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Abstract: Based on the numerical solution of the Quantum Lattice Boltzmann Method in curved space,
we predicted the onset of a quantized alternating current on curved graphene sheets. This numerical
prediction was verified analytically via a set of semi-classical equations that related the Berry curvature
to real space curvature. The proposed quantized oscillating current on curved graphene could form the
basis for the implementation of quantum information-processing algorithms.
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1. Introduction

In recent years, the most puzzling features of quantum mechanics that have long been regarded
as sort of extravagant speculations, such as entanglement and non-local “spooky action at a distance”,
have received spectacular experimental confirmation [1–4]. Besides their deep fundamental implications,
such phenomena may also open up transformative scenarios for material science and related applications
in quantum computing and telecommunications [5,6]. Along with such bursts of experimental activity,
a corresponding upsurge of theoretical and computational methods has also emerged in the last two
decades, including, among others, new quantum many-body techniques, quantum simulators [7–10], and
quantum walks [11].

Quantum walks were first introduced by Aharonov and collaborators in 1993 [12], just a few months
before the appearance of the first Quantum Lattice Boltzmann scheme [13], which was only recently
recognized to be a quantum walk [14]. Quantum walks [15,16] are currently utilized to investigate exotic
states of quantum matter [17] and to design new materials and technologies for quantum engineering
applications [18].

Quantum walks can also help explore the emergence of classical behavior in the limit of a vanishing
de Broglie length [19]. Likewise, quantum cellular automata [20–22], can be used for simulating complex
systems in analogue with their classical counterparts.
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Finally, quantum walks have also shown connections with topological aspects of quantum mechanics,
most notably the Berry phase [23]. Indeed, Berry connection and Berry curvature can be understood
as a local gauge potential and gauge field, respectively, and they define a Berry phase as introduced in
1984 [23]. The Berry phase has important implications as an analytical tool in topological phases of
matter [24] and, under suitable conditions, it can also be related to real space curvature [25], thus providing
a potential bridge between the classical and quantum descriptions of a given system.

As of quantum materials, graphene presents one of the most promising cases for realizing a new
generation of quantum devices [26–28]. Indeed, since its discovery [29], this flatland wonder material
has not ceased to surprise scientists with its amazing mechanical and electronic behavior. For example,
stacking graphene sheets at specific angles has shown spectacular indications of superconductivity and
other exotic properties [30].

Tunable transport properties are a basic requirement in electronic devices and specifically in
graphene [31]. Furthermore, it has been shown that graphene sheets can be curved in such a way
as to trap particles [32], thus opening further prospects for technological applications based on localized
quantum states.

In this work, we propose the generation of a quantized oscillating current on curved graphene, which
could be used in conjunction with trapped fermions for the realization of quantum cellular automata.

Electron transport is simulated by numerically solving the Dirac equation in curved space [32,33]
using an extension to curved space of the Quantum Lattice Boltzmann Method [13]. In addition, a simpler
representation of the system is solved analytically through a set of semi-classical equations of motion,
relating Berry to real space curvature.

The paper is organized as follows. First, we introduce the Dirac equation and its extension to curved
space and specifically to deformed graphene. In the subsequent section, we present the results of numerical
simulations. Finally, we conclude with a summary and outlook section. A detailed description of the
numerical model is provided in the Appendix (Appendix A).

2. The Dirac Equation in Curved Space and Graphene

The Dirac equation in curved space can be written in compact notation as follows:

(iγµDµ −m)Ψ = 0, (1)

in natural units h̄ = c = 1, where m is the particle rest mass, and the index µ = 0, 1, 2 runs over 2D
space-time. In the above, Ψ = (Ψ+, Ψ−) = (ψ+

1 , ψ−2 , ψ−1 , ψ+
2 ) ∈ C4 denotes the Dirac four-spinor, and

γµ = γαe µ
α are the generalized γ-matrices, where γα ∈ C4×4 are the standard γ-matrices (in Dirac

representation). The symbol e µ
α is the tetrad (first index: Flat Minkowski, second index: Curved

space-time).
Here, the tetrad is defined by eµ

α gµνeν
β = ηαβ [34], where gµν denotes the metric tensor and ηαβ is the

Minkowski metric. The tetrad basis is chosen such that the standard Dirac matrices can be utilized with
no need to transform to a new coordinate basis. The symbol Dµ denotes the covariant spinor derivative,

defined as DµΨ = ∂µΨ + ΓµΨ, where Γµ denotes the spin connection matrices given by Γµ = − i
4 ω

αβ
µ σαβ,

where σαβ = i
2 [γα, γβ] and ω

αβ
µ = eα

ν∇µeνβ. The Dirac equation in curved space describes quantum
relativistic Dirac particles (e.g., electrons ) moving on arbitrary manifold trajectories.

