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Abstract: In this review, we outline the important results on the resistivity encountered by an electron
in magnetically ordered materials. The mechanism of the collision between the electron and the
lattice spins is shown. Experiments on the spin resistivity in various magnetic materials as well as the
theoretical background are recalled. We focus on our works of 15 years of principally using Monte
Carlo simulations. In these works, we have studied the spin resistivity in various kinds of magnetic
systems ranging from ferromagnets and antiferromagnets to frustrated spin systems. It is found that
the spin resistivity shows a broad peak at the transition temperature in systems with a second-order
phase transition, while it undergoes a discontinuous jump at the transition temperature of a first-order
transition. New results on the hexagonal-close-packed (HCP) antiferromagnet are also shown in
extended detail for the Ising case in both the frustrated and non-frustrated parameter regions.

Keywords: spin resistivity; ferromagnets; antiferromagnets; frustrated spin systems; Monte
Carlo simulation

1. Introduction

The resistivity encountered by the displacement of an electron driven by an applied
electric field in a material is due to its collisions with the material constituents, such as
atoms. In general these collisions are caused not by direct contacts but by various potentials
and magnetic and electric fields from different sources. As a matter of fact, the motion of
the electron is slowed down except in the superconducting regime. One can mention many
simple examples such as the motion of an electron in a magnet or in a lattice with vibrating
atoms (phonons) under an applied electric field.

The investigation of the resistivity is one of the most important tasks in condensed
matter physics. Apart from the desire to understand the mechanisms lying behind the
resistivity, numerous applications using the transport properties of electrons in electronic
devices have motivated an increasing number of studies—experimentally, theoretically and
numerically. The study of the resistivity started after the discovery of the electron more
than a century ago by the simple free-electron Drude theory, which takes into account the
relaxation time τ between two successive collisions due to atoms. The following relation
has been established:

σ =
ne2τ

m
(1)

where σ is the conductivity, e the electron charge, τ the electron relaxation time, m the
electron mass and n the number of electrons crossing a unit’s surface per unit of time.

Over the years, there has been a large number of more realistic theories of resistivity
that take into account different interactions. Nevertheless, this relation is still valid if
the electron mass m is replaced by its effective mass m∗, which includes effects of the
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interactions of the electron with its environment. The relaxation time τ should also be
modified; it is no more a constant, but it depends on the collision mechanism. In a crystal, it
is known that the effective mass of the electron can be “heavier” or “lighter” than its mass
at rest m0 because it contains the effects of various interactions. This strongly modifies
the mobility of the electron in crystals. As for τ, it has a strong effect on the temperature
dependence of the resistivity. It has been established that τ depends on a power of the
electron energy. This power depends on the collision process, such as collisions with
charged impurities, neutral impurities, magnetic impurities, phonons, magnons, etc. Thus,
in a crystal, the total resistivity ρt(T) is a sum of the contributions coming from various
collision processes. At low temperature (T), it is given by

ρt(T) = ρ0 + A1T2 + A2T5 + A3 ln
µ

T
(2)

where A1, A2 and A3 are constants. The first term is T-independent, the second term,
proportional to T2, stems from the scattering of the conducting electron at low T by lattice
spin-waves. Note that the resistivity caused by a Fermi liquid is also proportional to T2

with another coefficient. The T5 term that is observed in metals comes from the diffusion of
conduction electrons by atomic vibrations. However, the resistivity in metals show a linear
T dependence at high T. The last term expresses the contribution from the quantum Kondo
effect, namely the scattering of conduction electrons by magnetic impurities at extremely
low T.

In this review, we focus our attention on the resistivity ρ due to the spin of the
conduction electron in magnetically ordered materials. For short, let us call it the “spin
resistivity” hereafter. This spin resistivity has been widely studied both experimentally and
theoretically for more than five decades. The rapid development of the field is due mainly
to many applications in spintronics.

We are interested in magnetic materials that show a phase transition from a mag-
netically ordered phase, such as ferromagnets and antiferromagnets, to the paramagnetic
state. Let us mention in the following some experiments that have been performed in
magnetic materials, including metals, semiconductors and superconductors. These experi-
ments carried out on various materials show different shapes of the spin resistivity around
the phase-transition temperature: SrRuO3 thin films [1], Ru-doped La0.4Ca0.6MnO3 [2],
antiferromagnetic ε-(Mn1−xFex)3.25Ge [3], semiconducting Pr0.7Ca0.3MnO3 thin films [4],
superconducting BaFe2As2 single crystals [5], LaFeAsO [6] and La1−xSrxMnO3 [7]. We see
in these works that, depending on the nature of the compound, ρ can have a pronounced
peak [8], a change of its slope or a curvature change at the transition temperature TC. Note
that in the last case, one has a maximum of the differential resistivity dρ/dT [9,10].

Theoretically, the T2 magnetic contribution in Equation (2) has been obtained by Ka-
suya [11] by taking into account the scattering of the electron spin by the spin waves at low
T. However, at higher T, specifically in the region of the phase transition of the magnetic
lattice, there have been no such clear mechanisms explaining different experimental behav-
iors of the spin resistivity. The researchers de Gennes and Friedel [12] have conjectured
that the spin resistivity has its origin in the spin–spin correlation, so it should behave as
the magnetic susceptibility. As a consequence, it should diverge at TC. However, Fisher
and Langer [13] and Kataoka [14] have made the observation that the range of spin–spin
correlation should not be infinite at TC due to collisions. This changes the shape of ρ with
respect to the magnetic susceptibility near the phase transition. Let us mention that the
resistivity due to magnetic impurities has been calculated by Zarand et al. [15] as a function
of the Anderson’s localization length. This parameter expresses, in fact, a kind of correlation
sphere induced around each impurity. Their result shows that the resistivity peak depends
on this parameter, and is thus in agreement with the spin–spin correlation idea.

