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Abstract: Studies involving vortexes in hybrid superconducting devices and their interactions with
different components inside samples are important for reaching higher values of critical parameters in
superconducting materials. The vortex distribution on each side of a sample with different fundamen-
tal parameters, such as temperature T, penetration depth λ, coherence length ξ, electron mass m, and
the order parameter Ψ, may help to improve the superconducting properties. Thus, in this work, we
used the modified Ginzburg–Landau theory to investigate a hybrid superconductor (HS), as well as to
provide a highly tunable and adjustable theoretical tool for theoretically explaining the experimental
results involving the HS in order to study the vortex behavior in superconductors of mesoscopic
dimensions with extreme differences among their fundamental parameters. Therefore, we evaluated
the influence of the HS on the vortex configuration and its effects on field-dependent magnetization.
The results show that when the applied magnetic field H was increased, the diamagnetic response of
the HS (Meissner effect) included additional jumps in magnetization, while diamagnetism continued
to increase in the sample. In addition, the differences among parameters created an interface between
both components, and two different magnitudes of supercurrent and vortex sizes caused less degra-
dation of the local superconductivity, which increased the upper critical field. On the other hand, this
type of HS with differences in parameters on both sides can be used to control the vortex movement
in the selected sample of the superconducting region with more accuracy.

Keywords: vortex; superconductivity; Ginzburg–Landau theory; magnetization; free energy

1. Introduction

Usually, the interconnection of materials at the quantum level with superconducting
condensates leads to a leakage of Cooper pairs through heterointerfaces, which is known as
the proximity effect [1]. This procedure has become a route to the design of superconduct-
ing electronics and the engineering of new quantum states. This includes the development
of hybrid quantum devices, which have opened an important area in research based on
advances in fabricating nanostructures with highly controllable accuracy, thus allowing
their physical and electronic properties, as well as their power consumption, to be manipu-
lated and tailored. Research on hybrid superconducting structures, which are made up of a
superconductor and non-superconducting material, takes the proximity effect into account,
as this explains the correlations of adjacent non-superconducting layers [2–8]. The freedom
in the design and fabrication of the heterostructures of emergent two-dimensional (2D)
materials [9,10] has opened the possibility for research on the interactions of fundamental
properties at the nanoscale. Such research results show that it is possible to control the
critical temperature, critical magnetic field, and energy gaps in selected regions as a result
of the creation of tailored nanostructured superconductors with complex superconductor
materials for applications in quantum technology. These developments have allowed new
advances, including the superconducting proximity effect in epitaxial graphene induced by
a graphene–superconductor interface [11]. Numerical calculations have shown many effects
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that are usually observed in nanostructured superconductors, and these result in complex
vortex patterns when barriers or defects are included [12–17]. Additionally, the inclusion of
anisotropies in superconducting samples through variations in Tc in different layers of the
sample leads to distinct vortex states and free-energy curves [18–20], as well as new possi-
bilities for non-conventional vortex structures [21]. These kinds of systems exhibit a variety
of new and interesting phenomena with no counterparts in conventional single-component
superconductors [22]. Exotic vortex structures can emerge in a two-component supercon-
ductor because of the different length scales ξi at which the Cooper-pair density varies in
each component [23,24]. Two-dimensional superconductivity has been investigated to find
insights into a variety of quantum phenomena; the thermal evaporation and sputtering of
metallic films allow the study of most of the basic properties of 2D superconductors [25,26].
The methods for fabrication, such as quantum phase transitions, open new discussions and
opportunities for the study of thin-film superconductors with thicknesses from 0.3 nm to
10 nm [27,28].

Previously, fabrication techniques, such as molecular beam epitaxy accompanied by
surface or interface reconstruction processes and methods for the production of field-effect
devices and mechanical exfoliation, were introduced into the field of 2D superconduc-
tors [29–31]; as a result, crystallinity has been greatly improved, even in atomically thick
samples. The different phenomena associated with hybrid combinations with other su-
perconductors have shown relevant effects, such as the magnetic field-driven quantum
phase transition that takes place electrostatically in superconducting interfaces, among
other effects [32,33]. In addition, combinations with low-dimensional semiconductors offer
a versatile ground for novel device concepts, such as supercurrent transistors, sources of
spin-entangled electrons, quantum computation, and nano-SQUIDS. When a supercon-
ductor is coupled with another superconductor, very interesting phenomena take place;
both condensates interact with each other at the interface, and the supercurrent can be
modulated in this region. In this context, the modulated domain–wall superconductivity
offers the possibility of controlling the strength of superconductivity at will. The underlying
physics behind such hybrid devices ultimately rely on the superconductors that are selected
for coupling.

