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Abstract: The emergence of superconductivity (SC) in lattice models, such as the attractive Hubbard
one, has renewed interest since the realization of cold-atom experiments. However, reducing the
temperature in these experiments is a bottleneck; therefore, investigating how to increase the energy
scale for SC is crucial to cold atoms. In view of this, we examine the effects of next-nearest-neighbor
hoppings (t′) on the pairing properties of the attractive Hubbard model in a square lattice. To this end,
we analyze the model through unbiased Quantum Monte Carlo simulations for fixed density n = 0.87,
and perform finite-size scaling analysis to the thermodynamic limit. As our main result, we notice
that the existence of further hopping channels leads to an enhancement of the pairing correlations,
which, in turn, increases the ground-state order parameter ∆. Finally, at finite temperatures, for
t′/t 6= 0, this enhancement of pairing correlations leads to an increase in the critical temperature Tc.
That is, the fine-tuning of second-neighbor hoppings increases the energy scales for SC, and may be a
route by which cold-atom experiments can achieve such a phase and to help us further understand
the nature of this phenomenon.
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1. Introduction

The attractive Hubbard model (AHM) is a standard phenomenological model describ-
ing the transition from a high-temperature metallic or insulating state to a low-temperature
superconducting state [1], through the dynamics of fermions moving subject to an on-site
interaction, U < 0, favoring the formation of local pairs. This attractive interaction can arise
when some degrees of freedom—phononic or excitonic—are eliminated [2–4]. Over the
years this model has played an important role in elucidating many aspects of superconduc-
tivity, such as the existence of relevant pseudogap phenomena in high-temperature cuprate
superconductors [5], in addition to its important role in the study of the physical properties
of strongly correlated fermionic systems. For instance, a recent extensive Quantum Monte
Carlo (QMC) mapping of the square lattice phase diagram, Tc(〈n〉, U), where 〈n〉 is the
band-filling, indicates a maximum Tc ≈ 0.15t/kB (t is the hopping integral and kB is the
Boltzmann constant; we set the ratio t/kB to unity from this point) of around 〈n〉 ≈ 0.87 [6].

The emergence and continuing development of experiments in optical lattices, in which
ultracold fermionic atoms are loaded and the interaction amongst them controlled through
Feshbach resonances [7–11], enabled the study of the AHM in an unprecedented way.
Many properties of the AHM have been measured and analyzed through this setup [12].
Notwithstanding the major experimental advances, the lowest temperatures achieved to
date are around 0.45, still about three times the predicted maximum Tc for a square lattice.

Thus, a natural question is whether we can generate a more robust superconducting
phase by changing the band structure, perhaps through the introduction of next-nearest-
neighbor (NNN) hopping, t′. Indeed, by allowing fermions to hop along the diagonals
of a square lattice, one provides additional paths for Cooper pairs to move around, thus
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decreasing the possibility of pair-breaking scattering events taking place; this simple
picture is supported by perturbative approaches [13] and by early QMC simulations for a
limited set of parameters [14], both showing an enhancement of superconducting pairing
correlations when t′ is switched on. Concerning the possible experimental realizations of
NNN hopping, we note that a triangular optical lattice was experimentally set up by adding
an extra pair of counter-propagating laser beams; see Ref. [15]. Given that the triangular
lattice may be thought of as a square lattice with hopping along one of the diagonals, a
possible route to generate NNN hopping on a square lattice would be to add yet another
pair of counter-propagating laser beams, this time in the other diagonal direction.

In view of this, it is certainly of interest to investigate how far the critical temperature
can be increased for values of |U| beyond the weak-coupling approximation.

Here, we report results from Monte Carlo simulations showing that NNN hopping
increases the superconducting gap. The layout of the paper is as follows. In Section 2,
we discuss the model and highlight the main aspects of DQMC, including the quantities
used to probe the physical properties of the system. In Section 3 we present estimates for
both the zero-temperature gap and the critical temperature for non-zero second-neighbor
hopping, and Section 4 presents our final conclusions.

2. Model and Methodology

The attractive Hubbard Hamiltonian with second-neighbor hopping [13,14,16] reads

H = ∑
i,j,σ

ti,j

(
c†

i,σcj,σ + H.c.
)
− µ ∑

i,σ
ni,σ − |U|∑

i

(
ni↑ − 1/2

)(
ni↓ − 1/2

)
(1)

where the sums run over all sites of a square lattice, H.c. stands for the Hermitian conjugate,
c†

i,σ (ci,σ) are creation (annihilation) operators of electrons on given sites i with spin σ, while
ni,σ = c†

i,σci,σ are the number operators in the conventional second quantization formalism.
Here, we define the hopping integral as

ti,j =


t, if i, j are nearest neighbors (NN),
t′, if i, j are next-nearest neighbors (NNN)
0, otherwise,

, (2)

and µ is the chemical potential controlling the band filling; the NN hopping integral t = −1
sets the energy scale. The last term in (1) corresponds to the local attractive interaction
between electrons, with coupling strength |U|.

