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Abstract: In this study, we perform a theoretical study of light propagation properties in two-
dimensional square photonic crystals (PCs) following Bravais–Moiré (BM) patterns composed of
copper oxide high-temperature superconductors (HTSCs). The BM PCs are made of cylindrical
cores formed from the combination of two square Bravais lattices. The Moiré pattern forms due to
a commensurable rotation of one of these lattices with respect to the other. The dielectric function
of the superconducting material is modeled by the two-fluid Gorter–Casimir theory. We report on
the corresponding gap, the mapping as a function of the radius of dielectric cores, as well as the
dispersion relations of TM modes for BM PCs and for the waveguide system built of defect lines
within such a crystal. The BM PCs were composed of copper oxide HTSCs, which exhibit large
tunability in terms of temperature.

Keywords: Bravais–Moiré; high temperature superconductors; photonic gap mapping; coupled
resonator optical waveguide; slow-light; 2D photonic crystal

1. Introduction

Photonic crystals (PCs) are structures whose refractive index varies periodically in
space. By creating a contrast in the refractive indices of the materials that compose the
structure, it is possible to obtain photonic band gaps (PBGs) for electromagnetic radia-
tion. This implies the absence of transmission for signals with frequencies within a given
interval of values. Such a property is highly useful in applications involving optical
devices [1–20]. For these applications, it is essential to tune the properties of PBGs and to
obtain the widest possible band gaps. Typically, the contrast between refractive indices is
achieved by changing the filling fraction (the ratio between the radius of the cylinders and
the lattice constant) and the type of lattice. Once the geometry is determined, PBGs can only
be adjusted by changing the constituent materials. In this sense, using tunable materials
in the design and fabrication of PCs allows one to adjust the optical properties with high
flexibility. Tunable materials include metals and semiconductors, which are highly disper-
sive and whose band structure depends strongly on plasma frequencies [21,22]. However,
these types of materials have some drawbacks. For example, metals exhibit inherent losses,
which are caused by the extinction coefficient. To overcome these problems, a variety of
unconventional materials have been used, such as superconductors [1–20]. In supercon-
ductors, optical properties are strongly influenced by temperature and magnetic fields.
Compared to PCs with metallic components, superconductors have the advantage of low
loss and adjustable permittivity. In the superconducting state, the electromagnetic wave
can only propagate within the London penetration depth of the materials. In the normal
state, the London penetration depth becomes infinite, and the electromagnetic wave can
propagate in the material without limitations [7].
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High critical-temperature superconductors (HTSCs) based on cuprates exhibit tran-
sition temperatures (30–150 [K]) that make them suitable for applications as they show
superconductivity under liquid nitrogen conditions [7]. Within the study of the properties
of 2D PCs based on cuprates, W. M. Lee and P. M. Hui [23] studied the band structure in 2D
PCs composed of dielectric cylinders in a CU-based HTSC background. Among their results,
the authors report the appearance of almost flat bands; a finding that is very convenient for
slow light applications that, from the optical point of view, require the integration of device
components, as well as the control of light signals in the time domain [24]. Takeda and
Yoshino [7] considered a 2D PC with copper oxide HTSC cylinders in an air background.
They reported that the band structure was highly tunable in terms of temperature and mag-
netic field. Barvestani et al. analyzed the guided modes in a 2D PC with aluminum cylinders
in an air background, in which a defect line was obtained by replacing the aluminum of
the cylinders in the line with a CU-based HTSC. The results show that the sensitivity of
guided mode frequencies depends considerably on the size of the HTSC core compared
to those using dielectrics, and the frequency of the modes can be adjusted as a function
of temperature.

PC waveguides are relevant to optical applications due to their radiation guiding
properties. They are usually constructed by creating a line of defects within the periodic
PC lattice. Another way to construct them involves building a chain of point defects or
strongly coupled cavities, known as coupled resonator optical waveguides (CROWs) [25].
In previous works involving CROWs with multiple cores in the unit cell (UC), low group
velocities have been found in the guided modes [23,26]. Additionally, isotropy in the
PBGs has been reported in those systems. This means that the PBG is independent of
the direction of electromagnetic propagation. Such a feature favors the appearance of
wider PBGs [27–29], and it indicates that this type of multi-core PC unit cell can be used in
applications involving slow light.

Bravais–Moiré (BM) lattices are a particular case of systems with multiple cores in their
unit cell (UC). This type of system can be seen as the superposition of two or more Bravais
lattices, which are rotated with respect to each other by a commensurate angle, providing
an additional parameter for tuning the optical properties of the considered systems [26].
Previous works on these systems have reported wide PBGs, isotropy in the band structure,
and radiation localization properties in the structure [26,30–34]. Additionally, guided
modes have been considered [26,35–37] in both conventional PC waveguides [35,37] and
CROWs [26]. These works have shown how BM networks favor the appearance of wide
PBGs and the low group velocity of guided modes.

