From Phonons to Domain Walls, the Central Peak and “Critical Slowing Down”
Abstract
:1. Introduction
2. Pseudo-Harmonic Approach
3. Periodons and Incommensurations
4. Breather Solutions and Relaxor Ferroelectrics
5. Domains and Domain Walls
6. SrTiO3 as an Example
7. Precursor Effects in SrTiO3
8. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Landau, L.D. On the theory of phase transitions. Phys. Z. Sowjetunion 1937, 11, 19–32. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz Evgeny, M. Statistical Physics, 3rd ed.; Butterworth-Heinemann: Oxford, UK, 1980; Volume 5, ISBN 978-0-7506-3372-7. [Google Scholar]
- Cochran, W. Crystal Stability and the Theory of Ferroelectricity. Phys. Rev. Lett. 1959, 3, 412–415. [Google Scholar] [CrossRef]
- Müller, K.A.; Berlinger, W. Behavior of SrTiO3 near the [100]-stress-temperature bicritical point. Phys. Rev. Lett. 1975, 35, 1547–1550. [Google Scholar] [CrossRef]
- Müller, K.A.; Berlinger, W. Static critical exponents at structural phase transitions. Phys. Rev. Lett. 1971, 26, 13–17. [Google Scholar] [CrossRef]
- Aharony, A.; Bruce, A.D. Polycritical points and flop-like displacive transitions in Perovskites. Phys. Rev. Lett. 1974, 33, 427–430. [Google Scholar] [CrossRef]
- O’Ariano, G.; Aldrovandi, S.; Rigamonti, A. Critical behavior of the order parameter at antiferrodistortive transitions with cubic fluctuations. Phys. Rev. B 1982, 25, 7044. [Google Scholar] [CrossRef]
- Bellaiche, L.; Íñiguez, J. Universal collaborative couplings between oxygen-octahedral rotations and antiferroelectric distortions in perovskites. Phys. Rev. B 2013, 88, 014104. [Google Scholar] [CrossRef]
- Cochran, W. Crystal Stability and the Theory of Ferroelectricity. Adv. Phys. 1960, 9, 387–423. [Google Scholar] [CrossRef]
- Thomas, H. Structural Phase Transitions and Soft Modes; Samuelsen, E.J., Andersen, E.J., Feder, J., Eds.; Universitetsforlaget: Oslo, Norway, 1971; p. 15. [Google Scholar]
- Salje, E.K.H.; Wruck, B.; Thomas, H. Order-parameter saturation and low-temperature extension of Landau theory. Z. Phys. B 1991, 82, 399–404. [Google Scholar] [CrossRef]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Clarendon Press: Oxford, UK, 1977; 52p. [Google Scholar]
- Gryaznov, D.; Blokhin, E.; Sorokine, A.; Kotomin, E.A.; Evarestov, R.A.; Bussmann-Holder, A.; Maier, J. A Comparative Ab Initio Thermodynamic Study of Oxygen Vacancies in ZnO and SrTiO3: Emphasis on Phonon Contribution. J. Phys. Chem. C 2013, 117, 13776–13784. [Google Scholar] [CrossRef]
- Müller, K.A.; Burkard, H. SrTiO3: An intrinsic quantum paraelectric below 4 K. Phys. Rev. B 1979, 19, 3593–3602. [Google Scholar] [CrossRef]
- Migoni, R.; Bilz, H.; Bäuerle, D. Origin of Raman Scattering and Ferroelectricity in Oxidic Perovskites. Phys. Rev. Lett. 1976, 37, 1155–1158. [Google Scholar] [CrossRef]
- Bilz, H.; Benedek, G.; Bussmann-Holder, A. Theory of ferroelectricity: The polarizability model, Phys. Rev. B 1987, 35, 4840–4848. [Google Scholar] [CrossRef]
- Bussmann-Holder, A. The polarizability model for ferroelectricity in perovskite oxides. J. Phys. Condens. Matter. 2012, 24, 273202. [Google Scholar] [CrossRef]
