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Abstract: The low-frequency vibro-acoustic characteristics of a mechanical equipment—floating raft—
cylindrical shell—underwater acoustic field coupled system with nonlinear supports are studied in
this paper. Firstly, the state space equations were established by a modal superposition theory for
the coupled system, and a modal parameter identification method was deduced and verified for the
cylindrical shell—underwater acoustic field coupled subsystem. On this basis, the formulas were
derived for transmitted power flow in the coupled system, and the nonlinear stiffness constitutive
relation of the vibration isolation supports was expressed by softening and hardening characteristics.
Finally, dynamic simulations were carried out by the Runge—Kutta method to analyze the effect
of nonlinear stiffness characteristic parameters on the low-frequency vibration modes and vibro-
acoustic transfer characteristics in the coupled system. The research shows that a superharmonic
phenomenon is common in the steady vibration mode of the coupled system with a nonlinear
softening (or hardening) stiffness characteristic under harmonic excitation. The stronger the softening
(or hardening) stiffness characteristic is, the more complex the vibration form is, and the smaller (or
larger) the low-frequency vibro-acoustic transfer level in resonance regions is.

Keywords: support stiffness nonlinearity; cylindrical shell; modal parameter identification; low-
frequency vibration; transmitted power flow; vibro-acoustic transfer characteristics

1. Introduction

Nonlinear vibration mode is an important factor to be considered in the study of low-
frequency vibration isolation for underwater cylindrical shell systems. Due to relatively
high vibration energy at low frequencies, the elastic support, which presents linear stiffness
in an original micro-amplitude vibration mode, will show nonlinear characteristics. Strictly
speaking, stiffness characteristics of various elastic vibration isolation elements are nonlin-
ear. In a micro-amplitude vibration mode, a vibration isolator has a certain linear stiffness
working interval. Stiffness characteristics are nonlinear if amplitude is sufficiently large.

In recent years, many scholars have studied the vibration characteristics of nonlinear
vibration isolation systems. Smirnov et al. [1] studied and compared the efficiency of linear
and nonlinear vibration isolation systems. Santhosh [2] studied the dynamic performance of
an asymmetric nonlinear vibration isolation mechanism under harmonic excitation. Dutta
et al. [3] analyzed a nonlinear vibration isolator with magnetorheological fluid dampers
and cubic nonlinear springs to determine the effectiveness of isolation during force or
displacement excitation. Suman et al. [4] proposed a nonlinear vibration control device
based on a negative stiffness mechanism, which can improve the isolation ability of the
vibration suspension system in the low-frequency range. Araki et al. [5] proposed a vertical
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quasi-zero stiffness (QZS) vibration isolator with adjustable restoring force. Zhao et al. [6,7]
successively designed QZS vibration isolators with two and three pairs of inclined springs.
Ye et al. [8] proposed a QZS system based on a cam—roller mechanism. Chang et al. [9]
proposed a QZS dynamic shock absorber. Bouna et al. [10] studied the vibration control
of multi-span girder bridges under the excitation of pier foundation vibration by using
nonlinear QZS isolators. Drezet et al. [11] proposed a nonlinear vibration energy harvester
based on the concept of high static and low dynamic stiffness (HSLDS). Lu et al. [12-14]
studied an orthogonal six-degree-of-freedom vibration isolation system with HSLDS and an
electromagnetic Stewart platform to suppress the low-frequency vibration of high-precision
instruments, provided modal coefficients by improved Fourier series and the Rayleigh—
Ritz method, and studied the nonlinear energy transfer of flexible plates with arbitrary
boundaries coupled to HSLDS isolators. Sun et al. [15] proposed a method for designing
HSLDS mounts based on target force curves, which are obtained by placing negative
stiffness structures in parallel with positive stiffness linear springs. Yao et al. [16] proposed
an HSLDS isolator with a cam—roller—spring mechanism, in which the cam profile can be
specially designed to suit different operating requirements. Chong et al. [17] designed a
nonlinear X-combined structure with HSLDS in a large displacement range, which avoided
negative stiffness and instability factors and improved its vibration isolation characteristics.