The covariant derivative ensures the independence of the Dirac equation of the coordinate basis.
The covariance is satisfied by the connection coefficients, which can be interpreted physically as a vector
potential. The Poincare symmetries are obeyed by the Dirac equation, ensuring the special relativistic
nature of the wavefunctions. The mass term represents the Minkowski metric invariant rest mass.
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Interactions add to an effective mass by the very definition of a covariant derivative, which places
the vector potential on the same mathematical basis as a physical mass. Graphene is modeled by a
massless Dirac Hamiltonian.

Theory of Strained Graphene

Using the tight-binding Hamiltonian to describe the bi-partite lattice of graphene, it is established
that in the low-energy limit, the dispersion relation is linear, as described by the Dirac cones at the corners
of the first Brillouin zone, which can be described by the following Dirac Hamiltonian:

HD = −i
∫

Ψ†γ0γi∂iΨd2x, (2)

in natural units, where Ψ is in the chiral representation. In the context of graphene, the general Dirac spinor
is defined as Ψ = (ΨK

a , ΨK′
a ) = (ψK

A, ψK′
B , ψK′

A , ψK
B ), for sub-lattices A, B and valleys K, K′. The equation of

motion stemming from this Hamiltonian is precisely the Dirac equation.
In this work, we consider a static space-time metric, with trivial time components:

gµν =

(
1 0
0 −gij

)
,

where the latin indices run over the spatial dimensions. This simplifies the Dirac Equation (1) to:

∂tΨ + σae i
a (∂i + Γi)Ψ = 0− iγ0mΨ, (3)

with σa = γ0γa. After the addition of external vector and scalar potentials Ai(x) and V(x) respectively, as
explained in Reference [35], the Dirac equation takes the following form:

∂tΨ + σae i
a (∂i + Γi − iAi)Ψ = −iγ0(m−V)Ψ. (4)

Defining the Dirac current as Jµ = ΨγµΨ, the charge density conservation law can be written as
∂tρ +∇i Ji = 0, where ρ = Ψ†Ψ ∈ R and Ji = ΨγiΨ ∈ R.

The standard Dirac Hamiltonian for Equation (4) is given by:

HD = −i
∫

Ψ†σae i
a (∂i + Γi − iAi)Ψ

√
gd2x. (5)

For the case of graphene, the effective Hamiltonian reads as follows [36]:

H∗D = −i
∫

Ψ†σa(v∗ia ∂i + Γ∗a − iA∗a)Ψd2x, (6)

where v∗ia = δai + uai − βεai is the space-dependent Fermi velocity, Γ∗a = 1
2 ∂jv

∗j
a is a complex gauge

vector field that guarantees the hermicity of the Hamiltonian, and A∗a is a strain-induced pseudo-vector
potential, given by A∗a = (A∗x, A∗y) = β

2a (εxx − εyy,−2εxy). Furthermore, β is the material-dependent
electron Grueneisen parameter, a is the lattice spacing, and εi = ui +

1
2 ∂ih∂jh is the general strain tensor,

with in-plane, ui and out-of-plane, h deformations.
Comparing this to the standard Dirac Hamiltonian in curved space Equation (5), we can match both

Hamiltonians HD and H∗D by fulfilling the following relations:

v∗ia =
√

ge i
a , Γ∗a =

√
ge i

a Γi, A∗a =
√

ge i
a Ai. (7)
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All three relations above can be simultaneously fulfilled by an effective metric tensor derived from the
explicit expression of the tetrad [35]. The numerical solutions are obtained with the Quantum Lattice
Boltzmann Method, as described in Appendix A and Reference [35].

3. Quantized Alternating Current Graphene Strip

To investigate the potential of curvature on curved graphene sheets, we propose a periodic system
with alternating current (AC) behavior, which is quantized according to its shape. The system geometry is
initialized by the discrete mapping (or chart),

hα(x, y) =

 x
y

y sin(ηx/2)

 (8)

with x ∈ {0, 2π}, y ∈ {−Ly/2, Ly/2}, Ly being the domain size in the y dimension, see Figure 1.
The boundaries are periodic along the x-direction and closed at −Ly/2, Ly/2.