In the present contribution, we study the fundamental properties and vortex matter of
hybrid superconducting samples made of two superconductors, in which each component
is well known. The desired parameters of the components, as well as the geometry, type,
and distribution of each superconductor, are chosen. In our work, we modified the GL
formalism in order to study hybrid superconducting samples; the interaction between
the two densities of the superconductors and the order parameters that occurred in the
interface between the soft and wall domains were modulated with high precision by using
the fundamental parameters of each superconductor.

In Section 2, we show the derived GL equations and the ratios of intrinsic parameters
of superconductivity, and this procedure is used in the calculations. In Section 3, we analyze
the results obtained for hybrid samples with two superconducting components divided
into two halves (Figure 1). Further, we discuss the issues concerning the distribution and
configuration of vortices in the sample, as well as the phase of the order parameter, the
density of the supercurrent, and magnetization. The results are finally summarized in
Section 4.
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Figure 1. (Color online) Schematic representation of a hybrid superconducting system made of two
types of superconductors: S1 and S2. The lateral size of the superconducting sample is a = 400 nm,
and the width of the sample is d = 20 nm. Two cases are studied: 1. S1 and S2 are both type II super-
conductors with the following parameters: a coherence length of ξ1(0) = 39 nm and ξ2(0) = 20 nm
and a penetration depth of λ1(0) = 52 nm and λ2(0) = 200 nm; 2. S1 is a type II superconductor
with the parameters ξ1(0) = 39 nm and λ1(0) = 52 nm, but S2 is a type I superconductor with the
parameters ξ2(0) = 120 nm and λ1(0) = 72 nm.

2. Materials and Methods

We consider an HS with a thickness d that is smaller than the two characteristic lengths
for a superconductor system in such a way that the system is effectively two-dimensional.
In this study, the two superconductors inside the sample are denoted as S1 and S2; the
quantities are scaled to units that depend on the parameters of S1. The theoretical GL
equations were obtained by minimizing the following energy functional:

F = ∑
i=1,2

∫
dV[αi(0)

(
1− T

Tci

)
|Ψ|2 + βi

2
|Ψ|4

+
1

2m∗i
×
∣∣∣∣(−i∇− 2e

c
A
)

Ψ
∣∣∣∣2 + (H−Ha)2

8π
], (1)

where Ha denotes the applied magnetic field, H is the total local magnetic field, which
includes the response of the superconductor, and the index i represents either S1 or S2
depending on the location inside the volume V. We include an additional component that
scales the functional to the parameters of S1 with the variables α1, β1, and m∗1 . Now, by min-
imizing Equation (1), we obtain the following for the order parameter and vector potential:

−(1− cTt)
1
cξ

ψ +
cλc2

m
cξ
|ψ|2ψ + (−i∇−A)2ψ = 0 (2)

js = κ2
1(∇×∇× (A−A0)) = cm<(ψ∗(−i∇−A)ψ), (3)

with the following boundary condition:

n. (−i∇−A)ψ|Ss = 0, (4)

where the parameters are defined as cT = Tc,1/Tc,2, cξ = ξ2
2(0)/ξ2

1(0), cλ = λ2
2(0)/λ2

1(0),
cm = m∗1/m∗2 , and t = T/Tc,1; in addition, cm, cλ, cξ , and cT are used. The above
equations are given in dimensionless form; distances are measured in units of ξ1(0) =√
−h̄2/2mα1(0), the temperature is measured in units of the critical temperature of S1

(Tc,1), the order parameter Ψ is measured in units of Ψ∞,1 =
√
−α1(0)/β1, the vector

potential is measured in units of A0,1 = ch̄/2eξ2
1(0), the magnetic field is measured in units
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of the upper critical field of S1, Hc2,1 = ch̄/2eξ2
1(0), and the free energy is measured in

units of F0 = α2
1(0)/β1. The region in the sample where an additional superconductor is

included to obtain a two-component superconducting thin film can be directly modeled by
changing the parameters cT , cξ , cλ, and cm. In other words, many types of two-component
superconducting systems can be studied by tuning the parameters with the desired pre-
cision. We solve the coupled GL equations self-consistently by using the link variable
approach for a finite-difference representation of the order parameter and the vector on a
uniform two-dimensional Cartesian grid (x, y). The order parameter is calculated by using
the first GL equation. The second GL equation is then used to find the supercurrent, and
by using the Fourier transform of the supercurrent, the vector potential is calculated; this,
again, is used as an input for the first GL equation until a convergent solution for both ψ
and A is found. The extended derivation of GL equations can be detailed in Appendix A.