Chaos is a unique dynamical behavior of nonlinear systems. Leutcho et al. [18] sys-
tematically studied a new type of chaotic system with single parametric nonlinearity.
Yan et al. [19] proposed a novel bi-state nonlinear vibration isolator, whose motion can
be either periodic or chaotic. Rahman et al. [20] proposed a new fractional-order chaotic
system containing multiple nonlinear terms, which can excite hidden chaotic attractors or
self-excited chaotic attractors depending on the chosen system parameters or the value of its
fractional-order derivative. Li et al. [21] proposed an SRN feature extraction method com-
bining maximum relevance minimum redundancy, which can effectively classify different
chaotic signals. Karimov et al. [22] proposed a novel implementation of the chaotic Duffing
oscillator as a simple mechanical system with a translational movement. Dreau et al. [23]
introduced a stochastic modeling method for nonlinear systems with response surface
discontinuity, which improved the efficiency of multi-variate polynomial chaos expansion.

The power flow characteristic is an important index to study nonlinear vibration
isolation. Cassidy et al. [24] proposed a general nonlinear control synthesis method for
power flow constrained energy harvesters, which is analytically guaranteed to be superior
to the optimal static admittance in the steady state random response. Silva et al. [25]
proposed a technique for evaluating and optimizing vibrational power flow involving
beam-and-plate coupling. Varghese et al. [26] applied the combined transient power flow
balancing and acceleration matching techniques to detect and quantify the crack dam-
age of beam structures at different positions. Yang et al. [27,28] successively studied the
power flow and force transmissibility characteristics of a two-degree-of-freedom nonlinear
vibration isolation system and a coupled nonlinear oscillator. Ren et al. [29] compared
the power transmission between rigid, single-stage isolation and double-stage isolation
gearbox installation configurations with the vibration power flow of the system as the eval-
uation index. Zhang et al. [30] proposed a power flow analysis method for quantitatively
evaluating the dynamic performance of a nonlinear energy sink in the frequency domain.
Xu et al. [31] analyzed the bending vibration and power flow of axially loaded beams with
arbitrary boundaries and nonuniform elastic foundations via energy principle in conjunc-
tion with the Rayleigh—Ritz procedure. Mahapatra et al. [32] studied the influence of
general coupling conditions on the vibration and power flow characteristics of a two-plate
composite plate structure.

There has been a lot of literature on the dynamics of nonlinear vibration isolation
systems at home and abroad and, especially, the application of quasi-zero stiffness or high
static and low dynamic stiffness nonlinear vibration isolators for low-frequency vibration
control has become a research hotspot in the last decade. However, compared with the
wide application of nonlinear vibration isolators, the mechanism of vibro-acoustic transfer
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in nonlinear vibration isolation systems, especially the influence of nonlinear factors in
low-frequency vibration modes, has not been fully studied. In this paper, the low-frequency
vibro-acoustic characteristics of a mechanical equipment—floating raft—underwater cylin-
drical shell coupled system with nonlinear stiffness supports are studied. It can not only
provide theoretical guidance for low-frequency vibration analysis, diagnosis, and design
of dynamics of underwater nonlinear coupled systems but also provide reference for the
design of nonlinear vibration isolators.

The rest of this paper is organized as follows. In Section 2, based on the parametric
modeling of an admittance method of a mechanical equipment—floating raft—cylindrical
shell—underwater acoustic field coupled system, the state space equations of the sub-
systems are established by using modal identification and modal superposition theories;
and then the nonlinear stiffness constitutive relation of the vibration isolation supports is
expressed by softening and hardening characteristics, and the calculation method of trans-
mitted power flow is derived. In Section 3, the influence of nonlinear stiffness characteristic
parameters on the vibro-acoustic characteristics of the coupled system is studied by using
MATLAB numerical simulation. Finally, some conclusions are presented in Section 4.

2. Materials and Methods

2.1. Model of a Mechanical Equipment—Floating Raft—Cylindrical Shell—Underwater Acoustic
Field Coupled System

Figure 1 describes the model of a mechanical equipment—floating raft—cylindrical
shell—underwater acoustic field coupled system.
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Figure 1. The model of a mechanical equipment—floating raft—cylindrical shell—underwater
acoustic field coupled system: (a) —x direction; (b) z direction; (¢) complex coupled system with
nonlinear connecting elements.