Note that the spin resistivity depends on the spin orientation of the environment: the
electron encounters less resistance in a ferromagnet with spins parallel to its spin than
in a ferromagnet with spins antiparallel to its spin. Imagine a film composed of three
ferromagnetic layers where the middle one is a soft ferromagnet. In the layer-coupling
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configuration ↑ − ↑ − ↑, the movement of an up spin perpendicular to the film encounters
a resistance R↑. One now applies an external magnetic field in the negative direction, small
enough to reverse the spins in the (middle) soft layer: one has the three-layer configuration
↑ − ↓ − ↑. The up spin is found to encounter much difficulty crossing the three layers: the
resistance is R↓, which is much larger than R↑. This is the phenomenon of Giant-Magneto-
Resistance (GMR) discovered in Refs. [16–18] that has many applications in spintronics.

The absence of Monte Carlo (MC) simulations in the literature on spin resistivity has
motivated our works since 2007: we have studied the spin current in a number of systems
including ferromagnets [19–21] and antiferromagnets [22–25] by MC simulations. The
behavior of ρ as a function of T has been shown to be in general agreement with the experi-
ments and theories mentioned above. In addition to ferromagnets and antiferromagnets,
we have also studied the spin resistivity in frustrated spin systems [26,27]. These systems,
discovered in the early 1980s, have been intensively studied. Many unusual properties
have been found. The reader is referred to Ref. [28] for reviews on various frustrated spin
systems. In this paper, we summarize the most important aspects and results of works on
the spin resistivity in ferromagnets, antiferromagnets and in some frustrated magnets.

In Section 2, we present our generic model and the MC method that we employ to
study the spin resistivity. Section 3 is devoted to the presentation of our main MC results
since 2007. Comparisons between some experiments are made in this section. In Section 4,
we show new results in the case of a hexagonal-close-packed (HCP) crystal, where we tune
a frustration parameter, allowing study of both the non-frustrated case and the frustrated
case in the phase space. Concluding remarks are given in Section 5.

2. Model and Method
2.1. Model

We have investigated the spin resistivity in magnetically ordered materials by using
a newly-devised efficient MC simulation method [23,24]. The success of the method was
demonstrated when we studied the semiconducting MnTe, where the agreement with the
experiment is excellent [25]. This case is reviewed below. In ferromagnets, we found that
the spin resistivity has a high peak at the lattice order–disorder transition temperature TC.
As said earlier, this anomaly comes from the spin–spin correlation [12–14] but remains
finite at TC. In antiferromagnets, one observes only a broad maximum [29]. In addition
to ferromagnets and antiferromagnets, we have investigated the spin resistivity in the
following two frustrated systems: the face-centered cubic (FCC) lattice with Ising spins [26]
and the J1 − J2 simple cubic (SC) lattice [27]. We found that the first-order phase transition
in these frustrated systems causes a discontinuity of the spin resistivity at TC.

Let us recall here the model and method that were used in our early works, shown in
Refs. [23,26]: simulations were carried out to calculate the current of itinerant spins moving
in the system under the action of an electric field~ε applied in the x direction. The itinerant
spin σi carried by a conduction electron interacting with its surrounding lattice spins inside
a sphere of radius D1 centered at its position at time t on its trajectory across the crystal.
The Hamiltonian is supposed to be

Hl = −∑
j

Iij~σi · ~Sj (3)

where the sum is carried over all lattice spins in the sphere centered at the itinerant Ising
spin~σi. Iij denotes the distance-dependent interaction between~σi and ~Sj. To be general,
we also consider the following interaction between an electron spin with neighboring
conduction spins within a sphere of radius D2:

Hi = −∑
j

Kij~σi ·~σj (4)
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For simplicity, we suppose the distance-dependent interactions are

Iij = I0 exp(−Brij) (5)

Kij = K0 exp(−Crij) (6)

where I0, B, K0 and C are constants to be chosen so that the energy of a conduction electron
spin is much smaller than that of a lattice spin. This choice is made from a physical
consideration: in choosing so, we avoid the influence of itinerant spins on the ordering of
the lattice spins. Note that this choice is justified in the almost-free electron model, where
I0 ' K0 ' 0, and in semiconductors, where they are larger but still weak with respect to
the exchange integrals of the lattice spins J1 and J2. A discussion in detail on the choice of
these parameters is given, for example, in Ref. [23].

Let us assume in the following a concentration of one itinerant electron per two
lattice cells. This concentration is thus of the order of electron concentration in normal
metals, which is 1023/cm3. With this concentration, it is obvious that the averaged distance
between two conduction electrons is much larger than the cutoff distance D2, which is of the
order of the lattice constant. However, due to the attractive nature of the electron–electron
interaction, Equation (6), it is necessary to introduce a chemical potential term to insure that
itinerant spins are uniformly dispersed in the crystal and that they do not form clusters.
This chemical potential is written as

Hp = D[n(~r)− n0] (7)

where D is a positive constant, n(~r) denotes the concentration of conduction spins in
the sphere of cutoff radius D2 centered at the position ~r of the conduction spin under
consideration, and n0 is the averaged electron concentration.

I0 is defined in Equation (5) and represents the magnitude of the interaction between
a conduction electron and a localized lattice spin (Equation (3)). K0 is the magnitude of
the interaction between two conduction electrons (see Equations (4) and (6)). D is the
magnitude of the chemical potential (Equation (7)). When we simulate a real material, if
we have experimental data on the resistivity and the exchange interactions, such as in the
case of MnTe presented in Section 3.3, we can estimate the values of these coefficients.

2.2. Simulation Method

Let us study a film of size Nx ×Ny×Nz, where Nz is the film thickness, which is much
smaller than the sizes Nx and Ny in the x and y directions, respectively. Usually, we use
Nz = 4− 8 and Nx = Ny = 20− 60. Itinerant spins move under the action of an electric
field acting on the electron charge, applied in the direction x. The electric field energy is

HE = −e~ε ·~̀ (8)

where e is the electron charge,~ε the applied electrical field and~̀ the displacement vector of
the electron.

The interaction between the lattice spins is given by the Hamiltonian

HL = −J ∑
i,j

~Si · ~Sj (9)

where J is the exchange interaction between nearest neighbors (NN) ~Si and ~Sj. For ferro-
magnets, J > 0; and for antiferromagnets, J < 0.