- Ko, J.-H.; Górny, M.; Majchrowski, A.; Roleder, K.; Bussmann-Holder, A. Mode softening, precursor phenomena, and intermediate phases in PbZrO3. Phys. Rev. B 2013, 87, 184110. [Google Scholar] [CrossRef]
- Bussmann-Holder, A.; Roleder, K.; Ko, J. What makes the difference in perovskite titanates? J. Phys. Chem. Solids 2018, 117, 148–157. [Google Scholar] [CrossRef]
- Bussmann-Holder, A.; Keller, H.; Simon, A.; Bihlmayer, G.; Roleder, K.; Szot, K. Unconventional Co-Existence of Insulating Nano-Regions and Conducting Filaments in Reduced SrTiO3: Mode Softening, Local Piezoelectricity, and Metallicity. Crystals 2020, 10, 437. [Google Scholar] [CrossRef]
- Burns, G.; Dacol, F. Crystalline ferroelectrics with glassy polarization behaviour. Phys. Rev. B 1983, 28, 2527–2530. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhao, M.L. Burns temperature and quantum temperature scale. J. Adv. Dielectr. 2011, 1, 163–167. [Google Scholar] [CrossRef]
- Bussmann-Holder, A.; Beige, H.; Völkel, G. Precursor effects, broken local symmetry, and coexistence of order-disorder and displacive dynamics in perovskite ferroelectrics. Phys. Rev. B 2009, 79, 184111. [Google Scholar] [CrossRef]
- Stachiotti, M.; Dobry, A.; Migoni, R.; Bussmann-Holder, A. Crossover from a displacive to an order-disorder transition in the nonlinear-polarizability model. Phys. Rev. B 1993, 47, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.-H.; Roleder, K.; Bussmann-Holder, A. Instabilities in the ferro- and antiferroelectric lead perovskites driven by transition metal ion mass: From PbTiO3 via PbZrO3 to PbHfO3. J. Phys. Cond. Mat. 2014, 26, 275402. [Google Scholar]
- Simoes, Z.; Riccardi, C.S. Dielectric Spectroscopy Analyses of SrBi4Ti4O15 Films Obtained from Soft Chemical Solution. Adv. Mat. Sci. Eng. 2009, 2009, 928545. [Google Scholar] [CrossRef]
- Zhang, N.; Yokota, H.; Glazer, A.M.; Thomas, P.A. The not so simple cubic structure of PbZr1−xTixO3 (PZT): Complex local structural effects in perovskites. Acta Cryst. B 2011, 67, 461–466. [Google Scholar] [CrossRef]
- Carpenter, M.A. Static and dynamic strain coupling behaviour of ferroic and multiferroic perovskites from resonant ultrasound spectroscopy. J. Phys. Condens. Matter 2015, 27, 263201. [Google Scholar] [CrossRef] [PubMed]
- Piskunov, S.; Heifets, E.; Eglitis, R.I.; Borstel, G. Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: An ab initio HF/DFT study. Comput. Mater. Sci. 2004, 29, 165–178. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Carpenter, M.A.; Nataf, G.F.; Picht, G.; Webber, K.; Weerasinghe, J.; Lisenkov, S.; Bellaiche, L. Elastic excitations in BaTiO3 single crystals and ceramics: Mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy. Phys. Rev. B 2013, 87, 014106. [Google Scholar] [CrossRef]
- Ko, J.-H.; Kim, T.H.; Roleder, K.; Rytz, D.; Kojima, S. Determination of elastic stiffness coefficients of lead zirconate single crystals in the cubic phase by Brillouin light scattering. Phys. Rev. B 2011, 84, 094123. [Google Scholar] [CrossRef]
- Völkel, G.; Müller, K.A. Order-disorder phenomena in the low-temperature phase of BaTiO3. Phys. Rev. B 2007, 76, 094105. [Google Scholar] [CrossRef]