As shown in Figure 1a,b, vibration source mechanical equipment A; and A; (simu-
lating multiple units) are installed on a floating raft R. Each unit is connected to the raft
frame through four elastic supports, and the raft frame is connected to a cylindrical shell
through four elastic supports. A rectangular coordinate system Oxyz is established, where
the Oz axis is the center line of the cylinder and Oy is the vertical direction. To simplify
analysis, only the vertical translational vibration and the rotational vibration around the
Oz and Ox axes of the system are considered. Therefore, vertical excitation forces Fy, Fp
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and excitation torques T, T around the Oz axis are applied at the center of mass of each
unit. The units Aj, A, and the floating raft R are all rigid bodies symmetrical about the
yOz plane. In Figure 1a,b, by, by, hiz, hoz, hiy, hoy, Hy, Hy, and Ly are the installation size
parameters of the system, and ¢4, 07, 03, and 04 are the connection points of the lower
vibration isolation supports with the cylindrical shell.

Figure 1c abstracts the complex coupled system with nonlinear connecting elements.
A (the vibration source subsystem) is subjected to I excitations Fe, (n =1, 2, ..., ]) and
has displacement responses we;, at the excitations. A is connected to R (the raft frame)
by g elastic connecting elements. At the connection points of the elastic elements with
A and R, there are excitation forces Fy; and Fy; (i=1, 2, ..., g), as well as displacement

responses wp; and wy. The elastic elements have constitutive relation f;(J;, 5i), where
0; = wa; — wy. Similarly, R is connected to Y (the cylindrical shell-underwater acoustic
field coupled subsystem) by r elastic connecting elements. At the connection points of
the elastic elements with R and Y, there are excitation forces Fb]- and ij G=1,2,...,1),
as well as displacement responses wy,; and wy;. The elastic elements have constitutive
relation g;(x;, «;), where x; = wy,; — wy;. For specific practical problems, the number of
elastic coupled elements in series in Figure 1c can be increased or decreased according to
different modeling needs.

2.2. State Space Model of the Coupled System

For the unit A; in Figure 1, its vertical vibration displacement is represented
by y1; its angular displacement around the Ox axis is represented by 61,; and its an-
gular displacement around the Oy axis is represented by 01,. Define a state variable
up = [u1, un, uz, g, us, g = 1, O1x, 012, ¥4, 91x, élz]T, then the state space of the unit A;
equation is

001 0 0][u 0 0

000 1 0f|u 0 0

000 0 1|]|us 0 0o |

000 0 0| |ug| T |~taFr/m| T |F/my| = A0mar Hal) +fim ) D
000 0 0f|us Z1-Fy /i 0

00 0 0 0] Lus —X1-F1/ ]z T/ )iz

where F; = [Fa1, Faz, Fas, Fas]T is an excitation force column vector of the unit A; to
its four supports; my, J1, and [, are the mass of the unit A; and the moment of in-
ertia that bypasses its centroid and is parallel to the axis of Ox and Oz, respectively;
X1 = [O.Shlx, 0.5h1x, —0.5h1x, —O.Shlx],' Zl = [—O.5h12, 0.5}112, —O.Shlz, 0.5]112]; 11 x4 denotes
a 4-dimensional row vector with all elements 1; fo1(F;) denotes a vector function with
respect to Fy; fin1 is a known external input vector function; Ay is a constant matrix.
Similarly, for the unit Ay, its vertical vibration displacement is represented by y»; its
angular displacement around the Ox axis is represented by 6,,; and its angular displacement
around the Oy axis is represented by 60,,. Define a state variable ua, = [u7, us, 19, u19, u11, upn]*

= [y2, 02y, 022, ¥y, ézx, QZZ]T, then the state space equation of the unit A; is

a2 = Aoz + far(F2) + finn(t) 2

where F, = [Fas, Fag, Fa7, Fag]! is an excitation force column vector of the unit A, to
its four supports; fax(F2) =10, 0,0, —I1xa-Fa/my, Zy-F3/ ]2z, —X,-F>/]2.]T denotes a vec-
tor function with respect to Fy; finp = [0, 0, 0, Fo/mjp, 0, Tp /J2.]T is a known external
input vector function; m, Ja,, and [, are the mass of the unit A, and the moment of
inertia that bypasses its centroid and is parallel to the axis of Ox and Oz, respectively;
X, =[0.5hyy, 0.5hy,, —0.5hyy, —0.5hy,1; Z» = [—0.5hy,, 0.5h,,, —0.5hy,, 0.5h,,].