3. Results and Discussion

The two superconductors inside of the sample (S1 and S2) each denote half of the
nanostructure; the quantities are scaled to units that depend on the parameters of S1. The
lateral size of the considered square superconducting sample is a = 400 nm, and the width
is d = 20 nm. This simulation includes two kinds of type II superconductors for the two
halves; we chose the following parameters in superconductor 1 (S1) and superconductor
2 (S2): a coherence length of ξ1(0) = 39 nm and ξ2(0) = 20 nm; a penetration depth of
λ1(0) = 52 nm and λ2(0) = 200 nm; a critical temperature of Tc1 = 9.25 K and Tc2 = 8.0 K.
In addition, the temperature used in the system was T = 6 K, and the parameters were
cξ= 0.26, cλ= 14.79, cT= 1.15, τ= 0.65, and cm= 1.

As an example, we chose the coherence length and penetration depth so that the
difference between both Ginzburg–Landau (GL) parameters in the sample was large in
order to establish a substantial difference between the components and appreciate the
behavior of their physical quantities. To begin with, the variation in the magnetization
was analyzed in the hybrid heterostructure due to the entrance of vortices into both
superconducting components, as illustrated in Figure 2 (left). When the vortices entered
into the sample made with one superconducting component, this routinely led to a decrease
in the magnetization showing jumps. However, the results in the HS showed that after one
jump, in which the magnetization should have decreased, the Meissner effect still grew
with the increase in the applied magnetic field, and a new jump in magnetization took
place. (See the snapshot of the magnetization curve in Figure 2 (top) point (a) and (b).)

Figure 2 (right) shows contour plots of the density of the superconducting order
parameter for different selected vortex states (first column) and the corresponding phase
of the order parameter (second column). The total angular momentum L through Ψ =
ψexp(iLφ) was used to characterize the vortex state. The effective angular momentum
was L = ∆φ/2π; for each clockwise path going from red to blue, a vortex was found:
L = 1, 2, 3, .... Because L1 represents the number of vortices in S1, we use L2 for S2. After
nucleation at the sample surface, the superconducting order parameter |Ψ| was trapped
inside the hybrid sample, which had a flux of Lφ0, where φ0 is the quantum flux.

As seen in snapshot (a) of the first column of Figure 2 (right), which corresponds to
the states L1 = 0 and L2 = 2, the first vortex lines to enter penetrated the sample in S2.
The increment in the jump in magnetization was modified by the entrance of magnetic
flux into the sample, which was proportional to the size of the vortex. There was a large
contribution to −M due to the entrance of the vortex into S1 (L1 = 1 and L2 = 2) (see
Figure 2b (right)); this was also made clear by comparing points (a) and (b) in Figure 2 (left).
This behavior was confirmed when the next two states were compared, as the state in S1
remained L1 = 1 while L2 = 4 (see Figure 2 (right) and (left) point (c)); then, L1 = 2 and
L2 = 3 (see Figure 2 (right) and (left) point (d)).
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Figure 2. (Color online) (Left) The curve represents the magnetization as a function of an applied
magnetic field H for a type II/type II superconducting square sample with a = 400 nm and a width
of d = 20 nm. (Right) Contour plots of the density of the superconducting order parameter for
different selected vortex states which correspond to the selected points on the magnetization curve
named with letters from (a–g); the upper section of the simulated sample is S1, and the characteristic
lengths are ξ1(0) = 39 nm and λ1(0) = 52 nm, whereas the lower section is S2 with ξ2(0) = 20 nm,
λ2(0) = 200 nm (first column), and the corresponding phase of the order parameter (second column).

For the six points (a–f) of the magnetization curve that were selected, the entry of the
magnetic flux (Φ) and the variation in the magnetization (∆M) are given in Table 1. The range
of the applied magnetic field that was considered was from H = 0 to H = 0.268Hc2,1(0),
where the magnetization jumps were more pronounced (see the snapshot in Figure 2 (top)).
It was observed that points (b) and (d) showed larger variations in the magnetization (−M);
only one vortex penetrated into S1 from S2, and the entry of flux (Φ) could represent this
behavior (see Table 1). Similar behaviors were observed in points (e) and (f), where a single
vortex also penetrated into S1, but at the same time, two vortices penetrated S2, resulting in
lower values of Φ than those of points (b) and (d). Although only one vortex penetrated S1
in the transitions of (b)–(d) and (e)–(f), there were differences in the values of ∆M and Φ0
due to the number of vortices that penetrated S2, which reduced the internal values of the
superconducting condensate; therefore, the magnetization and magnetic flux were reduced
(see Table 1).
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Table 1. The vortex states in S1 and S2, the applied magnetic field H/Hc2,1(0), the entry of magnetic
flux Φ/Hc2,1(0)ξ2

1 × 10−4 into the sample, and the variations in magnetization ∆M/Hc2,1 × 10−5 that
we obtained for the magnetization curve (Figure 2). The superconducting square sample had a length
of a = 400 nm and a width of d = 20 nm. For S1, the characteristic lengths were ξ1(0) = 39 nm and
λ1(0) = 52 nm; for S2, they were ξ2(0) = 20 nm and λ2(0) = 200 nm.

