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Abstract: Semiconductor nanowhiskers, particularly nanostructured whiskers based on zero-dimensional
(0D) C70 fullerene, are being actively discussed due to the great potential of their application in mod-
ern electronics. For the first time, we proposed and implemented a method for the synthesis of
nanostructured C70 fullerene whiskers based on the self-organization of C70 molecules during the
thermal evaporation of C70 droplets on the substrate surface. We found that the onset of the synthesis
of C70 nanowhiskers upon the evaporation of drops of a C70 solution in toluene on the substrate sur-
face depends on the substrate temperature. We have provided experimental evidence that an increase
in both the C70 concentration in the initial drop and the substrate temperature leads to an increase in
the geometric dimensions of C70 nanowhiskers. The obtained results provide useful vision on the
role of solute concentration and substrate temperature in the synthesis of one-dimensional materials.

Keywords: C70 fullerene; evaporating drop; self-organization; nanostructure; filamentous whisker

1. Introduction

In nanoscience, nanowhiskers are considered to be filamentous crystals with a trans-
verse size of up to 100 nm and a length that is an order of magnitude or greater than the
transverse size. Semiconductor nanowhiskers are widely used today to create miniature
elements of devices in microelectronics [1,2], optoelectronics [3,4], nanoengineering [5,6],
solar energy [7–9], biomedicine [10], nanoelectromechanics [11,12] and gas sensing [13,14].
To date, there are various methods [15–17] for obtaining nanowhiskers of a wide range of
semiconductor materials, such as growth using molecular beam epitaxy, vapor deposition,
laser ablation, growth catalysts, magnetron deposition, chemical epitaxy in a high vacuum
and others.

Carbon nanomaterials (fullerene, carbon nanotube and graphene) are becoming key
components of nanotechnologies for the development of complex functional nanostructures.
Light fullerenes (C60/C70) are a hollow sphere/ellipsoid carbon molecule less than 1 nm in
diameter, with sp2 carbon atoms located on a curved surface at the vertices of a truncated
icosahedron. They have unique physical properties, particularly optical and electrical ones.
A remarkable property of fullerene molecules is their ability to self-assemble over time in
pure solvents to form clusters of various shapes and sizes [18,19], and the nature of the
solvent plays an important role in this process [20]. Intermolecular self-assembly, reactivity
and electron affinity properties give fullerenes incomparable advantages in applications
such as electrocatalysts and supercapacitors [21]. In addition, they have a suitably high
photosensitivity, electron mobility, antioxidant activity and radical scavenging [22–24]. The
latter leads to a range of applications, including photodetectors [25], sensors [26], solar
cells [27], LEDs [28], biomedicines [21] and drug delivery [29].

Since the discovery of C60 fullerene nanowhiskers (C60NWs) by the Miyazawa group
in 2001 [12,30], applications in various fields have been found. A poor solvent is added to
a saturated well-dissolved solution of C60 and a liquid–liquid interface is formed in the
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middle. As a result, a supersaturated solution is formed, C60 embryo crystals are nucleated
at the liquid–liquid interface and long C60NWs are synthesized. Although this method
was initially “static” (without external influence), later “dynamic” (ultrasound, manual
mixing, etc., effects) and other modified methods were developed [31,32]. Similarly, C70
fullerene nanowhisker (C70NW) structures were synthesized on the basis of C70 fullerene
in the same ways [33]. It is known that NWs formed on the basis of nanosized fullerenes
are based on bottom-up technology. Traditional and newly developed strategies for the
synthesis of one-dimensional micro/nanostructures based on fullerenes and their practical
applications are considered in [34,35]. In this case, the regulation and control of the size and
structure of one-dimensional structures is of great importance. Specialists have now found
that the morphology and size of fullerene micro- and nanostructures can be easily con-
trolled by adjusting experimental parameters such as good/poor solvent systems, solvent
ratios, temperature, area size of liquid–liquid interface and various treatments [34–37]. The
elliptical shape of C70 molecules renders them anisotropically polarizable, and the spherical
shape of C60 renders it isotropic [38]. This diversifies the physico-chemical properties of the
micro/nanostructures synthesized on their basis [39]. In particular, when NWs synthesized
in a solution are transferred to the surface of a solid substrate, changes in their morphology
occur. It should also be taken into account that the evaporation of droplets of fullerene
solutions on the surface of a solid substrate leads to self-organization processes [40,41]. In
this regard, there is a need to study the processes occurring in the volume of the evaporation
of droplets of fullerene solutions.