We use the standard Monte Carlo (MC) method to thermalize the lattice alone at
T. Next, we introduce the electrons into the lattice. We suppose that each electron spin
interacts with the surrounding lattice spins inside a sphere centered at its position and of
radius D1. The electron spin also interacts with other electron spins within a sphere of
radius D2. Electrons move under the applied electric field.
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In order to obtain the spin current, we have to thermalize the state of the spins of
conduction electrons in the lattice. This is done by the following steps:

(i) We take a conduction spin and calculate its actual energy Eold using the different
interactions mentioned above.

(ii) We make a trial move~̀ for the electron in a random direction between 0 and a, where a
is the lattice constant. If the move~̀ takes the itinerant electron outside the sample, then
we put it inside on the other sample end by virtue of the periodic boundary condition.

(iii) We then calculate the new energy Enew. If Enew < Eold, then the trial position is
accepted. Otherwise, it is accepted with the probability exp[−(Enew − Eold)/(kBT)].

(iv) We take another conduction electron and repeat the three steps above. We continue
with other electrons until all electrons are considered: this accomplishes one MC
step/spin. A large number of MC steps/spins are necessary to arrive at a steady
current state. We next average physical quantities of interest at the temperature T
under consideration.

(v) We take another T and repeat the above four steps. We should cover the temperature
region of interest.

This paper is a review of our publications over the past 15 years. In each publication,
we used various sample sizes to detect finite size effects. We increased the sample size
until the results did not depend anymore on the size. The results are considered as valid
thermodynamically. The finite size effect and the finite size scaling are what the simulators
do before reaching conclusions. This problem is particularly important when one wants to
study the criticality or the order of a phase transition. In the review, we do not repeat these
details, which depend on the studied system. Rather, we emphasize the results. The reader
interested in the details of the simulation methods is referred to each original publication.

We calculate the spin resistivity ρ as:

ρ =
1

Ns
(10)

where Ns is the number of mobile electrons passing through a unit surface perpendicular
to the direction of the applied electric field x per MC time unit. An application with a real
material using real units is presented in Section 3.3.

For a good thermal average, we have to perform very long MC runs, and we proceed
as follows: for each configuration of the lattice spins, we average the spin resistivity over
N1 MC steps; then, we again thermalize the lattice with N2 MC steps to get rid of the
correlation between lattice spin configurations before again averaging the resistivity for N1
MC steps. We repeat this N1 + N2 cycle for a large number of times N3. The total MC steps
of resistivity averaging is about 4× 105 steps per spin in our runs. We found by comparison
that this “multi-step” averaging method strongly suppresses statistical fluctuations seen in
our earlier work [20].

It is obvious that larger N1 and N2 values yield better statistics. We know that,
depending on T, the relaxation time τL of the lattice spins varies. We have to compare τL
with the relaxation time τI of conduction electron spins in order to choose a right value of
N1 in order to calculate the average of the resistivity with one lattice spin configuration at T.
We know the two limiting cases. The first case is when τL ' τI . In this case, we have to take
N1 = 1; namely, the lattice spin configuration should change with each move of itinerant
spins. The second case is when τL � τI . In this case, itinerant spins can be scattered many
times along the trajectory across the same lattice configuration and for many times across
the lattice.

In order to choose a right value of N1, we consider the following temperature depen-
dence of τL in non-frustrated spin systems. The relaxation time is expressed in this case
as [30–32]

τL =
A

|1− T/TC|zν
(11)
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where A is a constant, ν the correlation critical exponent, and z the dynamic exponent,
which depends on the spin model and space dimension. For a 3D Ising model, ν = 0.638
and z = 2.02. From this expression, we see that as T tends to TC, τL diverges. In the
critical region around TC, the system thus encounters the so-called “critical slowing down”:
the spin relaxation is extremely long due to the divergence of the spin–spin correlation.
When we take into account the temperature dependence of τL, the shape of the resistivity is
strongly modified near TC, where τL is very long, in contrast to the paramagnetic phase,
where the relaxation time is very short due to rapid thermal fluctuations. We should
emphasize that at low T, ρ does not depend on τL, since in that temperature range, where
the ordering of the lattice spins is almost perfect, the spin landscape from one microscopic
state to another does not change significantly; so the motion of the itinerant electron spin
does not significantly vary (see Ref. [24]).

Finally, we note that we have also used the Boltzmann’s equation combined with MC
data to study the spin resistivity [21]. However, the shape of the resistivity peak at the
transition temperature does not agree well with experiments, unlike that obtained from
direct MC simulations, as shown below. This proves the efficiency of MC simulations for
the calculation of the spin resistivity in magnetically ordered materials. The present review
therefore aims to promote this method.

3. Review
3.1. Spin Resistivity in Ferromagnets and Antiferromagnets

The experiments mentioned above, amongst numerous other data, show that the
spin resistivity in ferromagnets has a sharp peak at the transition temperature TC of the
lattice. We know by the theory of phase transitions and critical phenomena that in the
region around TC, the so-called “critical slowing-down” phenomenon happens, resulting
in extremely large τL. The peak in ρ is due to this phenomenon via Equation (11), where
τL diverges at TC. Our MC simulations using the method described above in the case
of a ferromagnet where the lattice spins are of the Ising type show a sharp peak at TC
(see Figure 1) in agreement with experimental data. We note that the spin resistivity for
ferromagnets (as well as for antiferromagnets) increases with decreasing T at low T. This
can be explained by several causes: the freezing or crystallization of conduction electrons
takes place at low T so that just a small number of conduction spins with decreasing T are
mobile, or it may be the classical counter-effect of the quantum Kondo electron-impurity
scattering if one considers the few excited lattice spins at low T are independent impurities;
see the last term of Equation (2). Note that the shape of ρ depends on the lattice type,
interaction strengths encountered by the conduction electrons, electron concentration,
relaxation time, spin model, applied magnetic-field amplitude, etc. In [23], we have shown
that a decrease in the interaction between conduction spins, K0, reduces the increase of
ρ as T → 0, an applied magnetic field reduces the height of the resistivity peak, and
larger electron density reduces ρ. Finally, we emphasize that ρ depends on the material
intrinsically via the critical exponents ν and z; see Equation (11).

