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Abstract: A novel bulk optics scheme for quantum walks is presented. It consists of a one-dimensional
lattice built on two concatenated displaced Sagnac interferometers that make it possible to reproduce
all the possible trajectories of an optical quantum walk. Because of the closed loop configuration,
the interferometric structure is intrinsically stable in phase. Moreover, the lattice structure is
highly configurable, as any phase component perceived by the walker is accessible, and finally,
all output modes can be measured at any step of the quantum walk evolution. We report here on the
experimental implementation of ordered and disordered quantum walks.
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1. Introduction

The control of quantum systems allows not only exploring the interaction mechanisms of the
microscopic world, but also exploiting the parallel coherent evolutions of such particularly sensitive
systems, developing a new generation of information processing and communication [1,2], which
will be capable of fast analysis [3] and dense data transport [4] with intrinsically-secure protocols [5].
For example, several quantum technology applications are currently under development, such as the
implementation of search algorithms [6], the simulation of cellular automata [7] and the investigation of
quantum diffusion processes, manifesting peculiar effects by the generation of topologically-protected
quantum states [8,9].

These diffusion processes occur when the behavior of a quantum system is controlled by a
surrounding environment, and it depends on its structure, on the interaction strength, and on the
interference between all possible evolutions [10]. A well-known particular case is the so-called quantum
walk (QW), representing the spatial random movement of a quantum particle in an n-dimensional
lattice, where all degrees of freedom are commonly decoupled [11]. Depending on the lattice
structure, a QW makes possible the simulation of important physical phenomena, such as Anderson
localization [12,13] or a variety of other effects concerning different research fields [14].

In this work, we focus on the case of discrete QWs, where the quantum system only evolves at
certain discrete times known as steps [15]. Here, we present a novel bulk optics scheme for simulations
of QWs, exploiting unique features and presenting significant advantages with respect to current
bulk [16] and integrated platforms [17].

2. Theoretical Model

The main elements of a QW are given by the walker, the coin, and the evolution operators of both
the walker and coin [14,18]. In particular, for our one-dimensional case the walker corresponds to
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the coherent superposition of all possible lattice sites occupied by the quantum particle during the
evolution, and it is normally represented in the basis {|i〉p}, spanning its associated Hilbert spaceHp.
The coin corresponds to any degree of freedom enabling changes of position and is normally described
by a two-level system with basis {|0〉c , |1〉c} in the Hilbert spaceHc.

The QW evolution is controlled by the action of two operators: the first one acts on the coin state
as a generalization of the Hadamard gate [19],

Ĉ = α |0〉c 〈0|c + β |0〉c 〈1|c + γ |1〉c 〈0|c + δ |1〉c 〈1|c , (1)

with |α|2 + |γ|2 = |β|2 + |δ|2 = 1 and αβ∗ + γδ∗ = 0; the second one corresponds to a shift in the
walker position, conditioned to the state of the coin:

Ŝ = |1〉c 〈0|c ⊗∑
i
|i− 1〉p 〈i|p + |0〉c 〈1|c ⊗∑

i
|i + 1〉p 〈i|p . (2)

The operator Ĉ, which can be considered as a physical device with two input and two output
ports, can be optically achieved by encoding the coin basis in the path degree of freedom of a beam
splitter (BS). Here, one can write α =

√
Reiθα , β =

√
1− Reiθβ , γ =

√
1− Reiθγ , and δ =

√
Reiθδ , where

R is the BS reflectivity [20,21]. Then, by using θα = θ0 + π/2, θβ = θ0, θγ = θ1, and θδ = θ1 + π/2 as
solutions of the constraint θα − θβ + θδ − θγ = ±π, one can assume that all phase factors are effectively
controlled only by θ0 and θ1, which could be prepared experimentally by external devices in the BS
outputs |0〉c and |1〉c, respectively. Since the absolute values of θ0 and θ1 are not accessible, only their
difference θ = θ0 − θ1 is relevant. Thus, a generic state |ψ〉 = ∑i,j pi,j |i〉c ⊗ |j〉p with ∑i,j |pi,j|2 = 1
evolves at each step (discrete time) according to:

