004; and the Salvatierra wreck at 22 m depth, which sank
in 1975. Four field surveys were conducted at each study site, covering an annual cycle:
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(1) September 2018 (warm season), (2) December 2018 (cold season), (3) March 2019 (cold
season), and (4) June 2014 (warm season).
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Figure 1. The Espiritu Santo Archipelago (ESA) area with its natural and artificial reef sites (enlarged):
(1) Ballena Island (partially protected area); (2) Lapas 03 wreck (no-take area); (3) El Gallo (partially
protected area); (4) Fang Ming wreck (no-take area); (5) El Corralito (partially protected area);
(6) Gunner C—59 Francisco Márquez (no-take area); (7) Swany Rock (partially protected area);
(8) Salvatierra wreck (unprotected area).

2.2. Sampling Procedure In Situ

The ichthyoplankton samples were collected using a 2.5 m long conical net of a 333 µm
mesh size attached to a 0.60 m diameter ring equipped with a flowmeter in the center to
estimate the volume of filtered water. The horizontal tows were carried out on the sea’s
surface with a circular path for 5 min each. All zooplankton samples were deposited in
250 mL plastic containers labeled with reference information and the geographic location
and immediately fixed with 4% formalin buffered with borax (sodium borate). Temperature
and salinity were taken after each sampling with a CastAway CTD.

2.3. Sampling Procedure in Laboratory

The zooplankton biomass was determined by the displacement volume method [41],
excluding organisms whose individual volume exceeds 5 mL (e.g., juvenile fish, jellyfish,
and siphonophores), and standardized to mL/1000 m3 of filtered water. The ichthyoplank-
ton (eggs and fish larvae) was separated from the unfractionated samples using a stereo
microscope and preserved with 4% formalin buffered with borax. The identification of eggs
and larvae was carried out following the diagnostic characteristics established for each
individual species [42–45]. Species without formal description were identified based on the



Fishes 2024, 9, 166 4 of 12

scientific collection of eggs and fish larvae from the Mexican Pacific at the Interdisciplinary
Center of Marine Sciences, National Polytechnic Institute (CICIMAR–IPN).

2.4. Breeding Habitat for Reef Fish

To surmise the fish species, the study reefs were used as breeding grounds, and fish
eggs were quantified based on 11 stages of embryonic development [46]: early development
(stages 1–5), medium development (stages 6–8), and late development (9–11). Fish larvae
were classified according to the development of the notochord in stages of yolk-sac, pre-
flexion, flexion, and post-flexion [47,48]. In order to compare the abundance across the reefs
and months of the study, eggs and larval abundances were standardized to the number of
eggs/larvae per 100 m

2.5. Statistical Analysis

The ichthyoplankton (eggs and fish larvae) community was characterized in terms
of species richness (S) and abundance (N) and was further assessed using the Euclidean
distance (Log(x + 1) data transformation) and multivariate ordination. The Kolmogorov–
Smirnov test (D) was used to examine the assumption of normality for the fish species
abundance (Log(x + 1) transformed data). Multivariate non-metric multidimensional
scaling ordination (nMDS) was used to compare fish assemblages (individual species
abundance) between the natural and artificial reefs and between the seasons (warm and
cold) of the study, which were tested for significance using a t-test. The nMDS analysis
represents the samples as points in a low-dimensional space (2D and 3D). SIMPER analysis
was performed to determine the average similarity and dissimilarity within and between
the reefs and seasons of the study. The variability among samples (fish censuses) within
each reef type and season of the study was compared with the MVDISP routine [49,50].

3. Results
3.1. Egg and Larva Distribution

A total of 106 taxa were recorded, of which 56 were identified at the species level, 24 at
the genus level, 18 at the family level, 3 at the order level, and 5 were not identified (4 eggs
and 1 larva). Of the total number of species recorded, 52 species were recorded in the egg
stage (Table S1), and 79 species were recorded in the larval stage (Table S2); only 24 taxa
were recorded in both developmental stages (eggs and larvae).