In this paper, we consider the synthesis of nanostructured C70 fullerene whiskers on
the surface of a substrate by evaporating a microvolume drop of a C70 solution. Experi-
mental methods for controlling the geometric dimensions of the synthesized nanowhiskers
are discussed.

2. Results

In our experiments, the shape of the initial drop of a fullerene solution with a volume
of V ≈ 40–50 µL on a wetted flat substrate is approximately represented by a spherical
cap (see Figure 1, left). It can be noted that the drops of the fullerene solution always
retain a constant area of the base of the drop throughout the entire duration of the thermal
evaporation. But the contact angle (ϕ) of the drop gradually decreases until it disappears.
The fullerene drop is protected from convective air flows until complete evaporation; the
drop thermal evaporation direction is perpendicular on the surface of the spherical cap. Due
to the Marangoni effect along the “droplet–air” interface and the Rayleigh–Benard effect
along the evaporating droplet volume (Figure 1, right), strong capillary flows appear and
start the assembly of fullerene particles as well as the synthesis of different nanostructures
based on them.
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Figure 1. A photograph of the lateral microdroplet profiles of a C70 solution (left) and a schematic
representation of the appearing flows inside the evaporating droplet (right).

The SEM image of the structures formed during the evaporation of droplets of a C70
solution in toluene on the substrate surface at room temperature (~24 ± 1 ◦C) is shown in
Figure 2. Due to the constant base area of the microdroplet, a trace of C70 nanostructures
remains along the base of the drop, similar to a coffee ring, during the entire thermal
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evaporation of the solvent. An important role is played by the temperature gradient
that occurs when the surface and near-surface layers of the droplet cool sharply as a
result of intense toluene evaporation. It can be seen that after the complete evaporation
of toluene from a microdroplet of the C70 solution, large quasi-spherical C70 aggregates
are formed on the surface of the optical glass substrate. At the same time, the average
geometric dimensions in the diameter of C70 aggregates are ~600 nm. The resulting C70
aggregates are porous and consist of discrete intermediate nanoaggregates with sizes up
to ~40–45 nm in diameter. The most probable, from our point of view, is the following
fundamental mechanism of the self-organization of C70 fullerene molecules in the volume
of the evaporating solution droplets and the formation of quasi-spherical nanoaggregates.
A drop of a C70 solution always tends to minimize its total surface energy. The latter can
be achieved, in particular, as a result of the self-organization of C70 molecules. Let us
assume that two intermediate fullerene formations with diameters d1 and d2 (d2 >> d1)
are localized in the volume of an evaporating drop of a C70 solution. Then, each of
these nanosized particles will tend to establish a thermodynamic equilibrium with the
surrounding solution. In accordance with the well-known Gibbs–Thomson relation [42],
the solubility of a larger spherical C70 cluster with an average diameter d2 in a solution
will be noticeably lower than the similar solubility parameter for a smaller C70 fullerene
formation with the diameter d1. Then, individual C70 molecules, appearing as a result of
the dissolution of the smaller formation d1 into drops, will be deposited on the surface of
larger particles d2 to maintain the equilibrium in the system. At the same time, smaller
fullerene formations will be forced to dissolve further to compensate for the C70 molecules
that have left the drop. As a result, inside the evaporating drop of the C70 fullerene solution,
a continuous diffusion transfer of the dissolved substance (C70 molecules) occurs from
smaller C70 formations to larger quasi-spherical nanoaggregates.
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Figure 2. SEM image of C70 aggregates formed by thermal evaporation of organic solvent from the
volume of microdroplet of a C70 solution at room temperature (~24 ± 1 ◦C). The initial concentration
of fullerene C70 in the solution was ~1.1 × 10−3 mol·L−1.

We studied the process of the evaporation of a C70 solution droplet on the substrate
surface at different substrate temperatures in order to synthesize one-dimensional C70
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structures. When the K-8 optical glass substrate was heated to 28 ◦C, nanostructured
filaments (nanowhiskers) of C70 fullerene of an optimal shape were synthesized on the
substrate surface (see Figure 3). The concentration of fullerene C70 in the initial drop of the
solution was ~1.1 × 10−3 mol·L−1. In this case, the temperature gradient in the process
of the intensive evaporation of the solvent from a microdroplet at a temperature of 28 ◦C
made it possible to overcome some of the energy difficulties in the formation of C70NWs.
We could observe that X- and V-shaped C70NWs were mainly synthesized in the volume
of an evaporating drop of the C70 molecular solution on a substrate (see Figure 3). The
average geometric dimensions of C70NWs are ~105 nm in width and ~750 nm in length.
At the same time, we could observe that the maximum length and width of the resulting
C70NWs reached the values ~1.7 µm and ~200 nm, respectively.
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Figure 3. SEM image of C70NWs synthesized in a volume of the evaporating droplet of C70 molecular
solution on the smooth surface of a substrate at T ≈ 28 ◦C. The concentration of fullerene C70 in the
initial drop of the solution was ~1.1 × 10−3 mol·L−1.

