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Abstract: When a shutter, which differentiates between two adjacent particles’ reservoirs with a
voltage gap, is lifted, a current emerges. In this paper, the temporal dynamics of this emerging current
is analyzed. The main results are as follows: (A) the current’s prefactor in the short-time behavior
is related to the long-time frequencies, by which the current converges to its equilibrium value (the
conductance quantum unit 2e2/h). (B) In the short-time regime, the current is proportional to the
square root of the time. (C) The maximum overshoot conductance is bounded by Gmax = ζe2/h,
where ζ is a universal value which is very close to Euler’s number. (D) Most of these results are valid
for a thin wire in 3D, even in the presence of electron–electron interactions.

Keywords: conductance; instantaneous current; universal dynamics; short-time dynamics;
quantum conductance

1. Introduction

There is a fundamental distinction between the properties of classical currents and
quantum ones. In the semi-equilibrium case, similarities between the two appear, where
the Fourier law [1,2] holds. Therefore, the linear relation between potential difference and
net current is valid both in the classical and quantum cases. In particular, this relation can
be applied in the derivation of the Landauer formula [3,4].

However, in the far-from-equilibrium case, the differences are striking. While the
classical Fourier law connects the current (j) to the gradient in the particles’ density (n) [1,2],

j = eD∇n, (1)

the quantum current is related to a non-classical property—the wavefunction’s phase
(φ) [5], i.e.,

j = −e(ℏ/m)n∇φ, (2)

where ℏ and m are the reduced Planck constant and the particles’ mass, respectively.
The mismatch between the classical and quantum world is responsible for surprising

phenomena. In particular, when a beam of particles is abruptly released by lifting a
shutter [6–10], a constant current is instantly generated all over space [11].

There are no general methods to investigate the current’s dynamic out of equilib-
rium. There are some specific approaches to investigate out-of-equilibria scenarios [12,13].
Most of the methods are based on perturbative approaches, such as the well-known Non-
Equilibrium Green Function approach [14,15] (for reviews on the NEGF method, see
Refs. [16,17]). Due to their perturbative nature, they are unsuitable for handling the dynam-
ics of systems with sharp density gradients.

Seemingly, this drawback is not a real problem, since physical shutters cannot create
a discontinuity in the wavefunction [11]. Moreover, since currents usually emerge in
electrical systems due to voltage differences between particles’ reservoirs, the shutter must
separate between the two reservoirs’ particles’ wavefunctions. In practice, the shutter’s
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barrier cannot be infinitely large, but the barrier can be opaque enough so that the tunneling
probability (and therefore the leakage current as well) will be practically zero during the
experiment. In this case, the wavefunctions practically vanish at the shutter’s spatial
domain. Consequently, the shutter repels the particles (see below), and therefore, even
the density’s slope is continuous at the shutter’s edges. Therefore, unlike the classical
equivalent (and unlike the diffusion dynamics), when the shutter is abruptly removed, the
current must initially be zero. But even then, this change in the particles’ density cannot
predict the quantum behavior of the current. Moshinsky [6,7] was the first to analyze the
effect of a quantum shutter. His shutter dynamic investigated the free propagation of a
discontinuous beam of particles. Therefore, as was explained above, it cannot describe a
realistic shutter. Nevertheless, his model predicted temporal oscillations, which resemble
Fresnel diffraction, i.e., oscillations, that are manifestations of quantum effects. Since
oscillations appear whenever a localized wavefunction is released [10,11], they should
appear even when a more realistic shutter is lifted.

Physical shutters, unlike Moshinsky’s one, repel the particles, and therefore initially
create an abrupt change in the slope of the wavefunction, rather than in the wavefunction
itself. It should be emphasized that since the particle density is proportional to the square
of the wavefunction, then even the density’s slope is continuous.

There has been a lot of research on transmission through a quantum dot in variable
potential (see, for example [18]). These potential changes produce oscillations in the current.
However, these studies neglected the effect of the discontinuity (or at least neglected
the sharp changes) in the wavefunction’s slope. Consequently, the system’s response in
the short-time regime was not investigated, and the universalities that appeared there
were missed.

In this paper, we analyze the current that arises when a more realistic shutter is
lifted between two adjacent (charged) particles’ reservoirs. The object is to identify the
universalities that appear in this process. Indeed, we will show below that the short-
time behavior of the current is closely related to the long-time oscillations. Moreover, the
maximum instantaneous value of the current and the instantaneous conductance are also
bounded by universal values.