From the outset, one should note that NNN hopping gives rise to subtle effects, such
as the breakdown of particle–hole symmetry and the destruction of Fermi surface nesting
at half filling. Indeed, Figure 1 shows the non-interacting density of states (DOS) for t′ = 0
and for t′ = −0.2, in which case the van Hove singularity corresponds to a filling near our
density of interest, 〈n〉 = 0.87: there is, therefore, a huge increase in the DOS, which, by
virtue of the BCS argument [1], Tc ∼ W exp (−1/D0U), where W is the band width and
D0 is the DOS at the Fermi energy, should cause an increase in the critical temperature.
Nonetheless, Figure 1 also shows that D0 can also decrease for some band fillings, so that
the net effect in Tc ultimately depends on a delicate balance between U, t′, and 〈n〉.

We investigated the finite temperature properties of the AHM by performing deter-
minant quantum Monte Carlo (DQMC) simulations [3,17–20]. The DQMC method is an
unbiased numerical approach based on an auxiliary-field decomposition of the interac-
tion, which maps onto a quadratic form of free fermions coupled to bosonic degrees of
freedom S(i, τ) in both spatial and imaginary time coordinates. This method is based on a
separation of the non-commuting parts of the Hamiltonian by means of the Trotter–Suzuki
decomposition, i.e.,

Z = Tr e−βĤ = Tr [(e−∆τ(Ĥ0+ĤU))M] ≈ Tr [e−∆τĤ0 e−∆τĤU e−∆τĤ0 e−∆τĤU · · · ], (3)
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where Ĥ0 = ∑i,j,σ ti,j

(
c†

i,σcj,σ + H.c.
)
− µ ∑i,σ ni,σ, and ĤU = −|U|∑i

(
ni↑ − 1/2

)(
ni↓ − 1/2

)
. This decom-

position leads to an error proportional to (∆τ)2, which can be systematically reduced as
∆τ → 0. Throughout this work, we chose ∆τ ≤ 0.1 (depending on the temperature), which
is small enough to lead to systematic errors that are smaller than the statistical ones (from
the Monte Carlo sampling). Finally, for the AHM, the discrete Hubbard–Stratonovich trans-
formation dealing with the quartic terms in ĤU leads to sign-free simulations [3,18–20].
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Figure 1. (Color online) Density of states N(ε) for t′ = 0 and t′ = 0.2. The inset shows the electronic
density at which the van Hove singularity occurs, nVHS, as a function of the NNN-hopping t′/t.

In order to probe the emergence of superconductivity, we analyzed the s-wave pair
correlation functions,

C∆
ij ≡

1
2
〈b†

i bj + H.c.〉, (4)

with b†
i ≡ c†

i↑c
†
i↓ (bi ≡ ci↓ci↑) corresponding to the creation (annihilation) of a pair of

electrons at site a given site i. Further, the Fourier transform of C∆
ij at q = 0 defines the

s-wave pair structure factor,

Ps(q = 0) = ∑
i,j

1
N

C∆
ij (5)

with N = L× L being the number of sites of the lattice. Finally, we estimate the critical
temperature, Tc, using the correlation ratio,

Rc(L) = 1− Ps(q + δq)
Ps(q)

, (6)

where q = 0, and δq = 2π/L. This quantity is a renormalisation-group invariant at
the critical point [21–23]; that is, the crossings of Rc(L) for different system sizes provide
estimates for Tc. Here, we consider a lattice with linear sizes L = 14–20, which are large
enough to reduce finite size effects.

3. Results and Discussion

We start by discussing the subtle case of the system at half electronic filling, 〈ni〉 = 1.
For this filling, and fixing t′ = 0, we recall that charge-density wave (CDW) and singlet
superconductivity (SS) are degenerate; therefore, no long-range order emerges at finite
temperatures, for any |U|, as a result of the Mermin–Wagner theorem [24]. As one dopes
away from half filling, CDW correlations are suppressed and a Kosterlitz–Thouless (KT)
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phase transition to a SS phase occurs at finite values Tc; see, e.g., Ref. [6] and references
therein for discussions. However, when t′ 6= 0, charge correlations may be frustrated, thus
breaking the CDW/SS degeneracy even at 〈ni〉 = 1. Therefore, the case of half-filling is not
representative of the effects brought about by NNN hopping.

Given this, here we investigate how t′ affects the superconducting properties away
from half filling, namely, at 〈ni〉 ≈ 0.87, which is the optimal doping for Tc in the absence
of NNN hoppings [6]. For the non-interacting case, the main effect of second-neighbor
hopping is to shift the van Hove singularity in the density of states (DOS), located at half
filling, to lower densities [25]; if t′/t is large, then we expect that the critical temperature
would be suppressed as a response to the reduction in the DOS. By the same token, one
may naively expect (from BCS theory) that, if such a shifted singularity were close to the
investigated filling, the critical temperatures would increase. Therefore, in what follows, we
fix t′/t = −0.2, which leads to an enhancement in the non-interacting DOS at 〈ni〉 ≈ 0.87.