The same numbers of fish species in the egg stage were recorded in the natural and
artificial reefs (44), of which 8 species were only in the natural reefs and 8 species were only
in the artificial reefs (exclusive species), whereas the egg abundance was eight times higher
in the natural reefs than in the artificial reefs, and the abundance was normally distributed
(abundance, D = 0.045, p = 0.798).

In the egg stage, six species, Thalassoma lucasanum, Auxis rochei, Prionotus stephanophrys,
Fistularia comersonii, Anisotremus davidsonni, and Harengula thrissina, were dominant in both
reef types. Species of the family Scaridae, Labridae, and Mugilidae presented their highest
abundances in the natural reefs, whereas 28 species were more abundant in the artificial
reefs than in the natural reefs, including species of the families Haemulidae, Lutjanidae,
Carangidae, Fistularidae, and Synodontidae.

In the larval stage, the highest number of species was recorded in the natural reefs, with
62 larval species, of which 21 were exclusive. In the artificial reefs, 47 larval species were
recorded, of which 10 species were exclusive. The abundance of larvae in the natural reefs
was 1.6 times higher than in the artificial reefs. The most abundant species in the natural
reefs were Abudefduf troschelii, Labrisomidae sp. 1, Auxis rochei, and Diapterus peruvianus.
However, the larvae of 30 species were more abundant in the artificial reefs, particularly
Harengula thrissina and Benthosema panamense.

The Simper analysis recorded a dissimilarity between the two reef types of 77.80%;
the species that contributed the most to this dissimilarity are Thalassoma lucasanum, Priono-
tus stephanophrys, Vinciguerria lucetia, Fistularia corneta, Scomber japonicus, and Benthosema
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panamense (Table 1). Nevertheless, there were no significant differences in the community
composition of the icthyoplankton between the natural and artificial reefs (reef type, df = 15,
t = 1.7, p = 0.099; Figure 2).
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Figure 2. nMDS plot of the 32 ichthyoplankton samples of the different study sites, based on species
abundances by reef type (natural reefs and artificial reefs).

Table 1. SIMPER (similarity/dissimilarity) and MVDISP (dispersion) values within and between the
reefs (natural vs. artificial) and seasons (warm vs. cold) of the study. Higher values of dissimilarity
indicate lower similarity between the samples. Higher values of multivariate dispersion indicate
more variability among fish samples within each sample.

Species
Average Similarity Average Dissimilarity

Natural Reefs Artificial Reefs Warm Season Cold Season Natural vs.
Artificial Reefs

Warm vs.
Cold Seasons

Thalassoma lucasanum 18.17 15.9 16.39 19.06 7.97 8.01
Prionotus stephanophrys 11.36 5.52 7.37 12.02 4.96 4.27
Vinciguerria lucetia 5.17 - - 12.69 4.4 1.88
Fistularia corneta - - - 9.56 3.45 1.68
Synodus sp. 3 - 6.8 - 6.25 3.13 1.73
Synodus sp. 2 4.35 - - - 2.93 1.59
Synodus sp. 1 4.19 5.28 5 - 2.78 2.46
Scarus sp. 4 - - - - 2.76 1.45
Scomber japonicus - - - - 2.69 -
Scarus sp. 3 - 4.76 - - 2.31 4.03
Diodon holocanthus - - - 5.75 2.18 1.3
Benthosema panamense - - - - 2.07 1.37
Synodus sp. 4 - 3.67 - - 2.02 1.93
Auxis rochei - - 5 - 1.98 4.15
Anisotremus davidsonni 6.66 - 4.8 - 1.85 2.71
Synodus sp. 5 - - 0 - 1.66 1.23
Caranx caballus - - 0 - 1.59 1.69
Harengula thrissina - - 10.3 - 1.57 -
Pseudopeneus
grandiscuamis - - - - 1.53 2.2

Antennarius sp. 1 - 6.77 - - 1.52 -
Auxis thazard - - - - 1.51 -
Achirus mazatlanus - - - - 1.45 -
Hypsoblennius gentilis - - - - 1.34 -
Fistularia comersonii 8.26 13.41 14.57 - 1.29 6.19
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Table 1. Cont.