- Bussmann, A.; Bilz, H.; Roenspiess, R.; Schwarz, K. Oxygen polarizability in ferroelectric phase transitions. Ferroelectrics 1980, 25, 343–346. [Google Scholar] [CrossRef]
- Tessman, G.R.; Kahn, A.H.; Shockley, W. Electronic Polarizabilities of Ions in Crystals. Phys. Rev. 1953, 92, 890. [Google Scholar] [CrossRef]
- Bishop, A.R.; Krumhansl, J.A.; Trullinger, S.E. Solitons in condensed matter: A paradigm. Physica 1980, 1, 1–44. [Google Scholar] [CrossRef]
- Bilz, H.; Büttner, H.; Bussmann-Holder, A.; Kress, W.; Schröder, U. Nonlinear Lattice Dynamics of Crystals with Structural Phase Transitions. Phys. Rev. Lett. 1982, 48, 264–267. [Google Scholar] [CrossRef]
- Pawley, G.S.; Cochran, W.; Cowley, R.A.; Dolling, G. Diatomic Ferroelectrics. Phys. Rev. Lett. 1966, 17, 753–756. [Google Scholar] [CrossRef]
- Cowley, E.R.; Darby, J.K.; Pawley, G.S. The lattice dynamics of tin telluride. J. Phys. C 1969, 2, 1916. [Google Scholar] [CrossRef]
- Iizumi, M.; Axe, J.D.; Shirane, G.; Shimaoka, K. Structural phase transformation in K2SeO4. Phys. Rev. B 1977, 15, 4392. [Google Scholar] [CrossRef]
- Yamada, N.; Ikeda, T. Incommensurately modulated structure of K2SeO4. J. Phys. Soc. Jpn. 1984, 53, 2555–2564. [Google Scholar] [CrossRef]
- Fäth, M.; Freisen, S.; Menovsky, A.A.; Tonioka, Y.; Aarts, J.; Mydosh, J.A. Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites. Science 1999, 285, 1540–1542. [Google Scholar] [CrossRef]
- Pan, S.H.; Hudson, E.W.; Lang, K.M.; Eisaki, H.; Uchida, S.; Davis, J.C. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x. Nature 2001, 413, 282–285. [Google Scholar] [CrossRef]
- Pan, S.H.; Hudson, E.W.; Lang, K.M.; Eisaki, H.; Uchida, S.; Davis, J.C. Imaging the effects of individual zinc impurity atoms on superconductivity in Bi2Sr2CaCu2O8+δ. Nature 2000, 403, 746–750. [Google Scholar] [CrossRef]
- Saini, N.L.; Lanzara, A.; Bianconi, A.; Oyanagi, H. Local structural features of the superconducting Bi2Sr2CaCu2O8+δ system: A polarized Cu K-edge XAS study. Phys. Rev. B 1998, 58, 11768–11773. [Google Scholar] [CrossRef]
- Islam, Z.; Liu, X.; Sinha, S.K.; Lang, J.C.; Moss, S.C.; Haskel, D.; Srajer, G.; Wochner, P.; Lee, D.R.; Haeffner, F.D.; et al. Four-unit-cell superstructure in the optimally doped YBa2Cu3O6.92 superconductor. Phys. Rev. Lett. 2004, 93, 157008. [Google Scholar]
- Li, F.; Zhang, S.; Damjanovic, D.; Chen, L.-Q.; Shrout, T.R. Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics. Adv. Funct. Mater. 2018, 28, 1801504. [Google Scholar] [CrossRef]
- Sato, M.; Hubbard, B.E.; Sievers, A.J.; Ilic, B.; Czaplewski, D.A.; Craighead, H.G. Observation of Locked Intrinsic Localized Vibrational Modes in a Micromechanical Oscillator Array. Phys. Rev. Lett. 2003, 90, 044102. [Google Scholar] [CrossRef] [PubMed]
- Vulgarakis, N.K.; Kalosakas, G.; Bishop, A.R.; Tsironis, G.P. Multiquanta breather model for PtCl. Phys. Rev. B 2001, 64, 020301. [Google Scholar] [CrossRef]
- Kiselev, S.A.; Lai, R.; Sievers, A.J. Intrinsic resonant modes for a one-dimensional lattice with a soft optic mode. Phys. Rev. B 1998, 57, 3402–3405. [Google Scholar] [CrossRef]
- Wang, W.Z.; Gammel, J.T.; Bishop, A.R.; Salkola, M.I. Quantum Breathers in a Nonlinear Lattice. Phys. Rev. Lett. 1996, 76, 3598–3601. [Google Scholar] [CrossRef]