The initial condition is given by a Gaussian wavepacket of the form:

Ψ(r, k) =
1√

2πζ2

(
1

λeiθ

)
e
− |r|

2

4ζ2 +ik·r
, (9)

where λ = ±1 is the band index, θ = arctan(ky/kx), ζ is a measure of the width, r = (x, y), x, y are the
two space coordinates, and k = (kx, ky), kx, ky represent the x and y momenta, respectively. The initial
values are taken as kx = 1, ky = 0, and λ = 1. In the simulations, we consider a rectangular sheet with
periodic boundary conditions on a grid size of Lx × Ly = 256× 128 or 20 nm × 5 nm, while the external
potential Aa is set to zero. Therefore, the subsequent motion is purely curvature driven.

The discretization of the real space shape of the graphene strip is plotted in Figure 1a. The norm of the
wavefunction, ‖Ψ‖2, i.e., the probability density, ρ is plotted in Figure 1b for the initial and few subsequent
time-steps. As one can appreciate, the wavepacket spreads as expected, with no clear indication of motion
along the y direction.

Figure 1. (a) Real space geometry of the graphene strip, x, y denote the coordinate directions. (b) Density
plots of the wavepacket for different time-steps, the kx arrow denotes the propagation direction. The bulk
of the wavepacket propagates forward and is spreading as expected.
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The position of the center of charge density along the y direction:

ȳ =

( ∫ area
y(ρ(t)− ρ(0))dA

)
/
∫ area

ρ(t)dA, (10)

is plotted as a function of time in Figure 2, where dA = dxdy. A small but significant oscillation along the
y direction is observed.
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Figure 2. Time evolution of relative position of the center of charge in the radial direction for geometries
with η = 1, 2, 3.

These oscillations can be understood as the geometrical equivalent of the Bloch oscillations and
they are a consequence of the sinusoidal, periodic domain, with the frequency quantized in units of the
parameter η. For a slowly perturbed Hamiltonian, expanding around the wavepacket center c (initialized
to (0, 0) here), H = Hc + ∆H, assuming a periodic system described by a Bloch wavefunction, the
semi-classical equations of motion are given by [37]:

ṙc =
∂ε

∂k
− (Ωkr · ṙc + Ωkk · k̇c)−Ωkt (11)

k̇c =
∂ε

∂r
− (Ωrk · k̇c + Ωrr · ṙc)−Ωrt (12)
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where rc, kc are the center of mass position and momentum of the wavepacket, r, k are the position and
momentum vectors, t is time, ε is the band energy, and Ωkr = (Ωkr)αβ = ∂kαArβ

− ∂rβAkα
is the Berry

curvature and Ar the Berry connection.
As shown in Appendix B, the Berry phase, and thus Berry curvature, can be related directly to the spin

connection Γµ through Ai
n(R) = i〈Ψ(R)|∂R|Ψ(R)〉 =⇒ ARi = Tr〈Ψ|Γi|Ψ〉 for some parameter space R

and eigen-function index, n.
The non-zero terms of Equations (11) and (12) for the specific geometry are ṙc = ∂ε/∂k ≈ v f ,

k̇c = Ωrr · ṙc, which imply:
∂kα

∂rβ
= (Ωrr)αβ. (13)

For small-amplitude local wavepackets:

δkα =
∫
(Ωrr)αβdrβ =

∫
(∂rαArβ

− ∂rβArα)drβ (14)

and thus, δky ∝ sin(ηx) and δkx ∝ cos(ηx). Therefore, the oscillations can be explained in terms of a real
space Berry curvature, jointly with the classical geodesic equation on the corresponding manifold.

The frequency of these Bloch-like oscillations is quantized according to η. Finally, some forward
moving charge, even if driven, will experience an equivalent transverse oscillating motion, therefore the
system might be implemented as a periodic, quantized oscillating current device.

4. Conclusions and Outlook

We have proposed the realization of a quantized alternating current on a curved graphene sheet.
The oscillating current was numerically computed through the Quantum Lattice Boltzmann Method in
curved space and verified analytically via a set of semi-classical equations, relating the Berry curvature
to real space curvature. We interpreted this result as a geometrical analogue of the Bloch oscillations,
quantized according to the geometrical period η.