In 2D PCs with BM lattices, the analysis of plasmonic systems has been consid-
ered—particularly the scattering of surface plasmons—from an experimental point of
view [30–32]. Additionally, the photonic properties of dielectric-based BM PCs have also
been reported [38,39]. To the best of our knowledge, the study of guided modes in CROWs
with BM networks in Cu-based HTSCs has not yet been considered.

In this work, we investigate the features of light propagation in 2D square PCs follow-
ing Bravais-Moiré (BM) patterns. Structures are assumed to be composed of copper oxide
high-temperature superconductors (HTSCs). The BM PCs are made of cylindrical cores
formed from the combination of two square Bravais lattices, such as the one considered
in [26]. A waveguide is built into the system by means of defect lines within the structure.
We report on the corresponding gap mapping as a function of the dielectric core radius.
In addition, the calculated dispersion relations for TM and waveguide modes, as well as
the group velocity of such localized modes are presented and discussed. It is shown that
BM PCs that are composed of copper oxide HTSCs exhibit noticeable temperature-related
tunability. In addition, it is found that a significant reduction in group velocity is achieved
for guided modes compared to PC systems based on dielectrics.
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2. Description of the System

In this work, we focus on the analysis of guided modes in BM networks. We consider
the special case presented in ref. [26], where a commensurate rotation of φ = 53.13◦ with
r = 3, s = 1 (BM-R3S1, according to the notation presented in [26]) is considered. Figure 1a
shows the unit cell (UC) corresponding to this structure. In this case, the UC is composed
of 40 dielectric cores that have a circular cross section (blue circles in the figure), of which
20 correspond to the square Bravais lattice without rotation (with radius rnr and dielectric
permittivity εnr), and 20 dielectric cores with circular cross section (green circles in the figure),
which correspond to the rotated Bravais lattice (all with radius rr and dielectric permittivity
εr). This rotated—at a commensurate angle—square lattice was superimposed over the first
one to form the BM pattern. In the construction, a is the lattice constant and εb is the dielectric
permittivity of the background. This construction is further detailed in refs. [26,33,34].

To design CROWs, the structure is optimized in such a way that the PBGs are as
wide as possible to ensure that the guided modes appearing in the PBG region, after
introducing defects, are located in the central part of the PBG and that they do not interact
with modes in the continuum [40]. For this analysis, a scan is performed over the filling
fraction, and the band structure is calculated in the UC of Figure 1a. The parameters for
the UC that optimize the PBG are used to construct the CROW. The CROW considered in
this work is shown in Figure 1b. It is constructed by removing some cylinders from the
UC. Particularly, in Figure 1d, the cylinders that are removed are shown in red. For the
analysis of the dispersion relations in the CROW, it must be considered that the waveguide
is not a perfectly periodic structure in both directions, as can be seen in the UC marked
in yellow in Figure 1b. However, it is still periodic in the waveguide direction. For the
calculation, an infinite translation of a part of the PC containing the defect was assumed.
Thus, the UC is larger and contains several periods (see the yellow box in Figure 1b).
Since the signal propagates in the waveguide direction, radiation confinement occurs in
the transverse direction. Hence, the wave vector is separated into two components: the
first one is perpendicular to the direction of wave propagation and is connected to the
dispersion relation of the waveguide, and the second one, which is in the waveguide
direction, is known as the propagation constant and is designated as β [40]. Figure 1c
shows the Brillouin zone of the waveguide.

Figure 1. (Color online) (a) Bravais–Moiré unit cell placed in regular position with commensurable
rotation φ = 53.13◦ with r = 3, s = 1 (BM-R3S1). (b) Schematic diagram of the proposed waveguide.
The unit cell utilized for the analysis is represented by the yellow rectangle with orange edges. The
dashed rectangle indicates the direction along which the wave propagates inside the guide. β is the
propagation constant and kx is the x-component of the wavevector. (c) Shows the Brillouin zone and
the k-path in waveguide case. (d) (in red) the cores removed from the unit cell in order to build the
waveguide in (b). In our model, the cylindrical active cores are assumed to be made of a high critical
temperature Bi1.85Pb0.35Sr2Ca2Cu3.1Oy superconductor compound, and the background is air.
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2.1. Theoretical Framework

Maxwell equations govern the propagation of electromagnetic waves in the PC.
Through their solutions, we shall be able to investigate the photonic properties of the system
of interest. For a 2D medium, electric and magnetic fields can be written as linear combina-
tions of transverse electric (TE) and transverse magnetic (TM) components. Here, we restrict
ourselves to dealing with TM modes. Accordingly, the sourceless Maxwell–Helmholtz
equation for the magnetic field reads:

∇
(
∇Hz(~r)

εr(~r)

)
− k2

0Hz(~r) = 0, (1)

where Hz(~r) is the field’s z-component at the position ~r. Time-harmonic electric and
magnetic fields come from the solution of Equation (1), according to the following:

~H(~r, t) = Hz(~r)e−iωt ẑ (2)

~E(~r, t) = − i
k0ε(~r)

∇× ~H(~r, t). (3)