- Bussmann-Holder, A.; Bishop, A.R. Inhomogeneity, local mode formation, and the breakdown of the Bloch theorem in complex charge transfer systems as a consequence of discrete breather formation. Phys. Rev. B 2004, 70, 184303. [Google Scholar] [CrossRef]
- Macutkevic, J.; Banys, J.; Bussmann-Holder, A.; Bishop, A.R. Origin of polar nanoregions in relaxor ferroelectrics: Nonlinearity, discrete breather formation, and charge transfer. Phys. Rev. B 2011, 83, 184301. [Google Scholar] [CrossRef]
- Bussmann-Holder, A.; Bishop, A.R.; Egami, T. Relaxor ferroelectrics and intrinsic inhomogeneity. Europhys. Lett. 2005, 71, 249–255. [Google Scholar] [CrossRef]
- Johansson, M.; Aubry, S. Growth and decay of discrete nonlinear Schrödinger breathers interacting with internal modes or standing-wave phonons. Phys. Rev. E 2000, 61, 5864. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-G.; Wang, Z.; Malyi, O.I.; Zunger, A. Effect of static local distortions vs. dynamic motions on the stability and band gaps of cubic oxide and halide perovskites. Mater. Today 2021, 49, 107–122. [Google Scholar] [CrossRef]
- Kleemann, W. The relaxor enigma—Charge disorder and random fields in ferroelectrics. Front. Ferroelectr. J. Mat. Sci. 2006, 1, 29–136. [Google Scholar] [CrossRef]
- Salje, E.K.H. Ferroelastic Materials. Ann. Rev. Mater. Res. 2012, 42, 265–283. [Google Scholar] [CrossRef]
- Salje, E.K.H. Multiferroic Domain Boundaries as Active Memory Devices: Trajectories Towards Domain Boundary Engineering. Chem. Phys. Chem. 2010, 11, 940–950. [Google Scholar] [CrossRef]
- Khomskii, D.I. Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 2006, 306, 1–8. [Google Scholar] [CrossRef]
- Nova, T.F.; Disa, A.S.; Fechner, M.; Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 2019, 364, 1075–1079. [Google Scholar] [CrossRef]
- Li, Y.L.; Choudhury, S.; Haeni, J.H.; Biegalski, M.D.; Vasudevarao, A.; Sharan, A.; Ma, H.Z.; Levy, J.; Gopalan, V.; Trolier-McKinstry, S.; et al. Phase transitions and domain structures in strained pseudocubic (100) SrTiO3 thin films. Phys. Rev. B 2006, 73, 184112. [Google Scholar]
- Salje, E.K.H.; Aktas, O.; Carpenter, M.A.; Laguta, V.V.; Scott, J.F. Domains within Domains and Walls within Walls: Evidence for Polar Domains in Cryogenic SrTiO3. Phys. Rev. Letters 2013, 111, 247603. [Google Scholar] [CrossRef]
- Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H. Direct Observation of Ferrielectricity at Ferroelastic Domain Boundaries in CaTiO3 by Electron Microscopy. Adv. Mater. 2012, 24, 523–527. [Google Scholar] [CrossRef]
- Aird, A.; Salje, E.K.H. Sheet superconductivity in twin walls: Experimental evidence of WO3−x. J. Phys. Cond. Mat. 1998, 10, L377–L380. [Google Scholar] [CrossRef]
- Seidel, J.; Maksymovych, P.; Batra, Y.; Katan, A.; Yang, S.Y.; He, Q.; Baddorf, A.P.; Kalinin, S.V.; Yang, C.H.; Yang, J.C.; et al. Domain Wall Conductivity in La-Doped BiFeO3. Phys. Rev. Lett. 2010, 105, 197603. [Google Scholar]
- Yang, S.Y.; Seidel, J.; Byrnes, S.J.; Shafer, P.; Yang, C.H.; Rossell, M.D.; Yu, P.; Chu, Y.H.; Scott, J.F.; Ager, J.W., III; et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Paillard, C.; Bai, X.; Infante, I.C.; Guennou, M.; Geneste, G.; Alexe, M.; Kreisel, J.; Dkhil, B. Photovoltaics with Ferroelectrics: Current Status and Beyond. Adv. Mater. 2016, 28, 5153–5168. [Google Scholar]