In what follows, we start with a one-particle Schrödinger equation in one spatial
dimension, when interaction between particles is neglected. Then, we explain why most of
the universal patterns are valid even for a realistic thin wire, i.e., a wire in 3D and even in
the presence of electron–electron interactions.

2. The System

The system can be initially presented using the following Schrödinger equation:

iℏ∂Ψ
∂t

= − ℏ2

2m
∂2Ψ
∂x2 + U(x)Ψ (3)

where U(x) =
{

0 f or |x| ≥ ∆ and ∞ otherwise
}

is the potential which separates
between the two reservoirs.

Initially, the particles on the left reservoir occupy all states within the range
0 < E < EF + eV/2, and on the right one, they occupy all states whose energy is within the
range 0 < E < EF − eV/2 (see Figure 1). It is taken that the temperature is close to zero.

The eigenstates on the left reservoir are then
Ψ(L)

k (x, t = 0) = N sin(k(x + ∆))Θ(−∆ − x) for

0 < ℏ2k2/2m < EF − eV/2, (4)

and on the right one, they are
Ψ(R)

k (x, t = 0) = N sin(k(x − ∆))Θ(x − ∆) for

eV < ℏ2k2/2m + eV < EF + eV/2, (5)
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where Θ(x) =
{

1 f or x ≥ 0 and 0 otherwise
}

is the Heaviside step function, N2 =
2/L is the normalization constant, and L is the length of half space.

Initially, it follows that the particles’ density is

n(x) =
L
π

 kF∫
0

dk
∣∣∣Ψ(L)

k

∣∣∣2 + kF∫
0

dk
∣∣∣Ψ(R)

k

∣∣∣2
 (6)

where kF ≡
√

2m(EF − eV/2)/ℏ. Therefore, as can be seen in Figure 2, the shutter repels
the particles to a distance k−1

F .
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Figure 1. System schematic. Two particle reservoirs with a chemical potential difference of eV and a
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Figure 2. The particles’ density as a function of the spatial coordinate x. The vertical dashed lines
represent the shutter’s position.

3. The Solution

Due to the symmetry of the problem, it is sufficient to investigate the temporal dynam-
ics of the left states. After the barrier is released, i.e., when the potential shutter vanishes,
each one of the left eigenstates propagates according to the following:

Ψ(L)
k (x, t > 0) = N

1
2
[M(x + ∆, k, t)− M(x + ∆,−k, t)] (7)

where

M(x, k; t) ≡ 1
2

exp
(

ikx − i
ℏ

2m
k2t
)

erfc
(

x − ℏkt/m√
2itℏ/m

)
(8)

is the Moshinsky function [6,7] and erfc is the complementary error function [19].
Therefore, since

∂M(x,k;t)
∂x ≡ 1

2 exp
(

ikx − i ℏ
2m k2t

)
×[

ik erfc
(

x−ℏkt/m√
2itℏ/m

)
−
√

2m
iπtℏ exp

(
−
(

x−ℏkt/m√
2itℏ/m

)2
)] , (9)
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the current density of the single state with the wavenumber k satisfies

j(L)
k = i

eℏ
2m

(
∂Ψ(L)

k
∂x

Ψ∗(L)
k −

∂Ψ∗(L)
k

∂x
Ψ(L)

k

)
= − eℏ

m
ℑ
[

∂Ψ(L)
k

∂x
Ψ∗(L)

k

]
, (10)

where ℑ represents the imaginary part and the asterisks stand for the complex conjugate.
Then (following Equations (7)–(10)),

j(L)
k = e

ℏ
m

(
N
4

)2
k

[∣∣∣∣erfc
(

x + ∆ − ℏkt/m√
2itℏ/m

)∣∣∣∣2 − ∣∣∣∣erfc
(

x + ∆ + ℏkt/m√
2itℏ/m

)∣∣∣∣2
]

. (11)

Before we continue to calculate the total current, it is instructive to investigate the dynamics
of this single state. For a given wavenumber k, one can define dimensionless parameters,

τ ≡ k2ℏt/2m, ξ ≡ kx, ξ0 ≡ k∆, and J ≡ jk(m/keℏ)(4/N)2, (12)

in which case, the current reveals a universal form

J(ξ, τ) ≡
∣∣∣∣erfc

(
ξ + ξ0 − 2τ

2
√

iτ

)∣∣∣∣2 − ∣∣∣∣erfc
(

ξ + ξ0 + 2τ

2
√

iτ

)∣∣∣∣2. (13)