PC periodicity is used in order to obtain the corresponding dispersion relations. It
comes from the application of the Bloch theorem at the borders of the unit cell. When the
electric (magnetic) field propagates between the PC points separated by a lattice vector, ~R,
the only effect on the field is the change in phase given by the following:

Hz(~r + ~R) = Hz(~r)e−i~k·~R, (4)

Here, ~R is a photonic lattice vector and~k is the signal wavevector.
In addition, the dielectric function of the superconductor material (SC) was modeled

by the two-fluid model to describe the electrodynamics of the superconductor cores at
nonzero temperatures [2,10]:

εsc(ω) = ε∞

[
1−

ω2
sp

ω2 −
ω2

np

ω(ω + iγ)

]
(5)

ε∞ is the high-frequency permittivity of HTSC and γ is a damping term. ωsp =

c/(λL(T)
√

ε∞) and ωnp = (nne2/mε0ε∞)1/2 are the plasma frequencies of superconducting
and normal conducting electrons, respectively. Here, λL(T) = (m/µ0nse2)1/2 is the London
penetration depth, and the dependency of it on the temperature from the Gorter-Casimir
model can be written for HTSC as per the following[7]:

λL(T) =
λL(0)√
1− T

Tc

(6)

where c, nn, ns, m , ε0, µ0, e, and Tc are the speed of light in vacum, concentration of
normal electrons, concentration of superconductor electrons , the electron mass, permit-
tivity,permeability of vacuum, charge of the electron, and the critical temperature of the
superconductor, respectively.

2.2. Simulation Settings

A solution of the wave Equation (1) was accomplished via the finite element method
(FEM). The core of FEM consists of mess generation: the partition of geometry into small
units of a given shape. Once constructed, dependent variables are approximated by
means of known -shape- functions. By inserting this approximation in Equation (1), it
is possible to generate a set of algebraic equations, which are suitably solved. Then, the
solution of the differential problem is assembled. To carry out our study, we used FEM as
implemented in the COMSOL-MULTIPHYSICS licensed software package 5.6 [41]. The
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description of this tool, including the foundations of FEM, the building of meshes, the
discretization of differential equations, optimization, and the convergence criteria can be
found in refs. [42,43].

3. Results and Discussion

In the design of the 2D PC considered in this work, the cylindrical cores (both ro-
tated and non-rotated) were made of the SC compound Bi1.85Pb0.35Sr2Ca2Cu3.1Oy. This
compound has a ε∞ = 12, λL(0) = 22.452 µm and Tc = 107 K [7]. Figure 2 shows the
calculated PBG mapping for the TM modes in the BM PC, which is schematically depicted
in Figure 1. This mapping appears plotted in Figure 2a—for the fixed value of temperature,
T = 15 K—as a function of the ratio between the core radius and lattice constant, r/a, which
considers that both rotated and unrotated elements have the same radius, rr = rnr = r.
Figure 2b contains the mapping as a function of T for the value r/a = 0.0334 = rm, which
corresponds to the widest PBG obtained from Figure 2a. In this variation, the widest
PBG (∆ω = 0.37) appears just for T/Tc = 1. The dispersion relation that corresponds
to rm and T = 15 K appears in Figure 2c, with the vertical axis in units of ωa/2πc. The
forbidden regions, represented by the blue fringes in Figure 2a,b, and the lowest gray stripe
in Figure 2c correspond to the interval of frequencies below the T-dependent cut-off value,
ωca/2πc = 0.67, at which the effective dielectric function of the structure vanishes. Notice
that, as expected, ωc becomes zero when T = Tc, but when T is fixed at 15 K, it has a slight
increasing rate with r/a. This indicates the effect of geometry on the setting of the overall
dielectric response in the unit cell. The second gray stripe highlighted in the dispersion
relation is, precisely, the widest PBG, resulting from setting rm at 15 K, (∆ω = 0.25), which
is located between ωa/2πc = 2.01 and ωa/2πc = 2.26. It is worth noting that, in this and
the following figures showing PBG mappings, the lowest colored stripes just indicate the
frequency interval below the cut-off value, for which no propagation of any electromagnetic
signal in the system is allowed.

According to Figure 2, due to the chosen design, our working frequency range lies
between 0 and 2 THz, which falls within the far-infrared region of the spectrum. As pointed
out in refs. [5,7], if the collision frequency γ = 1/τ for unpaired electrons is much larger
than the working frequency, the contribution from the third term in Equation (5) can be
neglected, as has already been conducted in previous works [7]. Based on the results
presented in ref. [44], the collision time for Bi-based materials can be estimated to be around
τ = 1.38× 10−14 s. This leads to the condition ω � 72.5 THz, which is fulfilled without
problems within the declared working range. Without the influence of such a term in εsc(ω),
the absorption losses from the normal state subsystem are not relevant in our calculation.