Point L1 L2 Φ ∆M

(a) 0 2 2.32 0.455
(b) 1 2 4.67 0.893
(c) 1 4 1.91 0.364
(d) 2 3 3.76 0.715
(e) 3 4 2.574 0.522
(f) 4 6 2.571 0.489

One consequence of simulating a superconductor system with two superconducting
samples is that it is necessary to obtain two upper-critical magnetic fields: H2,1(0) and
H2,2(0). These values are determined in a superconductor system by using the follow-
ing equation:

H2(0) =
H2,2(0)√

2κ2
=

ξ2
1

ξ2
2

H2,1(0)
√

2κ2
. (5)

For S1, we obtained H2 = 0.268H2,1, while for S2, we obtained H2 = 0.530H2,1; thus,
S1 would reach its normal state before S2, which implied that one half of the hybrid
superconductor would behave as a metal in the normal bonded state, with the other half
still being in the superconducting state. This is similar to the behavior of a superconductor
sample with Newman boundary conditions. This was reflected in the behavior of the
magnetization curve (Figure 2 (left)), where from point (g) to approximately point (k) was
the section in which the peaks corresponded to the magnetization for one superconductor.
In addition, we calculated (third critical field) H3(0) = 0.8962H2(0), which was related to
the surface superconductivity from the relation H3(0) = 1.69H2(0). We noticed that the
curve continued to decline beyond the value of H3 from point (k) in the magnetization curve
until it reached zero. This reflected that the existence of regions in the superconducting
state in the sample did not display the typical surface superconductivity. From point (k),
one can expect that the magnetization curve (Figure 2 (left)) would continue with the same
inclination and reach the normal state at H2, which would be less than that reached in this
case of H2 ≈ 2.5H2(0).

How do the vortex states look in a hybrid superconducting sample with square
geometry? High values of the order parameter |Ψ|2 are indicated by red regions, whereas
lower values are indicated by blue regions. It is known that the coherence length is the
scale of the characteristic length over which |Ψ|2 is normalized, and it is related to the size
of the vortex core. Therefore, it is intuitive that the size of the vortices will change when
they penetrate from one superconductor into another, as shown in the following figures
depicting vortex states.

Figure 2 (right) (a–f) shows the density of the order parameter for vortex states with
different values of L1 and L2 in each superconductor. For L2 = 2 and L1 = 0, the entry
of the first vortex took place in S2 at H = 0.083Hc2,1, as shown in Figure 2 (right) (a).
These vortices penetrated through the component with a lower value of |Ψ|2. In the next
state (Figure 2 (right) (b)), L = 1 in S1 and L = 1 in S2, which meant that one new vortex
penetrated S2, and one vortex did the same in S1 from S2 at H = 0.125Hc2,1.

In this state, the biggest variations in the magnetization and entry of flux were reached
(Table 1 (b)). For L2 = 4 and L1 = 1, there were two more vortices in S2 that joined the others
close to the boundary between the two components. Once the vortices penetrated S2, they
moved away from the screening currents in their boundary, but the vortices could not reach
the middle of the sample due to the screening currents of S1. Additionally, despite the vortex
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states of L2 = 4 and L1 = 1 (Figure 2 (right) (c)), only two vortices penetrated S2, as in the
states of L2 = 2 and L1 = 1 (Figure 2 (right) (b)); the variations in the magnetization and flux
were minor in comparison with those of the states in Figure 2 (right) (b) (see Table 1).

Figure 3g–k displays the transitions from point (g) at H = 0.332Hc2,1 to (k) at H =
0.875Hc2,1 (Figure 2 (top)). Because the size of the vortices in S1 was larger than that of the
vortices in S2, taking into account that the vortex radii were dependent on the coherence
length (ξ1(0) = 39 nm and ξ2(0) = 20 nm), S1 reached the normal state before S2 did (see
Figure 3l). Then, vortex entry from S1, which already achieved the normal state, into S2
occurred; this increased the number of vortices inside it (see Figure 3m). In contrast, a
superficial condensate was obtained in S1 (see Figure 3n), and finally, this was found only
in the corners of S2 (see Figure 3o) until the total normal state was reached.
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Figure 3. (g–i) (Color online) Contour plots of the superconducting order parameter for selected
vortex states that show that the vortices move from S1 to S2 with larger values of the applied magnetic
field, when considering the case analyzed in Figure 2 to follow the evolution of the behavior of the
vortex state. Snapshots (l–o) show contour plots of the superconducting order parameter for selected
vortex states; these show the vortices that correspond to the lower jumps in the magnetization curve.
The simulation corresponds to a type II/type II superconducting square sample with a = 400 nm and
a width of d = 20 nm. The characteristic lengths for S1 are ξ1(0) = 39 nm and λ1(0) = 52 nm, and for
S2, they are ξ2(0) = 20 nm and λ2(0) = 200 nm.