If we wish to compare simulated spin resistivity to experimental measurements per-
formed on a given material, we have to use in the simulation the available experimental
physical parameters of that material. An example of quantitative comparison for semicon-
ductor MnTe is shown in Section 3.3.

Note that the magnetic field applied on the system reduces the peak height, as shown
in our work [23] and in agreement with the experiments in [2].

Unlike ferromagnets, antiferromagnets have not been studied much. Haas [29] has
shown that—in contrast to ferromagnets, where the resistivity ρ has a sharp peak at the
order–disorder transition of the lattice spins—in antiferromagnets, there is no such a peak.
Using MC simulations, we found that the peak does exist in an antiferromagnet, but it is
less sharp compared to that of a ferromagnet, as seen in Figure 1. We think that the alternate
change of sign of the spin–spin correlation with distance may have something to do with
the absence of a sharp peak. We have tested this idea on the effect of the cut-off distance
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D1 [26]: in an antiferromagnet, when we increase D1, we include successive up-spin shells
and down-spin shells in the sphere of radius D1. Consequently, the difference between the
numbers of up and down spins in the sphere oscillates with varying D1, giving rise to the
oscillatory behavior of ρ observed at small D1, unlike in ferromagnets.

ρ

T
Figure 1. Resistivity ρ as a function of T, obtained by simulations using the T-dependent relaxation
time, Equation (11), for ferromagnet (black circles) and antiferromagnet (white circles) of BCC
structure, with arbitrary units in zero magnetic field. Other parameters: ε = 1, I0 = 2, K0 = 0.5 and
A = 1.

At this stage, we note that the presence of an itinerant spin will break the invariance be-
tween a ferromagnet and its antiferromagnet counterpart in the local Mattis transformation
(Jij → −Jij,~Sj → −~Sj).

3.2. Frustrated J1 − J2 Model on a Simple Cubic Lattice

Let us consider the simple cubic lattice with NN and NNN interactions, as shown in
Figure 2. The Hamiltonian is written as

H = −J1 ∑
(i,j)

~Si · ~Sj − J2 ∑
(i,m)

~Si · ~Sm (12)

where the first sum ∑(i,j) is made over the NN Ising spin pairs ~Si and ~Sj with interaction J1,
and the second sum ∑(i,m) is performed over the NNN pairs with interaction J2.

We focus our attention on the region of parameters that gives rise to a frustration. For
that purpose, we assume that J1 is an antiferromagnetic interaction, namely, J1 = −J < 0
(J > 0), and J2 is also antiferromagnetic. We put J2 = −η J, where η is a positive parameter.
The ground state (GS) of this system can be obtained by minimizing the energy or by
comparing the energies of different spin configurations. We can also numerically minimize
the energy by using the steepest descent method [33]. We obtain the GS antiferromagnetic
configuration shown Figure 3a for |J2| < 0.25|J1| and the GS spin configuration shown
in Figure 3b for |J2| > 0.25|J1|. This latter configuration is three-fold degenerate because
we can choose the parallel NN spins either on the x, y or z axis. In addition, with the
permutation of black and white spins, we have the total degeneracy equal to six.

Figure 2. Simple cubic lattice where the NN and NNN interactions, J1 and J2, are indicated.
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(a) (b)

Figure 3. Ground state (GS) of the simple cubic lattice with Ising spins: (a) GS when |J2| < 0.25|J1|;
(b) GS when |J2| > 0.25|J1|. White (black) circles denote up (down) spins. See text for comments.

We note in passing that in the case of the Heisenberg model in the frustrated region
(|J2| > 0.25|J1|), the phase transition has been shown to be of the first order [34]. The
system is very unstable due to its large degeneracy. In the case of the Ising spin on the SC
lattice treated here, we found that the first-order character of the phase transition is even
stronger [27].

We use J1 = −J = −1 (AF interaction) for the coupling between NN lattice spins in
the simulations. The energy is thus measured in the unit of J, and the temperature is in the
unit of J/kB. All distances (D1 and D2) are in the unit of the lattice constant a.

Simulations have been carried out by using the temperature-dependent relaxation
time of the lattice spins given by Equation (11), where we have taken A = 1 and τL = 1
at T = 2TC, far from TC. Such a choice leads to τL = 1 at that temperature, for which fast
thermal fluctuations in the paramagnetic phase far above TC are expected.

Since we suppose that the interaction between conduction electron spins is attractive,
a chemical potential is required to avoid the collapse of the system, namely, to avoid all
conduction spins forming a cluster (cf. Equation (7)). The chemical potential in thermody-
namics makes the particle uniformly distributed in the space. Its strength is expressed by
D, which has to be chosen in accordance with K0. Figure 4 displays the phase diagram in
the space (K0, D), which shows the collapse region. This allows us to avoid this region and
choose an appropriate value of D for a given K0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
K

D

0

Figure 4. D versus K0 in the case where η = 0.26. The collapse region is in green. We have used
D1 = D2 = 1, I0 = 0.5 and ε = 1.

To see the effect of the nature of the phase transition on the spin resistivity, in the
following, we focus on two typical cases: η = 0.2 and η = 0.26, which belong, respectively,
to the regions of second- and first-order transition.
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A. For η = 0.2:

The spin resistivity at temperatures below TN oscillates with varying D1. By analyzing
the ratio of the number of up spins to the number of down spins in the sphere of radius D1,
we found that it oscillates with varying D1: the maxima (minima) of ρ correspond to the
case of largest (smallest) numbers of parallel (antiparallel) spins in the sphere [26,27]. At
very high temperatures, where the lattice spins are disordered, the number of up spins and
down spins in the sphere of radius D1 should be equal. There is, however, a very small
oscillation if the temperature is close to TN and if D1 is small.