|ψ〉′ = Ûc,p |ψ〉 , (3)

where Ûc,p = Ŝ · (Ĉ⊗ Îp) represents the unitary evolution operator of an “ordered QW” [14,18].
In a more general scenario, each lattice coin can be different from the others and time dependent,

as in the case of the completely-“disordered QW”, where all lattice coins are random and independent
at any step of the evolution [22]. Here, the state |ψ〉 evolves according to:

|ψ(tk+1)〉 = Ûc,p(tk+1, tk) |ψ(tk)〉 , (4)

with Ûc,p(tk+1, tk) = Ŝ ·∑p Ĉ(tk+1, tk)i ⊗ |i〉p 〈i|p, where Ĉ(tk+1, tk)i is the coin operator at site i for the
step associated with the time interval [tk, tk+1].

3. Experimental Implementation

The standard optical realization of a one-dimensional QW consists of a network of BSs, where
each of them represents a particular position site of the lattice, with their ports encoding the coin
basis and achieving the effective phase shift difference θ (see Figure 1). It is usually achieved by
using photonics-integrated circuits, where a suitably-prepared array of microfabricated waveguides
reproduces a fixed number of steps in a small volume [23], or by time-synchronization of photon
pulses in bulk-fiber circuits [24], or in noisy large schemes of bulk optics only [25].

The actual setup implemented in this work consists of two displaced-multi-pass Sagnac
interferometers (SIs) connected to each other through a common BS, as shown in Figure 2. Here,
all beam trajectories are initially prepared in a collinear regime, and after a single mirror translation
in the first SI (SI1), one obtains the displaced loops lying in a single transmission plane, as used
recently by us in another experiment [26]. This configuration is equivalent to a chain of Mach–Zehnder
interferometers (MZIs), with intrinsically-stable phases that can be addressed independently in each
mesh of the chain. The number of consecutive passages of light through the BS of Figure 2 determines
unambiguously the length of the chain.
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The one-dimensional QW of Figure 1 can be realized by the scheme of Figure 2, including as a
further spatial dimension, the vertical direction, perpendicular to the horizontal plane of Figure 2. This
is achieved by using suitably-designed beam displacers (BDs) intercepting some of the light trajectories
in both SIs, namely clockwise trajectories in SI1 and counter-clockwise ones in SI2. For each passage of
light through the BD, the number of QW sites grows by one unit, and the number of possible paths
that the walker can go through is equal to 2N , where N is the total number of steps. Thus, our scheme
exploits the three dimensions of the same BS to increase the number of sites and steps of the QW.
Individual phases can be easily addressed by using independently-rotating thin glass plates (RPs) in
each QW mesh point (see Figure 2).

Figure 1. One-dimensional quantum walk (QW) in a beam splitter (BS) network: Arbitrary values of θ

can be achieved by means of phase shifters, represented here by yellow circles. Notice that for each
BS, the outputs |0〉c and |1〉c are automatically inverted in the following BS inputs as described by the
operator Ŝ.

Figure 2. Double multi-pass Sagnac interferometer (SI): Both SIs are initially prepared in a condition
of collinear alignment, then by a single translation of the mirror M in SI1, one effectively obtains a
scheme equivalent to a chain of Mach–Zehnder interferometers (MZI) exploiting the horizontal plane
dimensions of the BS, as done in [26]. Odd step trajectories circulate in the first SI (SI1), while the even
ones circulate in the second SI (SI2). The green rectangles represent the beam displacers (BDS), while
the yellow one corresponds to the rotating glass plate RP that allows addressing the phases. The blue
rectangle represents a fixed glass plate, mandatory to compensate time delay due to the thickness of
the rotating plates (optical elements are not to scale). The red dashed and the blue dotted-dashed lines
indicate the trajectories reproducing the first MZI of Figure 1.