Species
Average Similarity Average Dissimilarity

Natural Reefs Artificial Reefs Warm Season Cold Season Natural vs.
Artificial Reefs

Warm vs.
Cold Seasons

Lutjanus sp. 1 - - - - 1.28 -
Scarus sp. 1 - - - - 1.12 -
Harengula thrissina 5.71 9.64 - - - 5.11
Antennarius sp. 1 - - 6.5 - - 4.02
Abudefduf troschelii - - - - - 1.74
Mugil curema - - - - - 1.68
Coryphaena hippurus - - - - - 1.23
Diapterus peruvianus - - - - - 1.21

Total value of
similarity/dissimilarity 22.90 21.57 31.77 12.19 77.80 88.91

MVDISP Value 0.933 1.05 1.314 0.676 - -

3.2. Egg Development Stage

Of the total number of eggs recorded in the study, 90.8% were in the early development
stage, 5.6% in the medium development stage, and 3.6% in the late development stage. The
highest number of eggs in the early development stage was recorded in the natural reefs
(95% of the total). However, the highest abundance of medium (69.1%) and late (76.9%)
stages was recorded in the artificial reefs.

The most abundant species in the early development stage were T. lucasamun, Hali-
choeres sp. 1, Prionotus stephanophrys, and F. comersonii. The most abundant species in the
medium development stage were Auxis rochei, Harengula thrissina, Antennarius sp. 1, P.
stephanophrys (only in the natural reefs), and Halichoeres sp. 1 (only in the artificial reefs).
The most abundant species in the late stage were H. thrissina, Anisotremus davidsonni, P.
stephanophrys (only in the natural reefs), and Auxis rochei (only in the artificial reefs). The
artificial reefs presented a higher richness and abundance of eggs of the Lutjanidae and
Synodontidae families. The Lutjanidae family was almost 7 times (6.8) more abundant in
the artificial reefs compared to the natural reefs (mainly in the early development stage);
however, the larval stage was absent at all the sampling sites. In contrast, 100% of the
recorded ichthyoplankton from the Scaridae family corresponded to the early development
stage, and 97.7% was recorded in the natural reefs.

Of the total larvae recorded, 12.6% were in the yolk-sac stage, 80.3% were in the
preflexion stage, 6.4% were in the flexion stage, and 0.7% were in the postflexion stage.
The natural reefs had the highest abundance of larvae in the yolk-sac and preflexion
phases, while the artificial reefs had the highest abundance of larvae in the flexion and
postflexion phases.

In the natural reefs, the most abundant yolk-sac larvae were Auxis rochei, Cirrhitichyhys
oxicephalus, and Anisotremus davidsoni. In the artificial reefs, the most abundant yolk-sac
larvae were Harengula thrissina, Auxis rochei, and Halichoeres sp. 1. Moreover, in the artificial
reefs, species of the Carangidae, Mugilidae, Fistularidae, and Haemulidae families were
most abundant in the three stages of egg development and in the first larval stage (yolk-sac).

In both reef types, Abudefduf troschelii was the most abundant larval species in the
preflexion stage. Other abundant preflexion larvae species in the natural reefs were Labriso-
midae sp. 1 and Pseudopeneus grandiscuamis. In the artificial reefs, Harengula thrissina and
Benthosema panamense were also abundant in the preflexion stage.

In the natural reefs, nine species were recorded in the flexion stage; the most abundant
were Diapterus peruvianus and Vinciguerria lucetia. In the artificial reefs, 17 species of
larvae were recorded in the flexion stage; the most abundant were Labrisomidae sp. 1 and
Vinciguerria lucetia. Caranx caballus presented a higher abundance in the flexion stage in
the artificial reefs, while this stage was absent in the natural reefs.