Figure 5 displays the resistivity versus T for D1 = 1.2. The spin resistivity shows
a rounded maximum at the transition temperature. This is in agreement with the curve
experimentally observed in La0.4Ca0.6MnO3 by Lu et al. [2] (see Figure 6, right panel).

For D1 = 0.8 or D1 = 1, the resistivity is smaller below the transition temperature, as
seen in Figure 7. This shows the importance of the effect of the interaction range on the
spin resistivity in materials.

116

117

118

119

120

121

122

123

124

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

T

ρ

Figure 5. Spin resistivity versus T in the case η = 0.2, D1 = 1.2. We have used the lattice size
Nx = Ny = 20, Nz = 6. Other variables are I0 = K0 = 0.5, D2 = 1, D = 1 and ε = 1.

Figure 6. Experimental spin resistivity versus T is shown for several applied magnetic fields in the
compound La0.4Ca0.6MnO3. These data are in Figure 2 of [2].
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100
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1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

ρ

T
Figure 7. Variable ρ as a function of T for η = 0.2 with D1 = 0.8 and 1 ((black circles and blue open
circles, respectively). For simulations, we used Nx = Ny = 20, Nz = 6, I0 = K0 = 0.5, D2 = 1, D = 1
and ε = 1.

B. For η = 0.26:

At this value of η, the transition of the lattice spins is of first order. The dependence
of the resistivity on D1 is very similar to that of the second-phase transition, namely, the
resistivity at a given T oscillates as D1 varies. The physical meaning of the oscillation has
been given above. More details can be found in Refs. [26,27]. We found that the resistivity
ρ in the frustrated regime can go downward or upward at the transition temperature
depending on D1 [27], unlike in non-frustrated ferromagnets and antiferromagnets as
shown earlier. This is displayed in Figure 8 for two values of D1, where one observes the
discontinuity of ρ at the transition temperature. The discontinuity of ρ has also been found
in other frustrated antiferromagnets, such as the FCC antiferromagnet [26].
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T

ρ

Figure 8. Variable ρ as a function of T for η = 0.26 with D1 = 0.8 (black circles) and D1 = 1 (blue
open circles). We have used Nx = Ny = 20, Nz = 6, I0 = K0 = 0.5, D2 = 1, D = 1 and ε = 1. See text
for comments.

From the results shown above for the J1 − J2 model, we come to the conclusion that
the behavior of the spin resistivity is a consequence of the nature of the lattice transition. If
the lattice transition is of second order, then the resistivity of itinerant spins has a rounded
peak, while if the lattice transition is of first order, the resistivity is discontinuous at the
transition temperature.

3.3. The Case of MnTe

The pure semiconductor MnTe has two kinds of structures: the zinc-blend structure or
the hexagonal NiAs one (shown in Figure 9) [35]. We focus on the second structure, where
the Néel temperature is TN = 310 K [36] and where many other experimental data are
available. MnTe is a semiconductor with a large gap (1.27 eV) and a carrier concentration
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n = 4.3× 1017cm−3 at room temperature [37,38]. Without doping, MnTe is non degenerate.
The crystal is formed by ferromagnetic xy hexagonal planes antiferromagnetically stacked
in the c direction. The NN distance in the c direction is c/2 ' 3.36 Å, and the in-plane
NN distance is a = 4.158 Å. From neutron scattering experiments, it was found that
the main exchange interactions between Mn spins in MnTe are the interaction between
NN along the c axis with the value J1/kB = −21.5± 0.3 K, the ferromagnetic exchange
J2/kB ≈ 0.67± 0.05 K between in-plane neighboring Mn (they are next NN by distance),
and the third NN antiferromagnetic interaction J3/kB ' −2.87± 0.04 K (see Figure 9). The
spins lie in the xy plane perpendicular to the c direction with a small in-plane easy-axis
anisotropy Da [36]. Let us emphasize that the values of the exchange integrals given
above were deduced from experimental data by fitting with a free spin-wave theory [36].
Other fittings with mean-field theories give slightly different values: J1/kB = −16.7 K,
J2/kB = 2.55 K and J3/kB = −0.28 K [37]. Note that the Mn spin is experimentally known
to be of the Heisenberg model with magnitude S = 5/2 [36].

Figure 9. Structure of MnTe of NiAs type: black and white circles represent opposite spins. Interac-
tions between NN, between next NN and between third NN are indicated, respectively, by J1, J2, and
J3. See the values given in the text.

We write the following Hamiltonian for the lattice spins:

H = −J1 ∑
(i,j)

~Si · ~Sj − J2 ∑
(i,m)

~Si · ~Sm − J3 ∑
(i,k)

~Si · ~Sk

−Da ∑
i
(Sx

i )
2 (13)

where the first sum is performed over the NN spin pairs, the second sum over the NNN
pairs and the third one over the third NN pairs. Da > 0 is an anisotropy constant that
favors the in-plane x easy-axis spin configuration.

The behavior of ρ in MnTe as a function of T has been experimentally shown in several
works [39–43]. Using MC simulations, we have studied the spin resistivity in MnTe with
the above Hamiltonian [25]. Let us summarize this work here.

For MC simulations, we suppose the following Hamiltonian of the itinerant spins:

Hi = −∑
n

I(~r− ~Rn)~σ · ~Sn (14)

where the sum is performed by counting all the lattice spins ~Sn inside the sphere of radius
D1 = a centered at~r. I(~r− ~Rn) > 0 is the ferromagnetic distance-dependent interaction
between the itinerant electron spin~σ at~r and the Mn spin ~Sn at ~Rn .