To work within the mentioned frequency range, the lattice constant of the structure
will then be chosen to operate in this region of the spectrum; thus, we set a = 0.45 mm. In
order to achieve a greater contrast in the refractive indices of the materials in the unit cell,
the cylindrical cores are considered in an air background, where εb = 1.0. Furthermore,
copper oxide HTSCs exhibit strong two-dimensional anisotropy. In this case, to evaluate
the TM modes in the two-dimensional photonic crystals considered here, the electric field
is considered parallel to the c-axis of the HTSC (~E ‖ c) [7].

In Figure 3a, the results for the gap mapping of TM modes in the considered BM
PC, the fixing of unrotated cylinders at rnr/a = 0.0334, and the varying in the size of
the unrotated cores are shown. The remaining parameters are kept with the same values
employed to produce Figure 2. One now observes the opening of a main gap for lower
frequencies, which widens toward the smallest value of rr/a, thus reaching the maximum
∆ω = 0.39 when rr/a = 0.01, as depicted in Figure 3c. It is also noticed that the forbidden
fringe below the cut-off frequency evolves differently, with a slightly smaller value for the
maximum gap configuration when compared with Figure 2c.

Another result related with PBG properties appears from the analysis of gap mapping
presented in Figure 4. This time, the calculation has a fixed value of rotated SC cylinders,
rr/a = 0.0334, while the radius of unrotated ones, rnr, changes. As before, the remaining
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parameters are the same used for Figure 2. The main difference revealed with this particular
setup is the appearance of a double PBG for the lowest values of rnr/a. In the case of maximum
amplitudes (rnr/a = 0.01), both gaps have almost the same widths, ∆ω1 = 0.26 and ∆ω1 =
0.24 (in units of ωa/2πc), and are separated by a narrow interval of ωa/2πc = 0.03.

To summarize the effects of geometry manipulation on the presence and features
of PBGs in BM PCs made of high-Tc Bi1.85Pb0.35Sr2Ca2Cu3.1Oy SC, Table 1 contains the
compilation of the above-commented results. In accordance, the particular setup shown in
the middle row (corresponding to the situation depicted in Figure 3) results in the most
suitable setup for PBG enhancement.
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Figure 2. (Color online) (a) Photonic gap mapping for TM modes in the BM-R3S1 structure with a
lattice constant a, as depicted in Figure 1, for T = 15 K. We choose this value of temperature for the
sake of exemplifying. The radii of both rotated and unrotated cores are the same. (b) The photonic
gap mapping as a function of temperature for the value r/a = 0.0334, at which the maximum gap is
obtained in (a). In this case, the maximum (∆ω = 0.37) appears for T/Tc = 1. The lowest blue stripes
represent the evolution of the cut-off frequency in each case. (c) Dispersion relation for the same
TM modes, corresponding to the filling fraction r/a = 0.0334—associated to the widest photonic
gap depicted in (a), for T = 15 K, ∆ω = 0.25. Here, the cutoff frequency is ωca/2πc = 0.67. (d) The
plasma frequency of superconducting electrons ωsp as a function of temperature.

Going over to the analysis of waveguide modes in the proposed superconductor BM
PC, we keep in mind the design schematically shown in Figure 1b–d. In this sense, the light
dispersion relations for the coupled resonator optical modes appearing in waveguides built
following such a design, for each of the geometric and thermal configurations detailed in
the first column of Table 1, are plotted in Figure 5a–c, respectively. They appear as almost
dispersionless horizontal lines (in red color). Corresponding enhanced views of dispersion in
the frequency regions around the guide modes are then shown in Figure 5d–f. In this plotting,
the blue stripes represent the continuum states. The presence of waveguide modes close to
the middle of main PBG intervals—which are quite away from the continuum—indicate
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a strong spatial localization within the defect line so constructed, and this constitutes a
favorable feature.
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Figure 3. (Color online) (a) The gap mapping of TM modes for the photonic crystal with a BM-R3S1
unit cell (Figure 1a) a fixed value of the radius of unrotated cylinder, rnr/a = 0.0334, is kept and
the radius of rotated cores, rr, changes (see explanation in text). (b) Gap mapping as a function
of temperature for the configuration of the maximum gap in (a): rnr/a = 0.0334 and rr/a = 0.01.
The maximum PBG (∆ω = 0.55) is obtained for T/Tc = 1. (c) Dispersion relation for the same TM
modes, corresponding to the filling fraction rnr/a = 0.0334 and rr/a = 0.01—associated to the widest
photonic gap depicted in (a)—with T = 15 K, ∆ω = 0.39, is located between ωa/2πc = 1.68 and
ωa/2πc = 2.07, and a cutoff frequency of ωca/2πc = 0.58. The bottom stripes in the plots associate
with the cut-off frequency.

0.01 0.02 0.03 0.04 0.05

r
nr
/a

0.5

1.0

1.5

2.0

2.5

3.0

! X M !
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ω
a
#2
Π
c

ωc

∆ω1

∆ω2

(a) (c)

0 0.2 0.4 0.6 0.8 1

T/T
c

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a
/2
c

(b)

ωspa/2πc = 0.85

T = 15K

T = 15K

3.0
0.