Figure 4 shows the characteristic curves of the vorticity as a function of the applied
magnetic field. The numbers of vortices in each component of the hybrid superconducting
sample were N1 (S1) and N2 (S2). As a result of the presence of two superconductors in
the same sample, the vortex transitions followed distinct dynamics in each case, but when
following the curves for each component, we found that the number of vortices in S2
increased and decreased, while that in S1 only increased. The number of vortices was the
same in both components for several values of H (see Figure 4c (inset)) in the state where
N2 = 8 and N1 = 8. Therefore, the values of the order parameters in both components
behaved similarly for a certain range of values of H. Finally, as is more clearly shown
in the inset of Figure 4d, it is interesting to note the inversion of the curves and, with
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it, the variation in the number of vortices on each side of the hybrid superconductor, as
evidenced in the state where N2 = 10 and N1 = 14 at H = 0.512Hc2,1. Here, the number
of vortices was lower in S2 than in S1, and N1 always grew. This result was because the
superconducting condensate depreciated almost everywhere in S1; the screening currents
decreased, causing a greater increase in the number of vortices in S1 that penetrated from S2.

... .

.

.

.

.

.

.

.

.

.

.

.

.

Figure 4. (Color online) The curve represents the vorticity as a function of the applied magnetic
field H for a type II/type II superconducting square sample with a = 400 nm and a width of
d = 20 nm. The characteristic lengths for S1 are ξ1(0) = 39 nm and λ1(0) = 52 nm, and those for S2

are ξ2(0) = 20 nm and λ2(0) = 200 nm.

Figure 5 shows the behavior of the supercurrent density, and the size of the vortices in
each component can be observed.



Condens. Matter 2023, 8, 104 9 of 16

Figure 5. (a–g) (Color online) The corresponding simulation of the behavior of the supercurrent for
different selected vortex states in a type II/type II superconducting square sample with a = 400 nm
and a width of d = 20 nm. The characteristic lengths for S1 were ξ1(0) = 39 nm and λ1(0) = 52 nm,
and those for S2 are ξ2(0) = 20 nm and λ2(0) = 200 nm.

Figure 5a–g shows the vector plots (blue arrows) of the supercurrent in the super-
conducting square with two components for the states at H = 0.02Hc2,1, H = 0.083Hc2,1,
H = 0.167Hc2,1, H = 0.263Hc2,1, H = 0.688Hc2,1, H = 1.035Hc2,1, and H = 1.713Hc2,1,
respectively. In Figure 5a, it is clear that the supercurrent in the sample flowed clockwise,
but it changed its magnitude in S1 and S2, thus proving the existence of two kinds of
components in the same sample under the same applied magnetic field. Therefore, it was
possible to see that the current was larger in S1 than in S2, and this explained why the
vortex entry occurred in S2 first. The size of the current is indicated by the length of the
arrows flowing counterclockwise around the vortex in the center. Figure 5b,c show the
differences between the sizes of the currents around the vortices in S1 and S2, which are
directly related to the quantization flux in each component; they are also reflected in the
variations in the measurement of the magnetization in the sample (see Figure 2) when the
vortex penetrated into S1 from S2.

Now, a hybrid system is considered in which the parameters were selected to simulate
a type II superconductor and a type I superconductor; the size of the superconducting
sample was a = 400 nm and d = 20 nm. The following parameters were chosen for S1
and S2: a coherence length of ξ1(0) = 39 nm and ξ2(0) = 120 nm, a penetration depth
of λ1(0) = 52 nm and λ2(0) = 72 nm, and a critical temperature of Tc1 = 9.25 K and
Tc2 = 8.0 K. The temperature used in the system was T = 6 K, and the parameters were
cξ= 9.46, cλ= 1.91, cT= 1.15, τ= 0.65, and cm= 1. In this analysis, we are interested in the
magnetization behavior of a hybrid superconductor when one of the halves (S2) is a type I
superconductor, while S1 retains the same parameters. In addition, in this case, the profile
of the magnetization in response to the applied magnetic field variations is not typical.