Figure 3 shows the actual QW realized in the laboratory. In the system, BDs are realized by
properly-oriented glass prisms. Additionally, the output radiation of each step can be extracted for
measurement by a set of moving mirrors. In Figure 3a,b, different colors denote different transmission
planes (light blue, green, violet, and red correspond to the beam in the ground, first, second, and third
transmission plane, respectively). Two or more paths can exist in the same horizontal plane, but always
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along different directions. The transverse spatial distribution of the QW internal paths arising in
the setup is shown in Figure 4a,b, and it is obtained by cutting the paths in the X1 (X2) plane of SI1

(SI2) (see Figure 2) and looking at the BS. Here, the green boxes correspond to the sections of BDs
intercepting only the clockwise (counter-clockwise) paths of the SI1 (SI2).

In the experiment, we have focused our attention on the case of single-photon evolution in ordered
and disordered QWs. For this purpose, a proof of principle was performed using a CW laser at 810 nm
as the input signal from a single-mode fiber coupler, as shown in Figure 3. An optical interference
with visibility larger than 90% could be guaranteed up to the seventh step due to the good parallelism
between the prism faces (< 1µ rad of deviation) and the very small time delay between the two arms
of each MZI, which is orders of magnitude below the coherence length of the laser.

(a)

(b)

Figure 3. Complete scheme of the QW: (a) Photons enter the optical setup in the initial zero-plane.
Later, only the clockwise (counter-clockwise) trajectories inside SI1 (SI2) go to an upper transmission
plane by passing through an inclined dove prism of N-BK7 glass acting as BD, while the others pass
through the rotating glass plates RPs with 1 mm of thickness. The modes of each step are extracted from
the last column of beams circulating in each SI by a horizontal translation of the right angle mirrors
(RM), while one can choose the position sites through their vertical translations. Site probabilities Pi are
extracted from the laser power after a single-mode fiber coupler. Here, light blue, green, violet, and red
trajectories correspond to beams in the ground, first, second, and third transmission plane, respectively.
(b) Relevant dimensions of the setup from the point of view of SI1; D1 = 126.3 mm, D2 = 30 mm,
D3 = 50 cm, D4 = 5 cm, D5 = 5.5 mm, φ = 25 deg, ω = 45 deg.
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(a) (b)

 Sk show the modes of the kth step. Each step is represented twice because of the two possible states 
of the coin (|0〉c, |1〉c). Different planes of a column represent different sites, and the number 
associated with the site increases going from the bottom to the top. In this way, the same plane 
represents different sites for different steps. For example, in (a), the zero-plane for S1 represents the 
site −1, but for S3, the same plane represents the site −3. Point-marked trajectories (|0〉c) go towards 
the viewer, while cross-marked ones (|1〉c) go in the opposite direction. The green regions correspond 
to the effective transverse BD areas.

4. Results and Discussion

In Figure 5, we show the evolution of the walker state for the two cases of an ordered and a
disordered QW, for an initial state |ψ(t0)〉 = |1〉c ⊗ |0〉p. Here, the experimental data were obtained
from the laser power measured on each site, where each of them has a contribution deriving from
modes |0〉c and |1〉c. The data corresponding to each time step tk have been obtained from the state
ρp(tk) = Trc [|ψ(tk)〉 〈ψ(tk)|] = ∑i Pi(tk) |i〉p 〈i|p where the probabilities Pi(tk) for the occupation of
site i are normalized considering optical losses at each time tk.

The results of Figure 5 show the typical distributions obtained for a ballistic and dispersive
quantum transport corresponding to an ordered and disordered QW, respectively. They are
in very good agreement with the theoretical predictions obtained by taking into account the
actual parameters of the optical setup. We compared the experimental distributions with the
theoretical ones for both ordered and disordered QWs through the similarity S, defined as S =(

∑ij

√
Gi(sj)G′i(sj)

)2
/
(
(∑ij Gi(sj))(∑ij G′i(sj))

)
, where index i runs over positions and sj denotes

different steps of the evolution. For the ordered case, where all phase factors were set to θ = 0,
we obtained a similarity value of S = 0.990± 0.002. For the disordered case, where the phase factors
alternate randomly their values between zero and π, the similarity was S = 0.994± 0.006. The large
values of Sdemonstrates the very good agreement between experiment and theory.