Combining the units A; and A; into the vibration source equipment subsystem,
Equations (1) and (2) are merged into the following state space equation:
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For the raft frame R, its vertical vibration displacement is represented by yp; its angular
displacement around the Ox axis is represented by 6g,; and its angular displacement around
the Oy axis is represented by 0g,. Define a state variable ug = [ur1, Ur, URr3, Ura, Urs, uge]”

Osxs Ao

= [yr, Orx, ORz, YR, GRx, QRZ]T, then the state space equation of the raft frame R is

00 0 1 0 07/ ug 0

0000 1 0f|up 0

000 0 0 1|]|ugs 0 A

000000 URs + leg'(Ft _Fb)/mR — AO URr +fR(Pt/Pb) (4)
00 00 0 0f|ugs (Zra'Fy — ZryFt) / Jrx

0000 0 0] luge (Xr1-Ft — Xr2-Fp) / Jrz

where F; = [Fy, Foo, F, Fu, F5, Fi6, F7, FglT and F,, = [Fy1, Fup, Foa, Fpal® are excitation
force column vectors of the upper supports to the raft frame and the raft frame to the lower
supports, respectively; mg, Jry, and Jr, are the mass of the raft frame and the moment
of inertia that bypasses its centroid and is parallel to the axis of Ox and Oz, respectively;
XRr1 =[0.5h1y, 0.5h1y, —0.5h1y, —0.5h1y, 0.5k, 0.5k, —0.5h0y, —0.5h2,]; XRro = [0.5Hy, 0.5H,
—0.5H,, —0.5Hx],’ 7R = [_bl — 0.5h12, _bl + 0.5h12, _bl - 0.5h12, _bl + 0.5h12, b2 - 0.5]/122,
bz + 0.5]’122, bz — 0.5]/122, bz + 0-5]122]/' ZRro = [—0.5HZ, 0.5H,, —0.5H,, O.5HZ],'fR(Ft, Fb) denotes
a vector function about Fy, Fy,.

For the connection supports between the vibration source equipment and the raft
frame, ignoring the effect of their mass, the power/response transfer relation is

Fy=Fai = fi(6;, 8), (i=1,2, ..., 8) ©®)

where §; = wp; — wy;, and there are linear relationships between wp;, wy; and the state
variables u and ug:

war = nlg —wZ] +usX], war = usly — usZ] + ueX)
war = uzlyey — usZl +uoX3, Wao = urplaxy — unZ3 + up X3 (6)
we = upilgx1 — URoZE; + ursXky, Wi = uralsx1 — ursZy; + UreXE,
where wa1 = [wa1, Wa2, Was, wasl'; war = [was, Wae, wa7, was]; we = [wy, Wy, Wi, Wa,
W5, Wie, W7, th]T-
Letwp = [war Y, wan '], then Equation (5) is expressed as:

Fp = ij = F = f(wa(ua) — wi(ur), wa (up) — wi(ur)) = f(ua, ur) 7)

Similarly, for the connection supports between the raft frame and the cylindrical shell,
ignoring the effect of their mass, the power /response transfer relation is

Fyj = Fyj = gj(xj, &j), (j=1,2,3,4) ®)

where k; = wp; — wy; and there is a linear relationship between wy,; and the state variable ug:
= urilyx1 — UrZE, + ursXgy, Wy = tralyyq — URsZL, + UreXp ©)
Wp = UR1M4x1 — UR24Ry T UR3BARy, Wp = UR4L4x1 — UR5LRy T URGARD

where wy, = [wp1, Wha, Wp3, Whal”.

The cylindrical shell is a continuum, and its modal parameters of all orders can be
solved analytically. Further, a state space equation is established by using the modal param-
eters. The above is a common method for dealing with continuum problems. However, the
cylindrical shell coupled with the external underwater acoustic field becomes a dissipative
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system, so it is difficult to obtain an analytical expression of the modal parameters through
theoretical deduction. In view of the above problem, a discrete numerical solution of
displacement admittance functions is first calculated for the cylindrical shell—underwater
acoustic field coupled subsystem by referring to Equations (11)—(18) in the literature [33].
Then, analytical expressions are fitted according to the admittance functions data, and
then system modal parameters are identified from the expressions. Finally, a state space
equation is established by using these modal parameters.