In the present case, the first vortex state was obtained (L2 = 1 and L1 = 0) (Figure 6a)
at H = 0.036Hc2,1, but as in the previous case, the magnetization did not decrease after
reaching its first vortex entrance. For the two next vortex states—L2 = 2 with L1 = 0 at
H = 0.063Hc2,1 and L2 = 2 with L1 = 0 at H = 0.088Hc2,1—the curve showed an increase
in the magnetization (Figure 6b,c). At the same time, the peaks shown in (a–c) displayed a
decrease in magnetization until the top of the curve was reached. It is clear that the increase
in magnetization was due to S1, while vortices that penetrated S2, which still increased
with every step of H, as a consequence of the magnetization did not start to decay with
the entry of the first vortex into S2. However, following peaks were reduced because of
every vortex that penetrated S2. As a result of this, it was shown that the thin hybrid
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superconductor made of type I/type II compounds displayed unconventional magnetic
properties that have no counterparts in single-component systems.

Figure 6. The curve represents the magnetization as a function of the applied magnetic field H for a
type II/type I superconducting sample. The size of the superconducting sample is a = 400 nm and
d = 20 nm. The following parameters are chosen for S1 and S2: a coherence length of ξ1(0) = 39 nm
and ξ2(0) = 120 nm and a penetration depth of λ1(0) = 52 nm and λ2(0) = 72 nm.

In points (d–g) of Figure 6, the number of vortices entering S1 was L1 + 1, and a similar
situation occurred in points (b,d–f) of Figure 2. However, in the case of the type II/type II
sample, there were peaks between these points; therefore, the magnetization curve shows
the changes due to the entry of vortices into S2. Nevertheless, this did not occur in our case
with the type I/type II sample; the changes were not noticeable because the magnetization
dropped off faster in S2 than in S1, where a normal state was reached at H = 0.124Hc2,1
and H = 0.530Hc2,1, respectively. Additionally, superficial superconductivity remained in
the sample until the value of the applied magnetic field reached H = 0.896Hc2,1.

This behavior was related to the parameters that were selected to simulate S1 and
S2 in the same sample; this can be explained with Equation (2). In this case, 1/cλ = 1.91
and 1/cm = 1.0, which meant that ψ2

∞,2 was lower than ψ2
∞,1. Therefore, as in the previous

section for the case of the type II/type II sample, transitions with large variations in the
magnetization curve were produced in S1, whereas small variations were produced in S2.
For the six selected points (a–g) on the magnetization curve, the vortex states in S1 (L1)
and S2 (L2), the entry of magnetic flux, and the variations in the magnetization (∆M) are
given in Table 2. It is noticeable that the values of the entry of flux (Φ0) at points (a–c) in
Figure 6 showed a reduction in the peaks of the magnetization curve, whereas at point (d),
∆M and Φ0 grew again; then, these quantities decreased once again (see points (d–g) in
Table 2). Points (a–c) in Figure 7 show the vortex configuration that was obtained for a very
strong type I superconductor (S2) in one half, whereas the other half was occupied by a
type II superconductor (S1). With low fields, we observed a configuration of vortices in
only S2, which was indicative that the value of the supercurrent was lower than that in S1
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(see Figure 7a). A value of ξ2 that was larger than that of λ2 was selected for the simulation
of the type I superconductor in this sample, and ξ2 is why the size of vortices increased,
thus allowing fewer vortices in S2 in comparison with the case of the type II/type II sample.
In consequence, the superconductivity quickly depreciated in S2, as can be seen in the first
column in Figure 7c, where there were only three vortices. The number of vortices can
be noticed in the second column of the phase of the order parameter in the same figure.
This depreciation could also be noticed in the diminution of the supercurrent in S2, which
was represented by arrows in this simulation; these disappeared in some regions of the
sample, which implied that these regions were in the normal state (see Figure 7, third
column). Moreover, in Figure 7, it is noticeable that the magnetization increased despite
the entry of vortices into the sample, and the first three peaks decreased. This behavior of
the magnetization curve can be explained by the snapshots of the supercurrent because
as the applied magnetic field increased, it significantly decreased in S2, while in S1, it still
contributed to the increase in magnetization.

.

.

.

.

.

.

.

.

.

Figure 7. (a–c) (Color online) Contour plots of the density of the superconducting order parameter for
different selected vortex states (first column), the phase of the order parameter (second column), and
the supercurrent corresponding to the first three vortex states in the sample (third column). The size
of the considered superconducting sample is a = 400 nm and d = 20 nm. The following parameters
are chosen for S1 and S2: a coherence length of ξ1(0) = 39 nm and ξ2(0) = 120 nm and a penetration
depth of λ1(0) = 52 nm and λ2(0) = 72 nm.
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Table 2. The vortex states in S1 and S2, the applied magnetic field H/Hc2,1(0), the entry of magnetic
flux Φ0/Hc2,1(0)ξ2

1 × 10−4 into the sample, and the variations in magnetization ∆M/Hc2,1 × 10−5

that we obtained for the magnetization curve shown in Figure 6 (points (a–g)). The size of the
considered superconducting sample was a = 400 nm and d = 20 nm. The following parameters were
chosen for S1 and S2: a coherence length of ξ1(0) = 39 nm and ξ2(0) = 120 nm and a penetration
depth of λ1(0) = 52 nm and λ2(0) = 72 nm.