- Strikha, M.V.; Morozovska, A.N. Limits for the graphene on ferroelectric domain wall p-n-junction rectifier for different regimes of current. J. Appl. Phys. 2016, 120, 214101. [Google Scholar] [CrossRef]
- Nguyen, C.P.T.; Schoenherr, P.; Salje, E.K.H.; Seidel, J. Crackling Noise Microscopy. Nat. Commun. 2023, 14, 4963. [Google Scholar] [CrossRef] [PubMed]
- Nataf, G.F.; Guennou, M.; Gregg, J.M.; Meier, D.; Hlinka, J.; Salje, E.K.H.; Kreisel, J. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat. Rev. Phys. 2020, 2, 634–648. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Ding, X.; Zhao, Z.; Lookman, T.; Saxena, A. Thermally activated avalanches: Jamming and the progression of needle domains. Phys. Rev. B 2011, 83, 104109. [Google Scholar] [CrossRef]
- Catalan, G.; Seidel, J.; Ramesh, R.; Scott, J.F. Domain wall nanoelectronics. Rev. Mod. Phys. 2012, 84, 119–156. [Google Scholar] [CrossRef]
- Scott, J.J.; Lu, G.; Rodriguez, B.J.; MacLaren, I.; Salje, E.K.; Arredondo, M. Evidence of the Monopolar-Dipolar Crossover Regime: A Multiscale Study of Ferroelastic Domains by In Situ Microscopy Techniques. Small 2024, 20, 2400646. [Google Scholar] [CrossRef]
- Dutta, D.P.; Jayakumar, O.D.; Tyagi, A.K.; Girija, K.G.; Pillai, C.G.S.; Sharma, G. Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods. Nanoscale 2010, 2, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Morozovska, A.N.; Eliseev, E.A.; Glinchuk, M.D. Ferroelectricity enhancement in confined nanorods: Direct variational method. Phys. Rev. B 2006, 73, 214106. [Google Scholar] [CrossRef]
- Watari, K.; Brahmaroutu, B.; Messing, G.L.; Trolier-McKinstry, S.; Cheng, S.C. Epitaxial growth of anisotropically shaped, single-crystal particles of cubic SrTiO3. J. Mater. Res. 2000, 15, 846–849. [Google Scholar] [CrossRef]
- Lu, G.M.; Ding, X.D.; Sun, J.; Salje, E.K.H. Wall-wall and kink-kink interactions in ferroelastic materials. Phys. Rev. B 2022, 106, 144105. [Google Scholar] [CrossRef]
- Lu, G.M.; Salje, E.K.H. Multiferroic neuromorphic computation devices. Appl. Phys. Lett. Mater. 2024, 12, 061101. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Wang, X.F.; Ding, X.D.; Scott, J.F. Ultrafast Switching in Avalanche-Driven Ferroelectrics by Supersonic Kink Movements. Adv. Funct. Mater. 2017, 27, 1700367. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Dahmen, K.A. Crackling noise in disordered materials. Ann. Rev. Condens. Matter Phys. 2014, 5, 233–254. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Xue, D.; Ding, X.; Dahmen, K.A.; Scott, J.F. Ferroelectric switching and scale invariant avalanches in BaTiO3. Phys. Rev. Mater. 2019, 3, 014415. [Google Scholar] [CrossRef]
- Sethna, J.P.; Dahmen, K.A.; Myers, C.R. Crackling noise. Nature 2001, 410, 242–250. [Google Scholar] [CrossRef]
- Tsai, S.T.; Wang, L.M.; Huang, P.P.; Yang, Z.N.; Chang, C.D.; Hong, T.M. Acoustic Emission from Breaking a Bamboo Chopstick. Phys. Rev. Lett. 2016, 116, 035501. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, D.Y.; Chen, J.; Salje, E.K.H. Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents. Am. Mineral. 2016, 101, 2751–2758. [Google Scholar] [CrossRef]