This is a universal pattern, since in terms of the normalized time τ ≡ k2ℏt/2m and
normalized space ξ ≡ kx, it depends only on a single parameter ξ0 ≡ k∆, and in the
limit of ξ0 → 0 (i.e., an extremely narrow shutter), the pattern is totally universal. The
spatiotemporal structure of this dimensionless current is presented in Figure 3.
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Figure 3. A false-color presentation of the spatiotemporal structure of the dimensionless current J, as
a function of the dimensionless time τ ≡ k2ℏt/2m and dimensionless space ξ ≡ kx for ξ0 ≡ k∆ = 0.

As can be seen from Figure 3, the current emerges at the transition (singular) point
and propagates to both directions, i.e., for a given τ, the current is restricted to the regional
space −ξ0 − 2τ < ξ < −ξ0 + 2τ. Beyond these points, there are only ripples, which are
also universal, as will be shown below.

Consequently, there are non-zero currents everywhere. Even when the voltage dif-
ference V is zero, currents are spread all over space when the shutter is lifted, albeit the
average current is zero, and in particular, the current at the shutter’s center, i.e., x = 0, is
always zero even when it is lifted. Such a case is presented in Figure 4. Clearly, the ripples
exist even when the shutter has zero width (∆ = 0). A non-zero current emerges at x = 0
when there is a net voltage difference. At zero temperature, the current reads
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j(x = 0) = 2 L
π

kL
F∫

kR
F

dkj(L)
k

∼=

1
2

[∣∣∣erfc
(

∆−ℏkt/m√
2itℏ/m

)∣∣∣2 − ∣∣∣erfc
(

∆+ℏkt/m√
2itℏ/m

)∣∣∣2] e2V
h

(14)

where kR
F ≡

√
2m(EF − eV/2)/ℏ and kL

F ≡
√

2m(EF + eV/2)/ℏ are the maximum wavenum-
bers of the right and left reservoirs, respectively. The prefactor 2 corresponds to the two
spin states.
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however, unlike Figure 2, initially both states Ψ(L)
k (x, t = 0) and Ψ(R)

k (x, t = 0) exist. In this example,
it was taken that ξ0 ≡ k∆ = 10.

In the derivation of (14), it was taken that EF >> eV/2.
Therefore, the conductance G ≡ limV→0[j(x = 0)/V] is time-dependent:

G =
1
2

[∣∣∣∣erfc
(

∆ − ℏkFt/m√
2itℏ/m

)∣∣∣∣2 − ∣∣∣∣erfc
(

∆ + ℏkFt/m√
2itℏ/m

)∣∣∣∣2
]

e2

h
(15)

where kF can be approximated by the average
(
kR

F + kL
F
)
/2.

The system is governed by three relevant time scales:

t1 ≡ m∆2/2ℏ, t2 ≡ m∆/ℏkF, and t3 ≡ 2mk−2
F /ℏ. (16)

Since n = kF/π is the particles’ density (ekF/π is the charge density), then the size of
πn∆ (which can be interpreted as the number of particles that populate a region which is
equal to the shutter’s width) determines which length scale is larger. In the low-density
scenario, πn∆ << 1, then t1 << t2 << t3 and vice versa; when πn∆ >> 1, then
t3 << t2 << t1. It is easier to investigate the different time domains using the dimension-
less temporal parameters as follows:

τ1 ≡ k2∆2/4 = ξ2
0/4, τ2 ≡ kF∆/2 = ξ0/2, and τ3 ≡ 1. (17)

It should be pointed out that in the limit ξ0 → 0 (this is the regime of a narrow shutter,
or low density n∆ << 1), Expression (15) turns into a simpler form:

G = 2ℜ
[

erf
(

kF

√
i ℏt

2m

)]
e2

h =

2 e2

h

{
C
(

kF

√
ℏt

πm

)
+ S

(
kF

√
ℏt

πm

)} (18)
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where C(·) and S(·) are the Fresnel C and S integrals [19] and ℜ represents the real part.