Figure 2 shows the decay of C∆
ij with the distance for (a) t′/t = 0, and (b) t′/t = −0.2,

at different temperatures, and fixed |U|/t = 3. The behaviour is similar in both cases, i.e.,
fast decay at high temperatures, due to the lack of pair coherence, giving rise to a much
slower decay at low temperatures, suggestive of superconducting order in the ground state.
Further, a closer look at the data seems to indicate that C∆

ij (rij) stabilizes at a slightly larger
value for t′/t = −0.2 than for t′/t = 0. In order to check this, in Figure 3a we show the
s-wave structure factor, Ps, as a function of the inverse temperature, βt. We see that all data
stabilize at low temperatures, at values which increase with the system size, consistently
with order in the ground state. In addition, for a given system size, the data for t′ 6= 0
stabilize at larger values than those for t′ = 0.
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t ' / t  =  0 . 0 ( b )
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〈n 〉  =  0 . 8 7
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| U | / t  =  3

Figure 2. (Color online) Log-linear plot of the decay with diagonal distance of the pairing correlation
function for different temperatures, at fixed U/t = −3, 〈n〉 = 0.87, for (a) t′/t = 0, and (b) t′/t = −0.2.

This can be cast into a more quantitative basis by performing a finite-size scaling
analysis of Ps through the Huse ansatz [26–28],

Ps

L2 = ∆2
0 +

b
L2 , T → 0, (7)

where ∆0 is the superconducting gap function at zero temperature, and b ≡ b(U, t′) is
independent of L. Accordingly, the extrapolated (to βt→ ∞) data of Ps for both t′ = 0 and
t′ 6= 0 are plotted in Figure 3b as functions of 1/L2. The intersections with the vertical axis
provide estimates for ∆2

0, which are larger for t′ 6= 0 than for t′ = 0, consistent with a more
robust pairing. By invoking the BCS result, Tc ∼ ∆0, we may expect that, for this band
filling, Tc is enhanced for t′/t = −0.2.
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Figure 3. (Color online) Panel (a) shows the Pair structure factor Ps as a function of inverse temper-
ature, for different linear lattice sizes L. Squares are used for 14× 14 lattices, diamonds represent
16× 16 lattices, up triangles for 18× 18 ones, and down triangles for 20× 20 lattices. Panel (b) shows
the extrapolation with 1/L of the saturated values of Ps/L2. In both panels, the full symbols corre-
spond to t′/t = 0 results, while the empty symbols to t′/t = −0.2 ones.

Let us now estimate Tc through the correlation ratio, Rc, Equation (6). Figure 4 shows
the temperature dependence of Rc(L) for t′ = 0 [panel (a)] and for t′/t = −0.2 [panel (b)],
for three different system sizes. For sufficiently large system sizes, the curves should cross
at a single point, βc. However, for the sizes considered here, these crossings occur at
slightly different values of β: while, for t′/t = 0.0 the intersection occurs at βt ≈ 8.0± 0.2
(Tc/t ≈ 0.125± 0.003), for t′/t = −0.2, we estimate βt ≈ 7.5± 0.2 (Tc/t ≈ 0.133± 0.004).
That is, Tc for the NNN hopping case is slightly enhanced with respect to the NN hopping.

7 . 0 7 . 5 8 . 0 8 . 5 9 . 0 9 . 50 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
0 . 9 5

βt

〈 n 〉  =  0 . 8 7
| U | / t  =  3

( a ) ( b )
t ' / t  =  - 0 . 2t ' / t  =  0 . 0
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 L  =  2 0

7 . 0 7 . 5 8 . 0 8 . 5 9 . 0 9 . 5 1 0 . 0
βt

Figure 4. (Color online) The correlation ratio Rc as a function of the inverse of temperature, for
different lattice sizes, 〈n〉 ≈ 0.87, and U/t = −3. In panel (a) we have t′/t = 0.0, whereas in
(b) t′/t = −0.2.

4. Conclusions

We have examined the effects of NNN hopping on some pairing properties of the
attractive Hubbard model, for fixed U/t = −3, and electronic density 〈n〉 ≈ 0.87. We
analyzed the pairing correlation functions by determinant quantum Monte Carlo simula-
tions for system sizes up to N = 20× 20 and different temperatures. Our main result is
that we noticed an enhancement of pairing correlations when t′/t 6= 0, which leads to a
larger order parameter in the ground state and a higher critical temperature. Physically,
this may be attributed to an increase in the number of hopping channels, which amounts to
an electron pair being less likely to be trapped as a result of the Pauli principle. We expect
our findings will stimulate further studies of the second-neighbor hopping as a way to
increase the critical temperature for superfluidity to the point of making phase transition
accessible in cold-atom experiments.
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