0.62

1.2

1.9

F
re
q
u
en
cy

$T
H
z%

3.0
0.

0.62

1.2

1.9

F
re
q
u
en
cy

$T
H
z%

ω
a
/2

π
c

ω
a
/2

π
c

ω
a
/
2
π
c

3.0
0.

0.62

1.2

1.9

F
re
q
u
en
cy

$T
H
z%

Figure 4. (Color online) (a) The same as in Figure 3 but for the fixed value of rotated cores,
rr/a = 0.0334, and fo the changing of unrotated ones. (b) The gap mapping as a function of tem-
perature, for the geometry at which the widest gap in (a) appears: rr/a = 0.0334 and rnr/a = 0.01.
Again, when t = Tc (i.e., when the maximum phonic gap is obtained ∆ω = 0.33), then T/Tc = 1 is
obtained. (c) Dispersion relation for the same TM modes, corresponding to the same filling fraction
with rr/a = 0.0334 and rnr/a = 0.01, for T = 15 K. There is a double gap with almost the same
amplitudes: ∆ω1 = 0.26, located between ωa/2πc = 1.83 and ωa/2πc = 2.09 and ∆ω2 = 0.24,
located between ωa/2πc = 1.56 and ωa/2πc = 1.80, as well as a cutoff frequency of ωca/2πc = 0.55.
The bottom stripes correspond to the cut-off frequency.

Table 1. Main results from the analysis of gap mapping in the Bravais–Moiré photonic crystals with an R3S1
structure, showing different configurations of rotated (r) and unrotated (nr) cylindrical dielectric core radii.

The Mid-Gap PBG Width Gap Mid-Gap PBG
System rr rnr

ωa
2πc Frequency of PBG ∆ω Ratio Percentatge

(mm) (mm) (ωm) (∆ω
ωm

) (%)

1 0.0334 0.0334 2.01–2.26 2.14 0.25 0.1168 11.68
2 0.01 0.0334 1.68–2.07 1.875 0.39 0.208 20.8
3 0.0334 0.01 1.83–2.09 1.96 0.26 0.132 13.2

The flatness of dispersion relations for some of these coupled resonator modes in-
dicates at a significant reduction in the group velocity, vg, of the associated light signals.
For that reason, we performed a detailed analysis of this quantity for the different guided
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modes revealed in order to identify the temperature-dependent slow light properties in
the system. In this sense, Figures 6 and 7 contain the analysis of coupled resonator waveg-
uide modes, which vary as a result of the increase in the temperature of the structure
from T = 15 K to the Tc value. These four figures, respectively, correspond to the guide
mode cases depicted in Figure 5d,e (with separate analysis of the modes within the lower
(Figure 8) and upper (Figure 9) PBGs) and Figure 5f.

In general, it is possible to observe a trend showing a lowering in the frequency posi-
tion of the guided modes with an increase in T. In addition, some of those modes showing
greater dispersion at low values of the temperature become flatter when it approaches the
critical value. However, the influence of the geometrical setup on their group velocities
should be more carefully analyzed. In fact, the situations in which there is a single main PBG
with either one or two localized modes—that is, the ones observed in Figure 5a,c—display
rather symmetric variations of |vg|/c with respect to the center value of the interval for
propagation constant values. Such cases are depicted in Figures 6b and 7b. Their respective
normalized maximum values (NMVs) for such a quantity are presented for the different
temperatures considered in Tables 2 and 3. From them, it is possible to observe values of
the NMVs of group velocity in the order of 10−3, which decrease as long as T augments
toward Tc; in particular, the mode labeled as A1B1 in Figure 5f, is where this stands out.
This mode is one of those that reduces its dispersion and becomes flatter with augmenting
T. It bears the smallest calculated value for the NMV of group velocity: |vg|/c = 0.0013
(almost three orders of magnitude of reduction from c). As such, it is possible to speak here
of a real slow light phenomena.
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Figure 5. Light dispersion relations for the coupled resonator optical waveguide shown in Figure 1b
(see text for the description). Red lines represent guided modes. βa/π is the normalized propagation
constant. (a) Photonic unit cell parameters, taken to be the same used to generate Figure 2c. (b) Pro-
duced with the same cell parameters used to generate Figure 3c. (c) Cell parameters, in this case, are
the same used to generate Figure 4c. Blue stripes correspond to continuum states, and (d–f) represent
the enhanced views of PBG regions where guided modes of cases (a–c) respectively appear.
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Figure 6. (a) Evolution of the guided modes depicted in Figure 5a,d as a result of an increase in
temperature. In addition, their calculated group velocities as functions of the propagation constant (b).

Table 2. Maximum normalized group velocities corresponding to the guided modes analyzed in
Figure 6.

T(K) Mode Max |vg |/c
15 A0B0 0.0069
45 A0B0 0.0063
75 A0B0 0.0058

107 A0B0 0.0054

Figure 7. The same as in Figure 6 but for the guided modes corresponding to the configuration
leading to Figure 5c,f.