Building on these results, more complex and adjustable graphene devices can be envisaged in
the context of curvature-based design. For example, the proposed quantized oscillating current on
graphene, in conjunction with trapping quantum dots [32], could form the building block for quantum
information-processing algorithms.
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Appendix A. Curved-Space Quantum Lattice Boltzmann

The Quantum Lattice Bolzmann (QLB) Method used for solving the Dirac equation as minimally
coupled to curved space is an extension of the original method developed by Succi et al. [13]. The method
exploits the conceptual similarities between the Dirac equation and the Boltzmann equation on the lattice.
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We present here the QLB method for a three-dimensional manifold, with straight forward usage to lower
dimensional systems, [38–40].

Appendix A.1. The Dirac Equation

The classical Boltzmann equation for a particle density distribution function f (xa, va, t) is given by:

∂t f + vi∂xi f = C[ f ]− Fa∂va f , (A1)

the left-hand side describes the advection of the distribution function, velocity va, whereas the right-hand
side describes the collisions between particles and the effect of external forces Fa. Furthermore, the Dirac
equation in curved space in Equation (1) can be cast into a kinetic theory form,

∂tΨ + σa∂aΨ = CΨ +Fψ. (A2)

Therefore, similarly to the Boltzmann equation, the left-hand side represents the ’free streaming’ step along
matrix valued ’velocities’ σi while the right-hand side contains a ’collision’ and a ’forcing’ term.

The collision term of Equation (A2) is represented by:

C = −(imγ0 + σaei
aΓi), (A3)

where m is the fermion mass. The ’forcing term’ is given by:

F = −σa(ei
a − δi

a)∂i. (A4)

where the symbols have their usual meaning. The partial derivative of the Dirac equation is distributed
between the streaming part and the forcing term, resulting in a lattice-compatible classical streaming
operator of the form ∂t + va∂a, where va ∈ Z. The forcing term is a consequence of the generalized Dirac
matrices γi = e i

a γa and captures the bulk of the curvature effects. The partial derivative in Equation (A4)
is approximated by a local lattice finite difference scheme .

Appendix A.2. Diagonal Streaming Operator

In order to obtain a diagonal streaming operator, the complex σ-matrices have to be diagonalized
first, which yields a diagonal velocity matrix with eigenvalues va = ±1. The diagonalization is achieved
by suitable “rotation matrices”:

X†
a σa Xa =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 = γ0 for a = 0, 1, 2,

where the unitary transformation matrices X1, X2, X3 are given by:
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X1 = 1√
2


1 0 −1 0
0 1 0 −1
0 1 0 1
1 0 1 0

 , X2 = 1√
2


0 i 0 1
−i 0 i 0
−1 0 −1 0
0 −1 0 −i

 ,

X3 = 1√
2


1 0 0 −1
0 1 1 0
1 0 0 −1
0 1 1 0

 .

The streaming and collision operations are performed in successive steps using operator splitting,
since the simultaneous diagonalization of the three σ matrices is not possible:

Ψ(t +
∆t
D

) = exp
(
− ∆tσ1∂1 +

∆t
D

(C +F )
)
Ψ(t),

Ψ(t +
2∆t
D

) = exp
(
− ∆tσ2∂2 +

∆t
D

(C +F )
)
Ψ(t +

∆t
D

),

Ψ(t + ∆t) = exp
(
− ∆tσ3∂3 +

∆t
D

(C +F )
)
Ψ(t +

2∆t
D

),

where D = 3 denotes the spatial dimensions. Each streaming step can be diagonalized by left multiplying
with X†

a .

X†
a Ψ(t +

∆t
D

) = exp
(
− ∆tσa∂a + ∆t(C̃a + F̃a)

)
Ψ̃a(t), (A5)

with the definitions:

Ψ̃a := X†
a Ψ, F̃a :=

1
2

X†
aFXa, C̃a :=

1
2

X†
aCXa,

for a = 1, 2, 3 (no Einstein summation is used here). The exponential approximated as:

exp
(
− ∆tσa∂a + ∆t(C̃ + F̃ )

)
≈
(
I− ∆tσa∂a + ∆t(C̃a + ∆tF̃a)

+ (I− ∆t
2
C̃a)
−1(I+ ∆t

2
C̃a)
)

The expansion of the collision operator e∆tC̃a is unitary and thus conserves exactly the probability of the
wavefunction. The streaming e−∆tγ0∂a and forcing e∆tF̃a operators are not expanded, as this is prohibited
by the derivative. A simple 2nd-order expansion is performed, limiting the probability norm to ∆t2

accuracy. The operator splitting implies an error of order O(∆t2), as e∆tX · e∆tY = e∆t(X+Y)+1/2∆t2[X,Y] =

e∆t(X+Y) +O(∆t2).
The manifold is described by a chart h defined in linear space, discretized on a regular rectangular

lattice. The curved space Quantum Lattice Boltzmann Method evolves the four-spinor Ψ = (Ψ+, Ψ−) =
(Ψ+