- Alava, M.J.; Nukalaz, P.K.V.V.; Zapperi, S. Statistical models of fracture. Adv. Phys. 2006, 55, 349–476. [Google Scholar] [CrossRef]
- Bak, P.; Sneppen, K. Punctuateed equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 1993, 71, 4083–4086. [Google Scholar] [CrossRef]
- Eckstein, J.T.; Wiseman, O.J.; Carpenter, M.A.; Salje, E.K.H. Acoustic emission of kidney stones: A medical adaptation of statistical breakdown mechanisms. Urolithiasi 2024, 52, 36. [Google Scholar] [CrossRef]
- Guglielmi, A.V. Omori’s law: A note on the history of geophysics. Phys. Usp. 2017, 60, 319. [Google Scholar] [CrossRef]
- Utsu, T. A statistical study on the occurrence of aftershocks. Geophys. Mag. 1961, 30, 521–605. [Google Scholar]
- McGuire, J.J.; Boettcher, M.S.; Jordan, T.H. Foreshock sequences and short-term earthquake predictability on east pacific rise transform faults. Nature 2005, 434, 457–461. [Google Scholar] [CrossRef]
- Alfvén, H. On the theory of the Barkhausen-Kurz oscillations. Philos. Mag. 1935, 19, 419–422. [Google Scholar] [CrossRef]
- Wadley, H.N.G.; Mehrabian, R. Acoustic emission for materials processing: A review. Mater. Sci. Eng. 1984, 65, 245–263. [Google Scholar] [CrossRef]
- Baró, J.; Corral, A.; Illa, X.; Planes, A.; Salje, E.K.H.; Schranz, W.; Soto-Parra, D.E.; Vives, E. Statistical Similarity between the Compression of a Porous Material and Earthquakes. Phys. Rev. Lett. 2013, 110, 088702. [Google Scholar] [CrossRef]
- Dahmen, K.A.; Sethna, J.P. Hysteresis, avalanches, and disorder-induced critical scaling: A renormalization-group approach. Phys. Rev. B 1996, 53, 14872. [Google Scholar] [CrossRef] [PubMed]
- Zaiser, M. Scale invariance in plastic flow of crystalline solids. Adv. Phys. 2006, 55, 185–245. [Google Scholar] [CrossRef]
- Kustov, S.; Liubimova, I.; Salje, E.K.H. Domain Dynamics in Quantum-Paraelectric SrTiO3. Phys. Rev. Lett. 2020, 124, 016801. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, W. Relaxor ferroelectrics: Cluster glass ground state via random fields and random bonds. Phys. Status Solidi B 2014, 251, 1993–2002. [Google Scholar] [CrossRef]
- Lajzerowicz, J.J.; Levanyuk, A.P. Fluctuation-induced interaction of domain walls: Influence on the commensurate-incommensurate transition. Phys. Rev. B 1994, 49, 15475. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Iishibashi, Y. Mesoscopic structures in ferroelastic crystals: Needle twins and right-angled domains. J. Phys. Condens. Matter 1996, 8, 8477–8495. [Google Scholar] [CrossRef]
- Lu, G.; Hideo, K.; Ding, X.; Chu, R.; Nataf, G.F.; Salje, E.K.H. Influence of kinks on the interaction energy between ferroelastic domain walls in membranes and thin films. Microstructures 2023, 3, 2023033. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Ding, X.; Aktas, O. Domain glass. Phys. Status Solidi B 2014, 251, 2061–2066. [Google Scholar] [CrossRef]