Table 3. Maximum normalized group velocities corresponding to the guided modes analyzed in
Figure 7.

T(K) Mode Max |vg |/c
15 A0B0 0.0092
15 A1B1 0.0058
45 A0B0 0.0096
45 A1B1 0.0043
75 A0B0 0.0098
75 A1B1 0.0027

107 A0B0 0.0098
107 A1B1 0.0013

However, the picture showing the guided modes appearing under the geometrical
setup corresponding to Figure 5b,e is significantly different. They are localized within the
two close PBGs of almost the same widths that appear in the configuration with a radius of
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rotated SC cylinders rr/a = 0.0334 and with radius of the rotated ones rnr/a = 0.01. As
already stated, the modes confined within the lower (A0B0 and A1B1) and upper (A2B2 and
A3B3) PBGs are analyzed separately in Figures 8 and 9. Here, the NMVs of |vg|/c appear,
and they are reported in Tables 4 and 5, respectively.

Figure 8. The same as in Figure 6 but for the guided modes within the lower photonic band gap
corresponding to the configuration leading to Figure 5b,e.

Figure 9. The same as in Figure 6 but for the guided modes within the upper photonic band gap
corresponding to the configuration leading to Figure 5b,e.

By first analyzing the guided modes inside the lower PBG, it is possible to observe their
tendency to become largely dispersive for the larger values of the propagation constant,
and for them to become very close in frequency. This indicates a possible coupling between
them, as noticed in the case of T = 75 K. True, such a dispersive tendency reduces with the
increment of T toward the superconductor transition value. This phenomenon is reflected
in the group velocity by suppressing any kind of symmetric variation with β, as occurs
in the above-discussed cases. In fact, the position of the curve maximum shifts to higher
values in the horizontal axis of Figure 8b. From Table 4, one may observe that, once again,
increasing temperature leads to a reduction in the NMVs of the group velocity for both
modes, whereby the upper one achieved the smaller value. Nonetheless, the achieved
values remain in the order of 10−2, and these results are not better than those discussed in
the two previous cases.
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Table 4. Maximum normalized group velocities corresponding to the guided modes analyzed in
Figure 8.

T(K) Mode Max |vg |/c
15 A0B0 0.0668
15 A1B1 0.0733
45 A0B0 0.0628
45 A1B1 0.0643
75 A0B0 0.0579
75 A1B1 0.0571

107 A0B0 0.0321
107 A1B1 0.0242

With regard to the second (upper) pair of waveguide modes shown in Figure 5b,e,
the plots in Figure 9a indicate the already commented shift to smaller frequencies. These
are induced by the increment of temperature, as well as due to the trend of the lower
one to become dispersionless with T. In contrast, the higher of these two modes keeps a
rather strong dispersion. Interestingly, this particular mode, at the time of evolving with
the temperature, is located farther away from the other. As a consequence, it was seen
that the associated curve of |vg|/c tends to recover the symmetric character with respect
to the center of the β region and the group velocity augments, as observed from Table 5
(mode labeled as A3B3). On the other hand, the lower of the two waveguide modes under
discussion shows a non-symmetric variation of group velocity, which shifts toward the
intermediate and higher values of the propagation constant, at which point the greater
dispersion occurs. As we have already said, the two modes become closer in that region,
and their coupling seems to affect the group velocity of the signal in such a way that |vg|/c
curves turn to asymmetry within the region, with a reduction in the NMVs of signal velocity.
The only exception for these is what occurred in the picture at T = 45 K. In this case, the
A3B3 mode strongly disperses, approaching A2B2 mode at higher values of β. According
to Table 5, the MNVs of group velocity remain higher than the values presented for the
other two geometrical setups, although the A2B2 mode evolves within small multiples of
10−2. Thus, one may also talk about the situation of slow light for it within the range of
temperature involved.

Table 5. Maximum normalized group velocities corresponding to the guided modes analyzed in
Figure 9.

T(K) Mode Max|vg |/c
15 A2B2 0.0248
15 A3B3 0.0686
45 A2B2 0.0167
45 A3B3 0.0842
75 A2B2 0.0150
75 A3B3 0.0917

107 A2B2 0.0094
107 A3B3 0.0958

Previous works on Cu-based HTSC 2D PCs, such as the one reported in refs. [7,45],
where simple square lattices of SC cylinders are considered, our system presents better
properties for adjusting PBG properties, as can be seen in Figures 2–4. This is because, by
having multiple cores in the UC, the active component of the SC cores can be changed by
the filling fraction with a greater flexibility than in the case of the typical square lattice.
In fact, our results show that the band structure is strongly affected when considering
geometrical changes, particularly in the radius of the non-rotated cores compared to the
rotated ones. Compared with more recent works, such as the one reported in [10], we
found that—in addition to the flexibility for adjusting the guided modes as a function of
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temperature—the guided modes in our system exhibit a low group velocity, which is not
observed in the referenced work. As such, it is worth highlighting, at this point, that such
low values of normalized group velocities for waveguide signals are obtained with the
use of a HTSC as constituent of BM PCs. These are, in some cases, almost an order of
magnitude smaller than those calculated for the BM PCs made of dielectric cores [26]. It is
also possible to compare with the works that consider CROWs in other designs of lattices
with multiple atoms, such as the one reported in [23]. There, the authors consider CROWs
in Archimedean-like lattices with dielectric cores, and with report group velocities that are
smaller than those reported in usual networks, some even as low as 0.030 times the speed
of light in a vacuum. In our work with SC BM PCs, we found velocities as small as 0.0013
times the speed of light in a vacuum, which is three orders of magnitude smaller than the
speed of light. This represents a true slow-light behavior, with the additional possibility
of adjusting such velocity with temperature, thus indicating the advantage of SC-based
photonic structures for slow-light applications.