The electron spin is supposed to be of the Ising type. We neglect, therefore, the
quantum effects that may be important at very low T, but our attention is focused on
the region of T high enough so that quantum effects may be neglected. We assume the
following form of I(~r− ~Rn) :

I(~r− ~Rn) = I0 exp[−α(~r− ~Rn)] (15)
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where the constants I0 and α are chosen in such a way that the interaction Hi yields an
energy much smaller than the lattice energy given by H (see the guide for the choice of
different constants given below for Equation (6) and in Ref. [23]). It is noted that the cut-off
distance D1 is rather short so that only the first few neighbors are inside the sphere; the
results shown below do not, therefore, depend significantly on the choice of the value of α
in the exponential. Finally, note that the concentration of conduction electrons in MnTe is
n = 4.3× 1017 cm−3, which is five orders lower than the concentration of its surrounding
lattice spins, which is '1022 cm−3. This observation justifies that the interaction between
conduction electrons for MnTe can be neglected. We have assumed this in the simulations
shown in the following.

As mentioned above, the exchange interactions deduced from experimental data have
slightly different values; they depend on the theoretical Hamiltonian and the approxima-
tions used to deduce it (often the mean-field approximation is used; see a detailed example
in [44]). Note that in semiconductors, the carrier concentration varies with T, but since
this concentration is very low, we do not take into account its variation. Consequently,
the number of conduction electron spins used in the simulation is important only for the
statistical average. The current obtained is proportional to the number of itinerant spins,
but there are no extra effects within our assumptions mentioned above.

We have calculated ρ of MnTe using the exchange integrals slightly modified with
respect to the ones given above in order to obtain the best fit. The obtained resistivity ρ is
shown in Figure 10. Let us note that we have taken J3 slightly larger in magnitude than
the value deduced from experiments by mean-field approximation. Our value of J3 was
chosen in order to obtain TN = 310 K, which is in excellent agreement with experiments.
However, the most striking feature is that the simulated ρ shows a sharp maximum at
TN and coincides with the experimental data over the whole temperature range. Note
that we have used A = 1 and the well-known Heisenberg critical exponents ν = 0.707,
z = 1.97 [31] for the lattice spins. It is remarkable that with the same set of parameters, we
obtain excellent agreement with experiments in the temperature regions below T < 140 K
and above TN . We note that we tried earlier to use the Boltzmann’s equation [22], but the
obtained result was not as good as the MC result presented above.

From the simulated ρ, we can calculate the relaxation time of conduction spins; we
obtain τI ' 0.1 ps. The mean free path can be also estimated; it is equal to l̄ ' 20 Åat the
critical temperature.

Figure 10. Comparison between the simulated spin resistivity and the experimental data of MnTe:
black circles are results from the Monte Carlo simulation; white circles are experimental data taken
from He et al. [43]. For the simulation, we used J1 = −21.5 K, J2 = 2.55 K, J3 = −9 K, I0 = 2 K,
Da = 0.12 K, D1 = a = 4.148 Å, ε = 2× 105 V/m and L = 30a (lattice size: L3). See text for comments.
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4. Phase Transition and Spin Resistivity in the Ising HCP Lattice
4.1. Hamiltonian and Ground State

The lattice we consider is the HCP structure illustrated in Figure 11. The xy planes are
triangular (hexagonal), and the stacking direction is z. We suppose the following Hamiltonian:

H = −∑
(i,j)

Ji,j~Si · ~Sj (16)

where Jij is the AF interaction between nearest-neighbors (NN) ~Si and ~Sj. We denote Jij = J1
if the NN are on the xy triangular plane and Jij = J2 if the NN are on two adjacent planes
(see Figure 11). The GS can be determined by minimization of the local energy of each spin
and doing this for all spins, then repeating many times until the total energy converges to
a minimum. Normally, with a system without bond disordering, this method needs just
a small number of iterations. The GS can be checked by looking at the final snapshot: it
should be periodic. This procedure of local energy minimization is called in the literature
“the steepest-descent method”. The implementation of this method is very simple [33]:
(i) We first create an initial random configuration. (ii) We then calculate the local field acting
at a spin by its neighbors using (16). (iii) We align the spin under consideration along the
calculated local field; in doing so, its energy is minimum. (iv) We take another spin and
repeat the three preceding steps until all spins are considered: this step completes one
sweep. (v) We start another sweep and realize a large number of sweeps until the total
energy is minimum.

J1

J2

Z

Figure 11. HCP lattice: the in-plane NN interaction is denoted J1, and the inter-plane NN interaction
is denoted J2.

One can also analytically minimize the interaction energy as shown below to find the
GS. Let us assume that both interactions J1 and J2 are antiferromagnetic. For simplicity, we
fix J2 = −1 and vary J1.

The case of isotropic interaction, namely J1 = J2, has been studied in [45]. We sum-
marize the results here: for the HCP structure, each spin is common for eight tetrahedra
(four in the upper half-space and four in the lower half-space along the z axis) and an NN
bond is shared by two tetrahedra. The GS spin configuration of the system is formed by
stacking neighboring tetrahedra. In the GS, one has two pairs of antiparallel spins on each
tetrahedron. Their axes form an arbitrary angle α. The GS degeneracy is therefore infinite
(see Figure 2a of [45]). Note that the periodic boundary conditions reduce a number of the
GS configurations, but the degeneracy is still infinite. One particular family of configura-
tions of interest for both XY and Heisenberg cases is when α = 0. The GS is then collinear
with two spins up and the other two down. The stacking sequence is simple because there
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are three equivalent configurations due to the fact that there are three ways to choose the
parallel spin pair in the original tetrahedron.

The case where J1 6= J2 has been studied in [46] for the Ising and XY cases. Let us
recall some results concerning the Ising case that allow us to understand the new results on
the spin resistivity presented below.

We use the steepest-descent method described above with varying J1 (J2 = −1)—we
find two kinds of GS spin configuration: the first consists of xy ferromagnetic planes
stacked antiferromagnetically along the z direction, while the second one is the stacking of
xy AF planes such that each tetrahedron has two up and two down spins. The transition
between the two configurations is determined as follows: one simply writes down the
respective energies of a tetrahedron and compares them:

E1 = 3(−J1 + J2) (17)

E2 = J1 + J2 (18)

One sees that E1 < E2 when J1 > 0.5J2, i.e., |J1| < 0.5|J2|. Thus the first configuration
is more stable when |J1| < 0.5|J2|.