1 , Ψ−2 , Ψ−1 , Ψ+
2 ) from t to t + δt. Once the operators are split, the following algorithm is performed in

sequence for each lattice direction na, where n1 = (1, 0), n2 = (0, 1), and a = 1, 2.
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1. Rotation: The spinor is rotated by Xa,

Ψ̃a(x, t) = X†
a Ψ(x, t). (A6)

2. Collisions and curvature: The collision and force operators are applied to the rotated spinor,

Ψ̃∗a(x, t) =
(
∆tF̃a + (I− ∆t

2
C̃a)
−1(I+ ∆t

2
C̃a)
)
Ψ̃a(x, t),

where Ψ̃∗a(x, t) denotes an auxiliary field,

C̃a =
1
2

X†
aCXa = −

i
D

m(X†
a γ0Xa)− γ0ei

aΓi, (A7)

F̃aΨ̃a(x, t) =
(
ei

a − δi
a
)(

Ψ̃a(x∓ ni∆t, t)− Ψ̃a(x, t)
)

, (A8)

where ni is the lattice direction and C is the collision term, Equation (A3). The upper sign applies to
the spin-up components (Ψ+

1 , Ψ+
2 ) and the lower sign to the spin-down components (Ψ−1 , Ψ−2 ).

3. Streaming: The spinor components are streamed to the closest grid points along the lattice
direction ±na,

Ψ̃a(x, t +
∆t
2
) = Ψ̃∗a(x∓ na∆t, t). (A9)

4. Inverse Rotation: The spinor is rotated back via Xa,

Ψa(x, t +
∆t
2
) = XaΨ̃a(x, t +

∆t
2
). (A10)

5. Repeat steps 2–4 for the next spatial direction.

The external potentials V(x), scalar, and A(x), vector are added to the collision operator Equation (A7),
such that:

C̃a =
1
2

X†
aCXa = −

i
D
(m−V)(X†

a γ0Xa)− γ0ei
a(Γi − iAi). (A11)

The simulation for strained graphene is carried out with modified Equations (A7) and (A8), according
to the following scheme:

C̃a →
√

gC̃a, ei
a →
√

gei
a.

The additional factor
√

g originates from the volume element of the Hamiltonian Equation (6).

Appendix B. Berry Phase Relation to the Spin Connection

To solve the Dirac equation, minimally coupled to curvature, Equation (1), with Ai = 0 and assuming
that the wavepacket has a negligible spread, δr→ 0, the connection component of the covariant derivative
can be absorbed into the wavefunction, so that:

Ψ→ Ψ exp
(

i
∫ rc+δr

rc
Γidr

)
(A12)
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where rc is the center of mass position and Γi is the spin-connection matrix. For a Gaussian wavepacket
with spread ζ and momentum k, the wavefunction Equation (A12) takes the following form:

Ψ(r, k) =
1√

2πζ2


1
0
0
−1

 ei
∫

Γidre
− |r|

2

4ζ2 +ik·r
. (A13)

This wave-function minimally couples the standard Dirac equation to curved space through the spin
connection. Defining the Berry connection as:

Ai
n(R) = i〈Ψ(R)|∂R|Ψ(R)〉 (A14)

for some parameter space R and eigen-function n. The Berry phase can be calculated from the complete
loop integral of the connection, according to:

γ =
∮ 2π

0
A(R)gij

RdR. (A15)

In a similar manner to the treatment of the Aharonov–Bohm effect from Berry [37], we define the slow
and fast coordinates R and r respectively, such that Ψ(R, r) → Ψ(r− R). The wave-function takes then
the form:

Ψr(R− r) =
1√

2πζ2


1
0
0
−1

 ei
∫

Γrdre
− |R−r|2

4ζ2 +ik(R−r)
. (A16)

From Equation (A14), the explicit form of the wavefunction implies that Ai = Tr Γi. The implication of this
result is that the Berry connection and curvatures can be directly related to the real space affine connection
and Ricci curvature tensor under suitable conditions.

As a consequence, the phase change of a wavepacket moving around a closed loop, can be calculated
from the Berry phase. Integrating naively around a closed loop:

γ =
∮ 2π

0
Tr〈Ψr|∂rΨr〉g11dr, (A17)

where Tr denotes the trace of the resulting matrix and takes into account the spinorial character of the
Dirac wavefunction.
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