4. Short-Time Behavior

When ξ0 is a large number (ξ0 > 1), there is only one short-time dynamic. In this case,
the conductance rises as G ∼ t2, or more precisely

G ∼=
[

2
π

kF
(tℏ/m)2

∆3

]
e2

h
= 2n

(tℏ/m)2

∆3
e2

h
. (19)

However, if ξ0 << 1, the dynamic behavior can vary drastically in the short-time regime.
In Figure 5, the scenario with ξ0 = 0.03 is presented. As can be seen from this figure,

the three time scales are clearly shown.
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In the very short-time regime, i.e., t << t1 (τ << τ1), the conductance agrees with
Equation (19); however, between the time scales, t2 << t << t3 (τ2 << τ << τ3) G ∼ t1/2, i.e.,

G ∼= n

√
2ht
m

e2

h
=

√
EFt
ℏ

e2

h
, (20)

where, again, n = kF/π is the particles’ density. In between these temporal behaviors
t1 << t << t2, there is a gradual transition.

Clearly, when the shutter width goes to zero, Equation (20) is valid as long as τ << τ3,
i.e., (20) is valid in the short-time domain.

5. Long-Time Behavior

In the long-time regime, τ >> τ3 = 1 and the current oscillates. In this regime,
Expression (15) can be approximated by the following:

G ∼= 2
(

C
(
α−

√
2/π

)
+ S

(
α−

√
2/π

))
e2/h (21)

where C(·) and S(·) are again the Fresnel C and S integrals, respectively [19], and
α− ≡ (∆ − ℏkFt/m)/

√
2tℏ/m. Equation (21) can be further approximated by the following:

G ∼= 2
[

1 +
1

α
√

π
cos
(
α2
− +

π

4

)] e2

h
. (22)

Equation (22) emphasizes the fact that the current oscillates with varying frequency,

f (t) =
1

2π

∂
(
α2
−
)

∂t
=

k2
F(ℏ/m)

4π
− ∆2

4πt2ℏ/m
, (23)
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which converges to the frequency

f∞ ≡ f (τ → ∞) = n2h/8m. (24)

The higher the particles’ density, the higher this frequency; however, the rate in which
the system converges to equilibrium is independent of the particles density or mass. In the
long-time regime,

G ∼ 2
e2

h

[
1 − 1/

√
π

nπ
√
ℏt/2m

cos
[(

nπ
√
ℏt/2m

)2
+ π/4

]]
, (25)

and eventually, the conductance converges to its well-known equilibrium value

G∞ = 2e2/h, (26)

with an oscillation amplitude that decays as t−1/2. In this regime, the dependence on the
specific properties of the system disappears and the well-known universality reappears.

However, we meet another universal relation between the short-time conductance and
the long-time oscillations’ frequency; namely, in the regime of a narrow shutter, we find

G(t) ∼ n

√
2h
m

t
e2

h
= 4

√
f∞t

e2

h
. (27)

Moreover, another universality appears. Initially, unlike the classical analogy, the
current is zero and rises monotonically to an overshoot value and only then oscillates and
converges to its final value.

The maximum overshoot current value is dependent on the shutter’s width. However,
as can be seen from Figure 6, the variations are miniscule. In fact, a good approximation
of Gmax can be evaluated using the first maximum of (25), i.e., it can be evaluated in the
absence of the shutter, in which case

Gmax ∼=
(

2 +
4

π
√

3

)
e2

h
∼= 2.73

e2

h
. (28)
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In Figure 7, Gmax ≡ max
t

[G(t)] is plotted as a function of the normalized shutter’s

width ξ0 ≡ kF∆ for five orders of magnitude. In this regime, Gmax varies by less than 3%.
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Since the first maximum is reached approximately at α2
−
∼= 3π/4, then the two extreme

values can be evaluated by substituting this value into the conductance formula for the two
limiting regimes (ξ0 = 0 and ξ0 → ∞ ). The lower value can be evaluated by the following:

Gmax ∼= 2ℜ
[
erf
(√

i3π/4
)] e2

h
∼=

2
[
C
(√

1.5
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1.5
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and the upper value can be evaluated by the following:
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It should be emphasized that this is a local instantaneous conductance which can
exceed the equilibrium value (26). This is possible due to an instantaneous increase in
the particles’ density (see Figure 2) followed by a similar decrease in the particles’ density.
Consequently, on average, the equilibrium value is restored.

Furthermore, the average value is almost exactly equal to Euler’s number e = 2.71 . . ..

6. Quantum Wire in 3D

The above equations were derived using the single particle 1D Schrödinger equation.
In reality, the channel is a thin wire in 3D, and in general, electron–electron interaction
cannot be neglected. However, most of the conclusions of the 1D scenario are still valid.