For the modal parameter identification method and modeling process mentioned
above, please refer to Appendix A. Here, the state space equation after modeling is directly
given for the cylindrical shell—underwater acoustic field coupled subsystem:

uc = Scuc + 5(;1-"}, (10)

where uc = [ucy, ucy, ucs, - - -, ucf]T is a state variable (f is first f-order modes intercepted for
the low-frequency vibration problem); Fy = [Fy1, Fy2, Fys, 1:},4]T is an excitation force column
vector of the connection supports to the cylindrical shell; S¢ = diag[sc1, sc2, sca,- - -, Scrl is
a diagonal matrix composed of poles sc; obtained by modal parameter identification (s¢;
sorted by Isc1l < Iscal < Iscal <... < Iscrl); @ is a matrix composed of identified
modal parameter $ij (i=1,2,..., fis modal order; j = 1, 2, 3, 4 is the position of the
connection point between the lower support and the cylindrical shell), and

P P2 P13 Pu
Pn Pn P P
D= P P2 Pz Pas (11)

% $f2 $f3 $f4
The functional relation between wy; and the state space variable uc is

wy = 2Re{5€uc} = 2(Re{6£}.Re{uC} - Im{ig}.lm{uc}) (12)

where wy = [wy1, wy2, Wys, wy4]T.

By combining the state space equations (Equations (3), (4), and (10)) of the vibration
source equipment, raft frame, and cylindrical shell into one, the total state space equation
of the system is formed. Then, through the constitutive equation of the elastic elements
(Equations (5) and (8)), the subsystems can be connected into a whole.

2.3. Expression of Nonlinear Stiffness for Vibration Isolation Supports

In Equations (5) and (8), the constitutive relation of the elastic supports is only ex-
pressed in general terms, which can be a linear or nonlinear function. For the nonlinear
stiffness characteristics of vibration isolation supports, they are generally classified qualita-
tively into two categories: softening and hardening characteristics, as shown in Figure 2a,b.
The blue curve in Figure 2 indicates the nonlinear stiffness characteristics expressed by
a piecewise linear method, where J is an approximate linear stiffness working interval
control parameter, and K; and Kj; are approximate stiffness control parameters inside and
outside the linear working interval, respectively. In practical problems, the transition from
linear to nonlinear generally has a gradual process, rather than a sudden change, and the
piecewise curve is not easy to deal with in numerical calculation because of its unsmooth-
ness. So, the piecewise turning function is modified to a smooth transition function, as
shown by the red curve in Figure 2.
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Figure 2. Nonlinear stiffness characteristics and their control parameters: (a) softening characteristic;
(b) hardening characteristic.

The softening and hardening characteristics are expressed in this paper as
Equations (13) and (14), respectively:

|T|+Kicx [3 1+(T/C2)3—1} Kilt|—c1 [3 1+(T/C2)3—1]
VIt sgn(7), h= e sgn(T)
a 1§K§<2 C2/C2 = \/14—750, T= \T|sgn( ) (13)

[(Kicr/e2)> +1] o = 3(1/1+ K3 Jo] + Kaen ) 7 ? +3(,/1+K2|5\+ch1) = (Ml—l—K%\(S\+K1c1>3+(1<161)3:O

where sgn(7) is the sign function; ¢; and ¢, are shape control parameters determined
by Kji, Ky, and Jy; T is a parameter variable related to the positive real root |71 of the
polynomial equation.

|T|—Kic1 [3 1+(T/CZ)3_1] Ki|t]+c1 [3 1+(T/C2)3—1]
= WS sgn(t), R = WS sgn(T)
€1 = %cz,cz = /14 K36, T=/|t|sgn(s) (14)

[(chl/cz)3 - 1] I +3(. 1+ K25 — chl) T2 - 3(,/1 +K2|5] — K1c1>2|T| + (\/1 +K2|6] — K1c1>3 + (Kie1)? =0