4.2. Phase Transition in the Case of Ising Spins on the HCP Lattice

In the following, we present the results of simulations using the Hamiltonian Equation (16).
We use the sample size Nx × Ny × Nz with Nx = Ny = 18 and Nz = 8, namely, 16 atomic
planes along the z axis and the periodic boundary conditions in all directions. We use the
first 106 MC steps per spin to reach equilibrium, and we average physical quantities with
the next 106 MC steps per spin. The energy is expressed in the unit of |J2| = 1.

Let us define η = J1/J2. We have seen that the GS changes at ηc = 0.5, so we show
below the properties of the system on both sides of this value. Figure 12 displays the
averaged energy per spin, the order parameter (staggered magnetization), the specific heat
and the susceptibility for η = 0.3. As seen, the transition is of second order since there is no
discontinuity of the energy and the order parameter at the transition temperature.
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Figure 12. The case of Ising spin on the antiferromagnetic HCP lattice: (a) energy per spin E, (b) order
parameter M, (c) specific heat CV and (d) susceptibility χ versus temperature T for η = J1/J2 = 0.30.
See text for comments.

For η = J1/J2 > 0.5, Figure 13 for η = 0.85 and 1 shows that the discontinuity of E
and M at the transition is very large, which is a signature of a strong first-order transition
in both cases.
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In order to confirm the order of the phase transition, we measure the energy histogram
taken during the averaged MC time. Figure 14 shows the energy histogram taken at the
transition temperature for η = 0.3 (black), 0.85 (blue) and 1 (red). We observe here that the
first case is a Gaussian distribution indicating a second-order transition, in contrast to the
last two cases that show double-peak histograms confirming a first-order transition.
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Figure 13. The case of Ising spin on the antiferromagnetic HCP lattice: (a) energy per spin E; (b) order
parameter M versus temperature T for η = J1/J2 = 0.85 (blue open circles) and 1 (red triangles). See
text for comments.
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Figure 14. Energy histogram P(E) for η = 0.3 (black circles), 0.85 (blue open circles) and 1 (red
triangles). See text for comments.

Figure 15 displays the phase diagram in the space (TC, η), where zone (1) and zone (2)
denote the ordering of the first and second kinds, respectively; (P) indicates the paramag-
netic phase. Note that the transition line between (1) and (P) is a second-order line, while
that between (2) and (P) is a first-order line.
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Figure 15. Transition temperature TC versus η: (1) denotes the second-order region, (2) the first-order
region and (P) the paramagnetic phase.
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Note that in the XY case, the change of the GS takes place at ηc = 1/3. We have
studied this case in detail in [46].

Finally, let us emphasize that all 3D frustrated systems we know so far undergo
a first-order transition [28], including the much-studied antiferromagnetic stacked tri-
angular lattice [47–51], the FCC antiferromagnets [52], the simple cubic fully frustrated
lattices [53–56], helimagnets [57] and the antiferromagnetic HCP lattice studied here (see
more details in [45,46]).

4.3. Spin Resistivity in the HCP Lattice with Ising Spins

The results in this subsection are new; they have not been published so far. Using the
method described in Section 2, we carry out MC simulations to study the spin resistivity in
the Ising case. We show in Figure 16 the resistivity at two temperatures, below and above
the transition temperature, as a function of D1 for the GS belonging to Phase (1). We show
in Figure 17 the case of a GS belonging to Phase (2) (see Figure 15). Similar to the case of the
J1 − J2 model on the simple cubic lattice considered in [26,27], we find here an oscillation
of ρ at low temperature. Note that ρ is always smaller at low temperature than at high
temperature, whatever the value of D1 is. The physical origin of the oscillation has been
discussed above.

(i) At very low temperatures, the resistivity increases with decreasing temperature. This
behavior can be understood by the freezing of the itinerant spins due to low T: the
energy of itinerant spins is low; they occupy the low-energy positions in the periodic
lattice; it is difficult to move them out by the insufficient thermal energy. They are
somewhat frozen in almost periodic positions; namely, a pseudo crystallization occurs.
Note that the increase of resistivity with decreasing T at very low T has been observed
in many experiments on various materials and is not limited to ferromagnets [3,5,7,40].
This increase of ρ with decreasing T in the quantum case has been explained by J.
Kondo using a third-order perturbation theory [58]: the scattering of s-electrons by
d-electrons of localized magnetic impurities gives rise to a resistivity minimum at a
finite T. We have also found here this minimum of ρ at low T with the classical spin
model. The similarity with the quantum Kondo effect can be explained by the fact
that an excited localized lattice down-spin (in a very small number at low T) can be
viewed as an impurity that captures nearby conduction up-spins.

(ii) Outside this low-T region, when T increases, the thermal energy progressively un-
freezes the itinerant spins. As a consequence, ρ decreases and passes through a
minimum (see discussion above). However, at higher T, the scattering with the lattice
spins is stronger; ρ increases up to the transition temperature.

(iii) At the transition temperature, ρ shows a peak. The physical mechanism leading to
the peak can be explained: in a previous work [21], it was found from our simulations
that the peak is due to scattering of the itinerant spins by antiparallel-spin clusters
that are numerous in the transition region. When one gets close to the transition point,
the number of clusters of down spins are the most numerous, giving rise to the peak
in ρ. Note that the “defects” clusters (i.e., clusters of antiparallel spins) have an energy
barrier to resist the passage of itinerant spins. This is also the origin of the extremely
long relaxation time in the critical region.

(iv) Well above the transition temperature, in the paramagnetic phase, as temperature
increases, clusters of down and up spins are increasingly broken into independent
disordered spins, namely, spins with zero energy; itinerant spins move easily on their
trajectory, decreasing ρ with the increasing T.
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Figure 16. Values for ρ versus D1 for η = 0.3 at T = 1.6 < TC (black circles) and at T = 2.8 > TC

(open circles) where TC ' 2.4. Other parameters are Nx = Ny = 18, Nz = 8, D2 = 1, I0 = 2, K0 = 0.5,
C1 = C2 = 1, A = 1, D = 0.5 and ε = 1.
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Figure 17. Values for ρ versus D1 for η = 1 at T = 1.5 < TC (black circles) and at T = 1.9 > TC (open
circles) where TC ' 1.7. Other parameters are Nx = Ny = 18, Nz = 8, D2 = 1, I0 = 2, K0 = 0.5,
C1 = C2 = 1, A = 1, D = 0.5 and ε = 1.