4. Conclusions

In this work, we have studied the properties of light propagation in a two-dimensional
photonic crystal whose unit cell was constructed according a Bravais–Moiré pattern and
was composed of high-Tc superconducting cylinders. This study also includes the proposal
for a design of a line-defect waveguide.In addition, the coupled resonator modes associated
to it were also investigated. It was shown that the different geometrical setups arising from
the fixation, or the variation of the core cylinder radii, have an impact on the photonic gap
mapping of the crystal and also on the appearance and amount of waveguide modes inside
such gaps, without a coupling with the continuum.

In addition, the analysis of the group velocity for the guided modes, when considering
the variation in the temperature up to the superconductor transition value, allows one to
identify particular configurations for which the values of the normalized maximum value
of this property reduces to almost three orders of magnitude compared to the vacuum
speed of the electromagnetic waves with those frequencies. This fact indicates positive
prospects for slow-light applications.

Author Contributions: Authors contributed by performing the indicated activities: conceptualization,
H.A.G.-U. and M.E.M.-R.; methodology, H.A.G.-U.; software, J.G.C. and H.A.G.-U.; validation, J.G.C.
and H.A.G.-U.; formal analysis, H.A.G.-U. and M.E.M.-R.; writing-review and editing, H.A.G.-U.,
M.E.M.-R. and C.A.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Mexican CONACYT (grant number A1-S-8218 (MEMR)).
CAD is grateful to the Colombian Agencies: CODI-Universidad de Antioquia (Estrategia de Sosteni-
bilidad de la Universidad de Antioquia) and projects “Propiedades magneto-ópticas y óptica no
lineal en superredes de Grafeno”, “Estudio de propiedades ópticas en sistemas semiconductores
de dimensiones nanoscópicas”, “Propiedades de transporte, espintrónicas y térmicas en el sistema
molecular ZincPorfirina”, and “Complejos excitónicos y propiedades de transporte en sistemas
nanométricos de semiconductores con simetría axial”, as well as to the Facultad de Ciencias Exactas y
Naturales-Universidad de Antioquia (CAD exclusive dedication project 2022–2023).

Data Availability Statement: Data is partially available through direct contact with the correspond-
ing authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, C.-L.; Zhang, H.-F.; Chen, Y.-Q. Enlarged the omnidirectional Bragg gap by one-dimensional superconductor-dielectric

photonic crystals with ternary Thue-Morse aperiodic structure. Optik 2013, 124, 5811. [CrossRef]
2. Rahimi, H. Analysis of photonic spectra in Thue–Morse, Double-Period and Rudin-Shapiro quasirregular structures made of

high temperature superconductors in visible range. Opt. Mater. 2016, 57, 264. [CrossRef]
3. Gómez-Urrea, H.A.; Escorcia-García, J.; Duque, C.A.; Mora-Ramos, M.E. Analysis of light propagation in quasiregular and hybrid

Rudin–Shapiro one-dimensional photonic crystals with superconducting layers. Photonics Nanostruct. 2017, 1, 1–10. [CrossRef]

http://doi.org/10.1016/j.ijleo.2013.04.053
http://dx.doi.org/10.1016/j.optmat.2016.04.022
http://dx.doi.org/10.1016/j.photonics.2017.08.001


Condens. Matter 2023, 8, 51 13 of 14

4. Trabelsi, Y. Output multichannel optical filter based on hybrid photonic quasicrystals containing a high-Tc superconductor.
Photonics Nanostruct. 2019, 100, 724. [CrossRef]

5. Raymond Ooi, C.H.; Au Yeung, T.C.; Lim, T.-K.; Kam, Ch.H. Two-dimensional superconductor-dielectric photonic crystal. Proc.
SPIE 1999, 3899, 278. [CrossRef]

6. Chen, Y.-B.; Zhang, C.; Zhu, Y.-Y.; Zhu, Sh.-N.; Ming, N.-B. Tunable photonic crystals with superconductor constituents. Mater.
Lett. 2002, 55, 12. [CrossRef]

7. Takeda, H.; Yoshino, K. Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide
high-temperature superconductors. Phys. Rev. B 2003, 67, 245109. [CrossRef]