- Cordero, F.; Trequattrini, F.; da Silva, P.S.; Venet, M.; Aktas, O.; Salje, E.K.H. Elastic precursor effects during Ba1-xSrxTiO3 ferroelastic phase transitions. Phys. Rev. Research 2023, 5, 013121. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Iwata, M. Activation Energy of Ferroelectric Domain Walls. J. Phys. Soc. Jpn. 2020, 89, 014705. [Google Scholar] [CrossRef]
- Lu, G.M.; Cordero, F.; Hideo, K.; Ding, X.D.; Xu, Z.J.; Chu, R.Q.; Howard, C.J.; Carpenter, M.A.; Salje, E.K.H. Elastic precursor softening in proper ferroelastic materials: A molecular dynamics study. Phys. Rev. Res. 2014, 6, 013232. [Google Scholar] [CrossRef]
- Pan, J.; Ivanov, Y.P.; Zhou, W.H.; Li, Y.; Greer, A.L. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass. Nature 2020, 578, 559–662. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, G.A.; Khachaturyan, A.G.; Akcay, G.; Ni, Y. Ferroelectric solid solutions with morphotropic boundaries: Vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J. Appl. Phys. 2008, 103, 114113. [Google Scholar] [CrossRef]
- Monroe, J.A.; Raymond, J.E.; Xu, X.; Nagasako, M.; Kainuma, R.; Chumlyakov, Y.I.; Arroyave, R.; Karaman, I. Multiple ferroic glasses via ordering. Acta Mater. 2015, 101, 107–115. [Google Scholar] [CrossRef]
- Bratkowsky, A.M.; Marais, S.C.; Heine, V.; Salje, E.K.H. The theory of fluctuations and texture embryos in structural phase-transitions mediated by strain. J. Phys.-Condens. Matter 1994, 6, 3679–3696. [Google Scholar] [CrossRef]
- Rouxel, T. Elastic properties and short-to medium-range order in glasses. J. Am. Ceram. Soc. 2007, 90, 3019–3039. [Google Scholar] [CrossRef]
- Kartha, S.; Krumhansl, J.A.; Sethna, J.P.; Wickam, L.K. Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B 1995, 52, 803–822. [Google Scholar] [CrossRef]
- Artemev, A.; Wang, Y.; Khachaturyan, A.G. Three-dimensional phase field model and simulation of martensitic transformation in multilayer systems under applied stress. Acta Mater. 2000, 48, 2503–2518. [Google Scholar] [CrossRef]
- Kartha, S.; Castan, T.; Krumhansl, J.A.; Sethna, J.P. Spin-glass nature of tweed precursors in martensitic transformations. Phys. Rev. Lett. 1991, 67, 3630–3633. [Google Scholar] [CrossRef]
- Naumov, I.; Bratkowsky, A.M. Unusual polarisation patterns in flat epitaxial ferroelectric nanoparticles. Phys. Rev. Lett. 2008, 101, 107601. [Google Scholar] [CrossRef]
- Sandiumenge, F.; Rodríguez, L.; Pruneda, M.; Magén, C.; Santiso, J.; Catalan, G. Metallic Diluted Dimerization in VO2 Tweeds. Adv. Mater. 2021, 33, 2004374. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salje, E.K.H.; Bussmann-Holder, A. From Phonons to Domain Walls, the Central Peak and “Critical Slowing Down”. Condens. Matter 2024, 9, 39. https://doi.org/10.3390/condmat9040039
Salje EKH, Bussmann-Holder A. From Phonons to Domain Walls, the Central Peak and “Critical Slowing Down”. Condensed Matter. 2024; 9(4):39. https://doi.org/10.3390/condmat9040039
Chicago/Turabian StyleSalje, Ekhard K. H., and Annette Bussmann-Holder. 2024. "From Phonons to Domain Walls, the Central Peak and “Critical Slowing Down”" Condensed Matter 9, no. 4: 39. https://doi.org/10.3390/condmat9040039
APA StyleSalje, E. K. H., & Bussmann-Holder, A. (2024). From Phonons to Domain Walls, the Central Peak and “Critical Slowing Down”. Condensed Matter, 9(4), 39. https://doi.org/10.3390/condmat9040039