The spin resistivity ρ for η = 0.3 and 1 is shown in Figure 18 as a function of T; here,
the distances D1 and D2 are in units of the distance between the NN lattice spins, and I0, K0
and D, which have energy dimensions, are in units of |J2| = 1. As in the frustrated J1 − J2
model shown above, one finds here that ρ has a broad peak in the second-order region, in
contrast to the first-order region, where it undergoes a discontinuous jump at the phase
transition. Some remarks are in order.
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Figure 18. Spin resistivity ρ of the Ising HCP model versus temperature T for (a) η = 0.3; (b) η = 1.
Nx = Ny = 18, Nz = 8 (namely 16 planes in the z direction), D1 = D2 = 1, ε = 1, I0 = 2, K0 = 0.5,
C1 = C2 = 1, A = 1, D = 0.5. All distances are in units of the NN distance; energy constants are in
units of |J2| = 1. See text for comments.



Condens. Matter 2023, 8, 3 18 of 22

Note that we have also varied the radius D1 to see its effect on ρ at the transition in the
present frustrated HCP model. We found the same effect seen in other antiferromagnets
we studied previously [26,27]: at a given temperature, an oscillation of ρ with varying D1
oscillates slightly with distance. The origin of this oscillation has been analyzed above in
the J1 − J2 model.

Finally, let us look at some experimental data obtained for ferromagnets and antifer-
romagnets. Figure 19 shows experiments by Du et al. performed on ε-(Mn1−xFex)3.25Ge
antiferromagnets [3], experiments by McGuire et al. performed on antiferromagnetic super-
conductors LaFeAsO [6] and by Chandra et al. on thin Cd1−xMnxTe films [39]. Experiments
by Santos et al. on antiferromagnetic La1−xSrxMnO3 [7] are shown in Figure 20. We see
here that our results on the shape of the spin resistivity are in agreement with these experi-
ments. With the lack of physical data on these experimental materials, we cannot make a
quantitative comparison as we did in the MnTe case presented above.

(a) (b)

(c)
Figure 19. Experiments on the resistivity as a function of T performed by (a) by Du et al. on ε-
(Mn1−xFex)3.25Ge antiferromagnets [3], (b) by McGuire et al. on antiferromagnets LaFeAsO [6] and
(c) by Chandra et al. on thin films of Cd1−xMnxTe [39].
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Figure 20. Resistivity versus temperature on antiferromagnetic La1−xSrxMnO3. The figures presented
are taken from Figure 7 of [7] where x is the concentration of Sr. (a–d) show the resistivity with differ-
ent x which are indicated on each figure. “SL” stands for superlattices of alternating, single-unit-cell
layers of LaMnO3 and SrMnO3, and "alloy" indicates random-alloy films of equivalent composition.

5. Conclusions

In this paper, we have reviewed some important works published on the spin resistiv-
ity in magnetically ordered systems. We have focused on our works published over the
past 15 years using mainly Monte Carlo simulations. These works were motivated by the
absence of Monte Carlo works, even at the present time, except ours, in spite of the fact
that this method of simulation has proven to be very efficient when comparing its results
with experimental data. In the case of MnTe, for which there are sufficient experimental
data, we have made a quantitative comparison between experimental and simulated spin
resistivities. The agreement between experiments and simulations is excellent. This review
therefore aims at promoting this method to study more realistic cases.

As demonstrations, we have used this method to study the spin resistivity in generic
ferromagnets and antiferromagnets. The cases of frustrated systems have also been pre-
sented: the J1 − J2 model and the antiferromagnetic HCP lattice.

Let us summarize the results on the two frustrated systems.
The J1 − J2 model is a simple cubic lattice with Ising spins interacting with each other

via NN and NNN antiferromagnetic interactions, J1 and J2, respectively. The GS of this
model is determined by the ratio η = J2/J1. We have shown that the GS changes at the
critical value ηc = 0.25. For the non-frustrated region in the phase space, namely η < 0.25,
the GS is simply composed periodically of two interpenetrated tetrahedra formed by the
NNN sites. In the frustrated region, namely η > 0.25, the GS can be described as composed
of one line of spin up and one line of spin down alternately in one crystal direction. The
degeneracy is three because there is the freedom to choose one direction among three.
The total degeneracy is six if we count the states of reverse spins. The transition in the
frustrated region is theoretically of first order since the present six-fold GS is equivalent to
the q-state Potts model with q = 6. We know that in three dimensions, the transition of the
Potts model is of first order from q = 3. We found this directly from the simulation. In the
non-frustrated region, namely η < 0.25, the transition is found to be of second order. We
performed MC simulations to obtain ρ of the conduction spins. We found that ρ displays a



Condens. Matter 2023, 8, 3 20 of 22

broad maximum at the second-order phase transition while it undergoes a discontinuous
change at the first-order transition.

The Ising model on the antiferromagnbetic HCP lattice has been also studied in this
review. We assumed an in-plane interaction J1 and an inter-plane interaction J2, both
antiferromagnetic. We found that the GS changes at the critical value ηc = 0.5, below
(above) which the spins in the xy planes are ferromagnetic (antiferromagnetic). The nature
of the transition changes in these two regions: it is of second order below ηc and of first
order above ηc. The spin resistivity has been simulated in both regions of η. In the second-
order region, it shows a broad maximum, while in the first-order region, the resistivity ρ
makes a discontinuous jump at the transition. This feature is what we also found in other
frustrated spin systems.

These findings reviewed in this paper show a close relationship between the nature
of the phase transition and the shape of the spin resistivity in real materials. We hope
that this review convinces the magnetic community of the use of MC simulations for
transport phenomena.
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