In Figure 6, we report the variance of photon position during the evolution inside the lattice,

expressed as Var(tk) = ∑k
i=−k i2 · Pi(tk) −

(
∑k

i=−k i · Pi(tk)
)2

. The graph allows us to compare the
experimental data as a function of the number of steps with the theoretical predictions corresponding
to a totally-symmetric QW and those obtained taking into account the real parameters of the setup.
Data behave as expected from the theoretical simulation obtained with real parameters. A small
deviation is observed only for a large number of steps, probably given by the slight, but increasing
spatial misalignment among all possible trajectories inside the setup.

Figure 4. Transverse spatial distribution of light beam trajectories in the apparatus: (a) Looking at
the BS from the plane X1 of SI1. (b) Looking at the BS from the plane X2 of SI2 (see X1 and X2 in
Figure 2). For each figure, the number of steps increases along the horizontal axis of the figure, going
from inside to outside with respect to the central dashed line. Indeed, paths exiting from the BS
at step Sk are external with respect to the paths of the step Sk−2 (note that odd steps belong to SI1,
while even steps belong to SI2). Columns with the same index Sk show the modes of the kth step.
Each step is represented twice because of the two possible states of the coin (|0〉c, |1〉c). Different
planes of a column represent different sites, and the number associated with the site increases going
from the bottom to the top. In this way, the same plane represents different sites for different steps.
For example, in (a), the zero-plane for S1 represents the site −1, but for S3, the same plane represents
the site −3. Point-marked trajectories (|0〉c) go towards the viewer, while cross-marked ones (|1〉c) go
in the opposite direction. The green regions correspond to the effective transverse BD areas.

4. Results and Discussion

In Figure 5, we show the evolution of the walker state for the two cases of an ordered and a
disordered QW, for an initial state |ψ(t0)〉 = |1〉c ⊗ |0〉p. Here, the experimental data were obtained
from the laser power measured on each site, where each of them has a contribution deriving from
modes |0〉c and |1〉c. The data corresponding to each time step tk have been obtained from the state
ρp(tk) = Trc [|ψ(tk)〉 〈ψ(tk)|] = ∑i Pi(tk) |i〉p 〈i|p where the probabilities Pi(tk) for the occupation of
site i are normalized considering optical losses at each time tk.

The results of Figure 5 show the typical distributions obtained for a ballistic and dispersive
quantum transport corresponding to an ordered and disordered QW, respectively. They are
in very good agreement with the theoretical predictions obtained by taking into account the
actual parameters of the optical setup. We compared the experimental distributions with the
theoretical ones for both ordered and disordered QWs through the similarity S, defined as S =(

∑ij

√
Gi(sj)G′i(sj)

)2
/
(
(∑ij Gi(sj))(∑ij G′i(sj))

)
, where index i runs over positions and sj denotes

different steps of the evolution. For the ordered case, where all phase factors were set to θ = 0,
we obtained a similarity value of S = 0.990± 0.002. For the disordered case, where the phase factors
alternate randomly their values between zero and π, the similarity was S = 0.994± 0.006. The large
values of Sdemonstrates the very good agreement between experiment and theory.

In Figure 6, we report the variance of photon position during the evolution inside the lattice,

expressed as Var(tk) = ∑k
i=−k i2 · Pi(tk) −

(
∑k

i=−k i · Pi(tk)
)2

. The graph allows us to compare the
experimental data as a function of the number of steps with the theoretical predictions corresponding
to a totally-symmetric QW and those obtained taking into account the real parameters of the setup.
Data behave as expected from the theoretical simulation obtained with real parameters. A small
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deviation is observed only for a large number of steps, probably given by the slight, but increasing
spatial misalignment among all possible trajectories inside the setup.