When the wire’s width (w) is very narrow, i.e., w << ℏ/
√

2mEF, then only the first
mode is propagating, and the other modes do not contribute to the current. In which
case, the one-electron Schrödinger wavefunction reads Ψ(x, r⊥, t) = χ(r⊥)φ(x, t), and
the equations for the longitudinal part φ(x, t) and the transverse part can be rewritten
as follows:

iℏ∂φ(x, t)
∂t

= − ℏ2

2m
∂2φ(x, t)

∂x2 +
[

Ec + U(x) + N
{
|Ψ|2

}]
φ(x, t) (31)

and

− ℏ2

2m
∇2

⊥χ(r⊥) = Ecχ(r⊥) (32)

respectively, where N
(
|Ψ|2

)
represents the non-linear electron–electron potential, Ec is the

cutoff energy of the wire, and ∇2
⊥ ≡ ∂2

y + ∂2
z is the transverse Laplacian.

In general, the solution of (31) is very complex; however, in two time regimes, the
non-linear part can be ignored.
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In the long-time regime, when only oscillations remain, the system is close to equi-
librium, and the oscillations are within the linear regime, in which case N

(
|Ψ|2

)
can be

neglected (theoretically, it should be a constant, which has to be zero to conform with Lan-
dauer’s equation) and then Equations (24) and (25) are valid, provided the Fermi energy is
reduced by the cutoff energy of the wire, i.e., EF → EF − Ec .

In the short-time regime, the non-linear term can also be neglected, but for a different
reason. At t = 0, N

(
|Ψ|2

)
depends analytically on the particles’ density. Therefore, it

represents a smooth potential (both its value and its slope are continuous). However, since
initially, the wavefunction has a discontinuous derivative at the shutter’s location, the effect
of the smooth potential can be neglected in the short-time regime since the wavefunction
dynamics are governed in the short time by the singularity. This phenomenon can be easily
understood from the Schrödinger equation (Equation (3)): the temporal change in the
wavefunction is governed by two terms—the kinetic term, which is proportional to the
second derivative of the wavefunction, and the potential energy term. In the case of a
singular wavefunction as in (4), the potential term vanishes continuously at the singular
point, while the second derivative diverges at this point. Therefore, in the short-time
regime, the effect of the potential term can be ignored in comparison to the kinetic one (for
a detailed explanation, see Refs. [20,21] and references therein).

Therefore, in the short time that follows the shutter’s removal, the wavefunction
singularity governs the wavefunction dynamics, and the non-linear electron–electron
interaction can be neglected. Consequently, in the short time, Equation (20) and the
square-root temporal behavior are valid, provided the Fermi energy is replaced again with
EF → EF − Ec . Moreover, the result of (27), which relates the short-time prefactor to the
long-time oscillations, is also valid, even in the physical 3D case where electron–electron
interactions are present.

7. Physical Realization

The tunable shutter can be realized as a point of contact with side branches as controls
(see, for example, Ref. [4] and references therein). A schematic illustration of such a system
is depicted in Figure 8. The narrow wire is connected to the active layer, which emits light,
and to the voltage source. The gate controls the current from the wire to the active layer,
which emits light. The detected light power is proportional to the current through the
active layer. If the wire is made of semiconductors, then the Fermi energy is of the order
of meV [4]. Therefore, to prevent multi-mode propagation in the wire, the wire’s width
should be around 10–100 nm, where the Fermi energy of the semiconductor is close to the
wire’s cutoff energy.
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Figure 8. System schematic of an experimental realization.

The main difficulty in measuring the short-time behavior is the time response of the
active layer, which is of the order of a microsecond. Since the time scale of the system is
determined by the effective Fermi energy, the wire should be designed in coordination with
the semiconductor’s Fermi energy to keep (EF − Ec)/h < 1MHz.
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8. Summary

We investigated the currents that emerge when a shutter that distinguishes between
adjacent particles’ reservoirs is lifted. Unlike its classical equivalent (and even some quan-
tum ones), the current is initially zero and increases gradually. Initially, the conductance
rises like G ∼ t2, but beyond a certain time scale, which depends on the shutter’s width, the
conductance rises like G(t) = 4

√
f∞te2/h, where f∞ = n2h/8m. In the long-time regime,

the current oscillates with the same frequency f∞ around the universal conductance unit
G∞ = 2e2/h, with an oscillation amplitude that decreases like ∼ t−1/2. Another finding
is that the maximum conductance is also universal Gmax = ζe2/h, where ζ has a weak
dependence on the shutter’s width and it is very close to Euler’s number.
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