Point L1 L2 H Φ ∆M

(a) 0 1 0.038 4.328 0.824
(b) 0 2 0.063 2.363 0.450
(c) 0 3 0.088 0.493 0.094
(d) 1 3 0.110 4.242 0.807
(e) 2 5 0.161 4.164 0.792
(f) 3 7 0.211 3.430 0.653
(g) 4 9 0.260 2.689 0.512

As shown in Figure 7, it was possible to approximate the position of the vortex in each
component of the phase of the order parameter at the endpoint, which is shown by a change
from blue to red in the figure. If the figures of the superconducting current density are
overlaid with the corresponding phase of the order parameter, they must match the center
of the vortex and the endpoint of the phase (see Figure 7, second column). The relevant
results of the inclusion of a type I superconductor in the sample show that the value of
H at which the first entry of a vortex into S1 occurred could be modified by choosing the
correct S2 for the other half. This possibility offers multiple options for controlling the
magnetization, as well as the inputs of vortices, in a hybrid superconductor for the specific
design of superconducting electronic devices.

4. Conclusions

In summary, we presented a theoretical Ginzburg–Landau (GL) study of a hybrid
heterostructure made of two superconducting components. Novel and rich magnetization
curves, the density of the supercurrent, and the vortex configurations in a type II/type II
sample and a type I/type II sample were discussed; both kinds of samples can be engi-
neered with proper choices of the constituent components by tuning the type II and type
I properties to influence the transitions of vortex matter. The proposed superconducting
system is, in many ways, peculiar and different, as the competing interactions in each
component are related to the choice of the ratio for their characteristic lengths (cλ, cξ),
critical temperatures (cT), and electron mass (cm). Our superconducting system is control-
lable and allows for convenient vortex imaging and the detection of transitions between
phases by using experimental methods. Moreover, this system opens a further research
direction involving the study of three-dimensional systems with novel two-component
configurations by using weak links or magnetic materials between them, thus making our
system a very interesting testbed for a plethora of new phenomena.
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Appendix A. Theoretical Approach

In this section, we describe a numerical approach for solving the coupled Ginzburg–
Landau (GL) equation. The numerical approach is based in the link variable for vector
potential, which is used to discretize the two GL equations on a rectangular lattice and
solve them self-consistently. The second GL equation is solved using the Fast Fourier
transformation, being a Poisson-type equation.

Appendix A.1. Dimensionless Formulas in the Ginzburg–Landau Theory

Dimensionless form of the Free Energy Functional in a Hybrid System

In order to make the GL equations dimensionless, scaling quantities will be chosen.
Since our sample contains two types of superconducting material, one of the components
has to be chosen to base the units on. The component to be used as a base component
can be arbitrary, although later, some aspects need to be taken into account with regard
to making this choice. In this work, we will denote the two superconductors as S1 and S2,
and all the the quantities will be in units depending solely on the parameters of S1.

F = ∑
i=1,2

∫
dV[αi(0)

(
1− T

Tci

)
|Ψ|2 + βi

2
|Ψ|4

+
1

2m∗i
×
∣∣∣∣(−i∇− 2e

c
A
)

Ψ
∣∣∣∣2 + (H−Ha)2

8π
] (A1)

With H, the response of the superconductor on the applied magnetic field (Ha), α(0) < 0,
where the index i represents either S1 or S2 depending on the location inside the volume V.
The GL equations will be scaled to the parameters of S1, with the variables α1, β, and m∗1 .

Distance will be measured in units of ξ1(0) =
√
−}2/2m∗1α1(0), the temperature in units of

the critical temperature of S1 (Tc,1), the order parameter Ψ in units of Ψ∞, 1 =
√
−α1(0)/β1,

the vector potential in units of A0,1 = c}/2eξ1(0), the magnetic field in units of the upper
critical field of S1, Hc2,1 = c}/2eξ2

1(0), and the free energy in units of F0 = α2
1(0)/β1. This

is conducted by transforming the variables as follows:
r −→ ξ1(0)r′,
∇ −→ 1

ξ1(0)
∇′,

Ψ(r) −→ Ψ∞,1ψ(r′),
A −→ A0,1A′,
H −→ Hc2,1H′,
V −→ ξ3

1(0)V
′,

F −→ F0ξ3
1(0)F′,

Working on (A1), we obtain the expression for free energy in the following form:

F =
∫

dV[−
(

1− T
Tc,i

)
αi(0)
α1(0)

|Ψ|2 + 1
2

βi
β1

Ψ|4 − }2

2m∗1ξ2
1(0)α1(0)

|(−i∇−A)Ψ|2

+
H2

c2,1

F0

(H−Ha)2

8π
]. (A2)