8. Cheng, C.; Xu, C.; Zhou, T.; Zhang, X.-F.; Xu, Y. Temperature dependent complex photonic band structures in two-dimensional
photonic crystals composed of high-temperature superconductors. J. Phys. Condens. Matter 2008, 20, 275203. [CrossRef]

9. Berman, O.L.; Boyko, V.S.; Kezerashvili, R.Y.; Lozovik, Y.E. Monochromatic infrared wave propagation in 2D superconductor-
dielectric photonic crystal. Laser Phys. 2009, 19, 2035–2040. [CrossRef]

10. Barvestani, J.; Rezaei, E.; Soltani Vala, A. Tunability of waveguide modes in two-dimensional photonic crystals based on
superconducting materials. Opt. Commun. 2013, 297, 74. [CrossRef]

11. El-Naggar, S.A.; Elsayed, H.A.; Aly, A.H. Maximization of Photonic Bandgaps in Two-Dimensional Superconductor Photonic
Crystals. J. Supercond. Nov. Magn. 2014, 27, 1615. [CrossRef]

12. Hashemi, R.; Barvestani, J. Superconducting Point Defect in a Two-Dimensional Photonic Crystal. J. Supercond. Nov. Magn. 2014,
27, 371. [CrossRef]

13. Liu, W.-G.; Pan, F.-M.; Cai, L.-W. Photonic band gap of superconductor-medium structure: Two-dimensional triangular lattice.
Phys. C 2014, 500, 4. [CrossRef]

14. Aly, A.H.; Elsayed, H.A.; El-Naggar, S.A. The properties of cutoff frequency in two-dimensional superconductor photonic crystals.
J. Mod. Opt. 2014, 61, 1064. [CrossRef]

15. Diaz-Valencia, B.F.; Calero, J.M. Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow
rods. Phys. C 2014, 505, 74. [CrossRef]

16. Zhang, H.F.; Liu, S. The Tunable Omnidirectional Reflector Based on Two-Dimensional Photonic Crystals With Superconductor
Constituents. IEEE J. Sel. Top. Quantum Electron. 2015, 21 , 1. [CrossRef]

17. Diaz-Valencia, B.F.; Calero, J.M. Analysis of Photonic Band Gaps in a Two-Dimensional Triangular Lattice with Superconducting
Hollow Rods. J. Low Temp. Phys. 2017, 186, 275. [CrossRef]

18. Zhang, H.-F. The Mie resonance and dispersion properties in the two-dimensional superconductor photonic crystals with fractal
structure. Phys. C 2018, 550, 65. [CrossRef]

19. Elsayed, H.A. Photonic band gaps properties of two-dimensional ternary superconductor photonic crystals. Surf. Rev. Lett. 2019,
26, 1850152. [CrossRef]

20. Hao, J.J.; Ju, L.; Liu, Y.J.; Du, W.-Ch.; Gu, K.-D.; Yang, H.-W. Research on Transmission Characteristics of Two-Dimensional
Superconducting Photonic Crystal in THz-Waves. Plasmonics 2020, 15, 1083. [CrossRef]

21. Fan, S.; Villeneuve, P.R.; Joannopoulos, J.D. Large omnidirectional band gaps in metallodielectric photonic crystals. Phys. Rev. B
1996, 54, 11245. [CrossRef] [PubMed]

22. Halevi, P.; Ramos-Mendieta, F. Tunable Photonic Crystals with Semiconducting Constituents. Phys. Rev. Lett. 2000, 85, 1875.
[CrossRef] [PubMed]

23. Wang, Y. Coupled-resonator optical waveguides in photonic crystals with Archimedean-like tilings. Europhys. Lett. 2006, 74, 261.
[CrossRef]

24. Iliew, R.; Etrich, C.; Pertsch, T.; Lederer, F. Slow-light enhanced collinear second-harmonic generation in two dimensional photonic
crystals. Phys. Rev. B 2008, 77, 115124. [CrossRef]

25. Olivier, S.; Smith, C.; Rattier, M.; Benisty, H.; Weisbuch, C.; Krauss, T.; Houdre, R.; Oesterle, U. Miniband transmission in a
photonic crystal coupled-resonator optical waveguide. Opt. Lett. 2001, 26, 1019. [CrossRef] [PubMed]

26. Gómez-Urrea, H.A.; Cardona, J.G.; Caro-Lopera, F.J.; Mora-Ramos, M.E. Photonic band gaps and waveguide slow-light propaga-
tion in Bravais–Moiré two-dimensional photonic crystals. J. Opt. 2023, 25, 025101. [CrossRef]

27. David, S.; Chelnokov, A.; Lourtioz, J. Wide angularly isotropic photonic bandgaps obtained from two-dimensional photonic
crystals with Archimedean-like tilings. Opt. Lett. 2000, 25, 1001. [CrossRef]

28. Ueda, K.; Dotera, T.; Gemma, T. Photonic band structure calculations of two- dimensional Archimedean tiling patterns. Phys. Rev.
B 2007, 75, 195122. [CrossRef]
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