A SEM image of C70NWs, synthesized on a surface of a horizontally located glass
substrate heated to T = 36 ◦C, is presented in Figure 4. In experiments with a fixed
concentration of C70 (~1.1 × 10−3 mol·L−1) in a drop of the working solution, the effect of
increasing the temperature of the substrate on the ongoing processes of the evaporation
drop was studied. It was established that an increase in the substrate temperature not only
led to a more accelerated nucleation and growth of C70NWs but also to a noticeable increase
in the final geometric dimensions of the synthesized C70NWs. Therein, the distribution of
C70NWs on the substrate surface was getting denser. At the same time, the average length
and width of the resulting C70NWs reached the values ~1.8 µm and ~175 nm, respectively.
The presented results proved that the size of nanowhiskers can be controlled by changing
the substrate temperature at a fixed concentration of C70 in the working drop.
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molecular solution on the flat substrate at T ≈ 36 ◦C. The concentration of fullerene C70 in the initial
drop of the solution was ~1.1 × 10−3 mol·L−1.

Under the same conditions, we studied the effect of the initial concentration on the
size of the synthesized nanoparticles. Figure 5 presents a SEM image of nanostructured
whiskers of C70 fullerene synthesized on the smooth surface of a substrate heated to
T ≈ 36 ◦C. An increase in the fullerene concentration (up to ~1.5 × 10−3 mol·L−1) in the
initial droplet led to a noticeable increase in the final C70NW size. It was easy to observe
that the longest C70NWs had a size of ~28 µm in length, ~2 µm in width, as well as the
shortest length and width of ~6 µm and ~200–250 nm, respectively (Figure 5). So, it was
shown that the geometric dimensions of the C70NWs can be controlled by changing the
initial concentration of the fullerene solution.
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The experimental results reflecting the change in the geometric dimensions of the
synthesized C70NWs at a fixed concentration of C70 fullerene with different substrate
temperatures are presented in Table 1.

Table 1. Evolution of changes in the average sizes of synthesized C70NWs depending on the substrate
temperature.

C/(mol·L−1) a T/(◦C) b Average Length/µm Average
Width/nm

~1.1 × 10−3
28 0.75 105
32 1.35 152
36 1.8 175

a The C70 concentration in a solution. b The substrate temperature (T) remains constant until the droplet is
completely evaporated.

The thermal and temporal stability of C70NWs is also very important for the inves-
tigation of their structure and further applications. In our case, a TEM observation was
performed on synthesized C70NWs. When the synthesized nanowhiskers were stored at
room temperature for 2 months, microscopic observations revealed practically no changes
in their morphology and structure (see Figure 6, left). The TEM image of stored C70NWs
(with a diameter of ~72 nm) after heating at ~120 ◦C for 15 min is shown in Figure 6 (right).
This result indicates that the C70 nanowhiskers got thinner at ~120 ◦C. In addition, while the
overall integrity of the nanowhiskers was preserved, traces similar to nanosized “craters”
appeared on their surface.
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The results of this work can be used to predict and control the geometric dimensions
of nanostructured whiskers based on different macromolecules. In addition, this method
is useful in the synthesis of one-dimensional, two-dimensional and three-dimensional
structures from a zero-dimensional material consisting of only one component, through
various combined and/or separate processes. Note that synthesized C70NWs are a separate
class of materials that exhibit the combined properties of both C70 fullerene and nanostruc-
tures. The next steps are to develop structural and functional materials using synthesized
fullerene-based one-dimensional nanounits. Although today there are many approaches
to create new functional materials based on C70 fullerene, combining and reorganizing
independent knowledge and facts with practical applications will lead to great progress in
material science. The electrical properties, superconductivity and energy storage properties
of fullerene C70NWs are still unexplored and thus represent an excellent area for future
research. These amazing properties allow them to be effectively used in many future
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concrete applications such as photocatalysis, solar cells, energy storage, photodynamic
therapy, drug and gene delivery, electrocatalysis and sensors.