Figure 5. Walker distributions in the one-dimensional lattice: The QW starts as |ψ(t0)〉 = |1〉c ⊗ |0〉p.
The cross symbols denote the sites that cannot be reached by the walker at a certain step (even (odd)
sites can be reached only at even (odd) steps). For better viewing, the values of probability at each step
tk are normalized to the maximum value of probability obtained for the tth

k step. Both ordered and
disordered QWs were extracted from a particular phase setting and by considering real parameters of
the optical setup, in particular the BS reflectivity R = 0.44.

Figure 6. Position Variances: OT (DT): theoretical simulation for ordered (disordered) QW; OTR(DTR):
theoretical simulation obtained by taking into account the parameters of the real optical setup for
ordered (disordered) QW (here R stands for real); OE (DE): experimental data for ordered (disordered)
QW. All the experimental points were obtained by averaging for each step the data obtained for each
of three phase settings .

The relatively large size of the apparatus (see Figure 3b) was responsible of an observed small
amount of phase instability. This effect was taken into account in the evaluation of the error bars of
each experimental point.
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In the case of ordered QW, experimental data were in good agreement also with theoretical
predictions based on ideal optical elements, while a larger discrepancy was observed in the case
of disordered QW. This was due to the non-symmetric BS used in the experiment, with measured
reflectivity R = 0.44. The larger probability of photons to be transmitted at each passage through the BS
introduced preferential directions followed by the walker. These trajectories were those characterized
by a lower number of reflections, while the path with the largest probability was the one transmitted
at each passage through the BS. The disordered QW was more sensitive to this effect if compared
to the ordered one. Indeed, in the first case, the disorder tended to localize the walker around a
single position, while the non-ideal BS brought the walker into a wide range of positions due to
the preferential directions, thus increasing the variance. This resulted in a discrepancy between
experimental data and predictions obtained with ideal parameters, which was strongly reduced once
the non-ideal BS was introduced into the simulation. On the contrary, in the ordered case, preferential
directions concurred with the ballistic behavior of the walker, resulting in a smaller discrepancy
between experimental data and ideal theoretical predictions.

A different effect was expected in the case of a BS reflectivity larger than 0.5. Indeed, an augmented
reflectivity generated different preferential directions with respect to the R < 0.5 case where the path
with the largest probability was the one reflected at each BS interface. In this way, the walker was
confined around a small range of positions, resulting in a smaller variance with respect to the ideal
case for both ordered and disordered QW. This is shown in Figure 7 where it is possible to compare the
different variance behaviors expected for R = 0.46, 0.5, 0.54. As said, when R < 0.5, the variance was
larger than the one calculated for the ideal case (R = 0.5), and the disordered QW was more affected
by this effect if compared with the ordered one; when R > 0.5, the variance was smaller with respect
to the ideal case for both ordered and disordered QW; however, in this case, the disordered QW was
less affected by this effect when compared with the ordered one.

Figure 7. Expected variance behaviors corresponding to different values of R: the values of R are equal
to 0.46, 0.5 (ideal case) and 0.54. The theoretical simulations for disordered QW are computed by a
mean of 100 different phase settings.

5. Conclusions

In this work we have shown the feasibility of the bulk-optics implementation of a one-dimensional
QW based on a novel double Sagnac interferometric configuration. We demonstrated its high level
of customization, phase-stability and measurement accessibility, allowing at the same time to extract
each coin mode at each position site and time step. This apparatus can manage more complex discrete
QW scenarios, such as simulating two-dimensional lattices or studying two-particle interference by
injecting the second photon in the other port of the BS. We estimated that by replacing the glass phase
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control with suitably-designed spatial phase modulators, the total dimension of the system can be
drastically reduced, arriving at up to 20 steps, which represents a valid alternative with respect to
other platforms currently achieving more than 10 steps [27,28].

Henceforth, we expect to use this system to study exotic kinds of noise, to reproduce unusual
kinds of quantum behaviors, like topologically-protected states [8], and to explore sub-diffusive and
super-diffusive dynamics [29–32].
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