Only four species were recorded in the postflexion larval stage; two species were
present in the natural reefs (Hyporhamphus rosae and Oxyporhamphus micropterus) and three
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in the artificial reefs (Hemiramphus saltator, Hyporhamphus rosae, Hypsoblennius gentilis). The
four species presented the same abundance, and none of the species were recorded at any
other stage of development (neither in eggs nor larvae).

3.3. Seasonality (Warm Season vs. Cold Season)

Of the 106 taxa recorded, only 29 species were present in both seasons. During the
warm season, 81 fish species were recorded, of which 52 were exclusive to that season.
On the other hand, 48 species were recorded during the cold season, of which 20 were
exclusive. The highest abundance (96.2%) was observed in the warm season, while only
3.8% of the abundance was recorded in the cold season.

A total of 69 species were more abundant in the warm season, while 28 species were
more abundant in the cold season. Thalassoma lucasanum and Prionotus stephanophrys were
abundant in both seasons of the study. Other abundant species in the warm season were
Auxis rochei, Harengula thrissina, Fistularia comersonii, Anisotremus davidsonni, and Abudefduf
troschelii. The most abundant species in the cold season were Fistularia corneta, Diodon
holocanthus, Benthosema panamense, Vinciguerria lucetia, and Auxis thazard.

The Simper analysis recorded a dissimilarity between the two seasons of 88.91%. The
species that contributed the most to this dissimilarity are Thalassoma lucasanum, Prionotus
stephanophrys, Fistularia comersonii, Harengula thrissina, and Auxis rochei (Table 1). The non-
metric multidimensional scaling ordination clearly separated the fish samples by season
(Figure 3), with a higher observable dispersion among the samples belonging to the warm
season compared to the cold season. Significant differences were found in the community
composition between the warm and cold seasons (season, df = 15, t = 5.37, p < 0.001;
Figure 3).
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4. Discussion

The reliable identification of reef fish’s early life stages is essential for the sound protec-
tion of their breeding and nursery sites [51]. However, the limited number of morphological
characteristics and the high similarities between the different species during their early
development make the identification of ichthyoplankton species challenging [52,53]. Con-
sequently, few attempts have been made to study the dynamics of dispersal stages and
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their spatial distribution in ARs and MPA planning and siting. In the present study, we
successfully identified the ichthyoplankton of the samples at both genus and species levels,
which represents a significant contribution to filling the gap in addressing these challenges,
particularly within the applied knowledge of artificial reefs.

Since the reproductive activities of fish determine the presence and distribution of
their early developmental stages [16,53,54], the predominance of the egg stage (mainly
early development) and yolk sac larvae in the ichthyoplankton samples implies that the
studied reefs may serve as spawning grounds for various reef species [21–25]. Although
the dominant ichthyoplankton species in both the natural and artificial reefs were nearly
identical, supporting the hypothesis that a mimicking of fish communities may occur when
artificial reefs are closer to natural reefs [40], the ichthyoplankton community assemblages
varied at the species level. The differences suggest that the natural reefs in the ESA may
serve as breeding grounds for species of the families Scaridae, Labridae, and Mugilidae,
whereas the ARs may serve as breeding grounds for the families Lutjanidae, Synodon-
tidae, Carangidae, Fistularidae, and Haemulidae, which indicates the potential of these
novel habitats to expand spawning grounds and fish production in the Espiritu Santo
Archipelago. This further contribution of the ARs could benefit adjacent fishing grounds
through connectivity via the export of eggs and larvae (recruitment subsidies) [55,56], a
phenomenon recorded in other artificial reefs around the world [23,57,58]. In addition, the
present study highlights the potential attraction effect of artificial reefs on fish larvae, with
special attention being paid to mesopelagic species like Benthosema panamense and pelagic
species like Cetengraulis mysticetus and Hemiramphus saltator, which do not tend to naturally
reside in reef areas.