3. Discussion

We presented an experimental method for the synthesis of cost-effective and com-
patible C70NWs in the volume of an evaporating droplet on a substrate. Our electron
microscopic measurements confirm the formation of one-dimensional C70NWs during the
evaporation of a drop on the surface of a substrate heated from 28 ◦C. The difference in
substrate temperature with respect to the temperature of the deposited droplet and the envi-
ronment creates additional thermodynamic forces acting on C70 particles, which ultimately
ensure the synthesis of nanowhiskers based on them. It was found that changing both the
concentration of fullerene in the initial drop and the substrate temperature provides an
opportunity to tune the geometric dimensions of C70NWs to the desired value.

At a fixed concentration of C70 (~1.1 × 10−3 mol·L−1) in an initial drop, changing the
substrate temperature from T1 = 28 ◦C to T2 = 36 ◦C led to a noticeable increase in the final
geometric dimensions of the synthesized C70NWs. In this case, the ratio of the average
length (~1.35 µm) to width (~152 nm) of the synthesized C70NWs was about 9:1. At a
fixed substrate temperature (T = 36 ◦C) with a relatively high concentration of fullerene
(~1.5 × 10−3 mol·L−1), C70NWs with a maximum length and width of ~28 µm and ~2 µm,
respectively, were synthesized. It was shown that the method used is effective for the
synthesis of micro- and nanosized whiskers, which can be used for various purposes of
“bottom-up” technology.

4. Materials and Methods

In our experiments, we used high-purity (~99.8%) powders of fullerene C70 (Sigma-
Aldrich, Saint Louis, MO, USA) as well as the organic solvent toluene (C6H5CH3, Sigma-
Aldrich). The mixture of “toluene + C70 powders”, located in a hermetically sealed glass
flask, was dissolved with continuous mechanical stirring at a frequency of ~1.5 Hz for 1.5 h
using a programmable laboratory magnetic stirrer of the MS-11H brand, WIGO (Pruszkow,
Poland). Thereafter, the C70 solution was sonicated for 15 min using an ultrasonic bath
brand, DC-120H. Further, dosed drops of the C70 molecular solution were taken using a
VITLAB dosing pipette (VITLAB GmbH, Grossostheim, Germany).

A standard K-8 optical glass with a surface roughness of ≤7 nm was used as a substrate.
Before each experiment, the surface of the used glass substrate was plasma, cleaned at the
nanolevel using a Plasma Cleaner device (Harrick Plasma, «PDC-002», Ithaca, NY, USA).

For experiments on heat treatment, a thermostatically controlled table was used with
the possibility of heating up to 140 ◦C on a Peltier effect. The temperature was programmed
with an accuracy of 1 ◦C. Using a thermocouple built into the MS8217 digital multimeter,
the temperature on the glass substrate was controlled with an error of ±2%.

Drops of the C70 solution were placed on a heated substrate using a VITLAB piston
micropipette (VITLAB GmbH, Grossostheim, Germany) under laboratory conditions. In
this case, the temperature of the solution and the environment was ~23 ± 1 ◦C, and the
drops were protected from convective air currents until complete evaporation.

We used a high-resolution scanning electron microscope (hereinafter SEM) brand,
JSM-IT200 (Joel, Tokyo, Japan), and a transmission electron microscope (hereinafter TEM),
LEO-912 AB (Carl ZEISS, Oberkochen, Germany), to establish the morphological features
and determine the exact geometrical sizes of one-dimensional C70NWs.

5. Conclusions

For the first time, we proposed the evaporating drop method for producing nanos-
tructured C70NWs. In this case, the self-organization of the C70 molecules occurs upon
the thermal evaporation of the toluene from the C70 droplets located on the surface of
a flat glass substrate. The optimal substrate temperature for the start of the synthesis
of C70 fullerene nanowhiskers in the volume of droplet evaporation was experimentally
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established. It was shown that the geometric dimensions of the synthesized C70NWs can
be controlled both by changing the C70 concentration in the initial droplet and by changing
the temperature of the substrate used. A selective synthesis of fullerene nanowhiskers
was carried out. The results of this work can be used to predict and control the geometric
dimensions of nanostructured whiskers of various kinds, which will have great potential
in applications such as nano- and microelectronics, solar cells, nonlinear optics, sensors
and electromechanics.
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