By using the fact that ξi(0) =
√
−}2/2m∗i α(0) and that κ2

1 = H2
c2,1/8πF0 = m2c2β−

1/8π}2e2, we obtain the following form for the free energy of our system:

F =
∫

dV[−
(

1− Tc,1

Tc,i

T
Tc,i

)
m∗1
m∗i

ξ2
1(0)

ξ2
i (0)
|Ψ|2 − 1

2

(
m2

1
m2

i

)2
λ2

i (0)
λ2

1(0)
ξ2

1(0)
ξ2

i (0)
+

m∗1
m∗i
|(−i∇−A)Ψ|2 + κ2

1(H−Ha)
2]. (A3)
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Next, variable t = T/T∗1 and ratios cT = Tc,1/Tc,2, cλ = λ2
2(0)/λ2

1(0), cξ = ξ2
2(0)/ξ2

1(0),
and cm = m∗1/m∗2 are defined. Equation (A3) now takes the form:

F =
∫

dV[−(1− cTt
cm

cξ
)|Ψ|2 + 1

2
cλc2

m
cxi
|Ψ|4 + cm|(−i∇−A)Ψ|2 + κ2

1(H−Ha)
2], (A4)

where cm, cξ , cλ, and cT are equal to 1 inside S1 material.

Appendix A.2. Derivation of GL Equations in a Hybrid System

Appendix A.2.1. First GL Equation

An infinitesimal change of order parameter δψ with which the free energy should
remain invariant (δF = 0), i.e.,

δF =
∫

Vs
dV[−(1− cTt)

cm

cξ
ψδψ∗ +

cλc2
m

cξ
|Ψ|2ψδψ∗ + cm(Πψ) · (Π∗δψ∗)] + c.c. = 0. (A5)

We introduced the canonical momentum operator Π = −i∇− A. The last term of
Equation (A5) can be simplify by using the relationship ∇ · (cv) = v · ∇c + c∇ · v, where c
is a scalar, but also, taking into account Gauss’s theorem (

∫
∇ ·N =

∮
dSn ·N, with n as

the unit vector perpendicular to the surface), we obtain:

δF =
∫

Vs
dVδψ∗[−(1− cTt)

cm

cξ
ψ +

cλc2
m

cξ
|Ψ|2ψ + cmΠ2ψ] = i

∮
dS[n ·Πψ] + c.c. = 0. (A6)

The fact that this equation must hold for arbitrary δψ∗ means that the terms between
brackets have to be 0. This leads to the first GL equation:

−(1− cTt)
1
cξ

ψ +
cλ

cξ
|ψ|2ψ + Π2ψ = 0, (A7)

where cm = 1 and the boundary condition:

n ·Πψ|Ss . (A8)

Appendix A.2.2. Second GL Equation

In order to derive the second GL equation, the vector potential will be varied by δA.
The part of free energy containing the magnetic field then gives:

FM(A + δA) =
∫

dV
[
cm|(Π− δA)ψ|2 + κ2

1(∇× (A + δA−A0))
2
]
. (A9)

We considered H = ∇×A and Ha = ∇×A0, where Ha is the applied magnetic field.
Now, since FM(A + δA) ≈ F(A) + δF, we can separate the terms that are linear in δA to
find δF:

δF =
∫

dV
[
cm(−δA(ψ∗Πψ))− δA(ψΠ∗)ψ∗)) + 2κ2

1(∇× (A−A0))(∇× δA)
]

=
∫

dV
[
−2cmδAR(ψ∗Πψ) + 2κ2

1(∇× (A−A0)) · (∇× δA)
]
. (A10)

The second part of Equation (A10) can be rewritten by using the Stock’s theorem
(∇(a× b) = b · (∇× a)− a · (∇× b)) as

δF =
∫

dV
[
2κ2

1(∇(δA× (∇× (A−A0)) + δA · (∇×∇× (A−A0)))
]
. (A11)
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The first part of Equation (A12) can be modified into a surface integral using Gauss’s
theorem. Since the surface lies at infinity, A = A0; thus, the contribution of the surface
integral vanishes. The variation of the free energy becomes:

δF = 2
∫

dVδA
[
−cmR(ψ∗Πψ) + κ2

1(∇×∇× (A−A0))
]
= 0. (A12)

This equation should hold for arbitrary δA. This can only be the case if the term
between square brackets is zero. This yields the second Ginzburg–Landau equation:

js = cmR(ψ∗Πψ) = κ2
1(∇×∇× (A−A0)), (A13)

where js is the supercurrent, induced in the superconductor, in response to the applied
magnetic field. The equation can be further reduced after choosing the Coulomb gauge
∇ · (A−A0) = 0.
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