The presence of almost all the developmental stages (from early-stage eggs to post-
flexion larvae) in the artificial reefs of the ESA suggests that they exhibit some aggregation
effects, which may provide refuge for late stages of development, including contributions
to the successful self-seeded recruitments of new generations. It has been shown that in
situations where artificial reefs offer favorable conditions for reproduction, young recruits
prefer to settle in artificial reefs rather than disperse in search of other natural habitats [58];
that is, the arrival of fish larvae to a suitable habitat may involve more than just physical
dispersal processes [59,60]. This may be explained by the relatively strong swimming
capabilities of species in the flexion and postflexion stages and their reliance on a range of
environmental cues to respond to in order to eventually settle in reef habitats suitable in
terms of food availability, reduced competition, and lower predation risk [61–63].

The results also indicate that, as fish development progresses, ichthyoplankton abun-
dance decreases. This is an expected phenomenon due to the low survival rates during
the early developmental stages, especially due to the fact that once the larvae have fully
utilized the vitelline reserve, they rely on planktonic food, which is often scarce and could
lead to starvation. This is a phase in fish life history that emphasizes the importance of
survival beyond the preflexion stage [64,65].

The variations in abundance and species composition between the warm and cold sea-
sons suggest that the assemblages of ichthyoplankton species are related to the alternating
reproductive periods and mesoscale flow events in the Southern Gulf of California [66,67].
During the warm season, the Mexican Coastal Current intensifies, transporting warm
water into the Gulf of California, raising the sea surface temperature [68,69], and providing
favorable conditions for the reproduction of species of families like Labrids, Scarids, Po-
macentrids, Haemulids, Mugilids, and others that live in shallow waters with a tropical
and/or subtropical affinity for the Bay of La Paz [70,71].

Additionally, in the warm season, a strong synchronization of fish spawning has
been observed with the formation of anticyclonic eddies in the northern part of La Paz
Bay that transport eggs and larvae of oceanic and mesopelagic species like Auxis rochei,
Etrumeus acuminatus, and Vinciguerria lucetia from the Gulf of California to favorable sites
(for development) in La Paz Bay, influencing recruitment success and decreasing the
random distribution of larvae [72–74]. In contrast, during the cold season when geostrophic
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current velocities in the northern entrance of La Paz Bay are weak [75], larvae of species
like Fistularia corneta, Diodon holocanthus, and Benthosema panamense extend over a large part
of the bay.

The results show a patchy distribution of ichthyoplankton with a clear spatial distri-
bution characteristic for both the ARs and NRs in the studied area, suggesting that ARs,
as no-take sites, can be an effective tool for both fishery management and biodiversity
conservation [25,76]. However, to ensure that ARs indeed enhance productivity, further
research is needed, specifically extended temporal and spatial (different depths) sampling,
which will provide a comprehensive and more reliable layout of the long-term distribution
patterns. These efforts will contribute to our understanding of the impact of ARs on local
and regional productivity and their overall ecological role as management tools.

5. Conclusions

In the present study, we report the first preliminary characterization of the larval
fish assemblage in the ARs deployed in the marine protected area of the Espiritu Santo
Archipelago. The predominant occurrence of fish in the early developmental stages, such
as eggs and yolk sac larvae, may indicate that the studied reefs serve as key spawning
grounds for various reef fish species.

While the dominant species in the natural and artificial reef areas were similar, differ-
ences in the community structure and spatial distribution of the ichthyoplankton abundance
suggest distinct spawning areas for different species. The artificial reefs in the Espiritu
Santo Archipelago function as breeding sites for specific fish families, providing evidence
of the potential of this new habitat type to expand spawning grounds, leading to increased
fish production and potential benefits for adjacent fishing areas through the export of eggs
and larvae.

Additionally, the presence of various developmental stages in the artificial reefs sug-
gests successful recruitment, as newly produced individuals prefer settling in these reefs,
indicating their role in supporting the successful development of a new generation of fish.
This research exhibits the complex dynamics of ichthyoplankton in natural and artificial
reefs, providing preliminary valuable information on the distribution, abundance, and
developmental stages of several reef fish species. Although further research is needed, the
findings highlight the importance of considering both types of reefs in marine conservation
and management efforts.
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