It is assumed that the three groups of vibration isolation supports have the same
constitutive relation under the unit A, the unit Ay, and the floating raft R. The K; of
the three groups of vibration isolators are denoted as Ka11 = Re{ky}, Ka21 = Rel{ky}, and
KRr1 =Relkr}, respectively, where ky, k, and kg are the linear complex stiffness. The K of the
three groups of isolators (denoted as Ka12, Ka2o, and Kgp, respectively) is set as « (stiffness
ratio) times Kj, that is, Ka1p = aKa11, Ka2» = aKao1, and Kgy = aKgq, where « € [0.1, 3.0]
(softening characteristic when « < 1.0 and hardening characteristic when a > 1.0). The
6o (denoted as 19, J20, and JRg, respectively) of the three groups of isolators is esti-
mated to be § times their respective static settlement after installation of the units, that
is, 510 = ﬁmlg/Re{4k1}, 520 = ,Bﬂ’Qg/Re{‘lkz}, and 5RO = ,B(ml + my + mR)g/Re{4kR}, where
B €[0.2, 5.0]. In addition, the structural damping coefficients of the vibration isolators are
approximately converted to the equivalent viscous damping coefficients by ¢; = Im{k{}/wq,
¢y =Imfky} /w1, and cr = Im{kg}/w (where w is the fundamental frequency of the system).

2.4. Evaluation Index of Vibro-Acoustic Transfer Characteristics for the Nonlinear Coupled System

The transmitted power flow (which refers to the vibrational power flow transferred to
the cylindrical shell through the supports under the floating raft in this paper) can reflect
the process of vibration energy transfer and conversion into underwater acoustic radiation
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1(0) = %lim

of the coupled system [34], which can be regarded as a comprehensive reflection of the
vibro-acoustic transfer characteristics.
For the coupled system shown in Figure 1, the instantaneous power of the excitation
Fy acting on the cylindrical shell by the vibration isolation support is
T -
I(t) = Fy-wy (15)

The vibrational power flow is the average power of the excitation over a period
T=2r1/w:

1 /T J
Pr = T/o I(t)dt (16)
Similar to this, the time average power is introduced:
- 1t
I(t) = ;/ I(t)dt (17)
0
The initial value I(t) can be obtained by the above equation.
= .1t .
1(0) = }g%? A I(t)dt = }g%l(t) =1(0) =0 (18)

The derivative of time t on both sides of Equation (17) is calculated:

I(t) = —tlz_/otl(T)dH I(Tt) _ M .

From the above equation, combined with Equations (3), (4), (10), and (15), the initial

value I(t) can be obtained:

t—0

T o 1. [.r ! . L
Fy -ty + Fy iy :Ehm Fy-2Req DcScuc ¢ + g (wy — wy, wy — wy,) -y | =0 (20)

where the initial values of the system state variables ua, ur, and uc have been set to be 0
(the system is in a static state).

On the other hand, assuming that the vibration enters the steady state after a certain
time fy and has a period T, it can be seen from Equation (17) that for any natural number N,
the following equation holds:

to+NT

NT
(to + NT)I(to + NT) — toI(ty) = / I(t)dt = /0 I(t)dt = NTP; (1)

to

Therefore, the vibration power flow can be calculated by the time average power:
- ty - -
Pr=T(to+T) + = [I(to+ T) = I(to)] (22)

If ty is large enough, the system still does not exhibit perfect periodic oscillation. But as
long as there is a mathematical expectation in Equation (16), then Equation (22) still holds.
At this time, T can be understood as some kind of virtual value related to the excitation
period, and Pr still represents the average power level of the excitation. Then, Equation (22)
is rewritten as:

Pr=[(T+t)I(to+T)—tol(ty)]/T (23)

3. Results and Discussion

Based on the theories in Section 2, the effect of the nonlinear stiffness control pa-
rameters of the vibration isolation supports on the low-frequency vibration modes and
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vibro-acoustic transfer characteristics of the coupled system are analyzed by numerical
simulation methods in the following.

To obtain sufficient amplitude for the system to fully demonstrate its nonlinear vibra-
tion characteristics, the amplitude of the excitation force applied to the units A; and A; is
set to 500 N. The values of the variable stiffness isolators and system structural parameters
involved in the numerical simulations are set as shown in Tables 1 and 2, and other control
parameters are shown in Appendix B.

Table 1. Control parameter settings of variable stiffness vibration isolator.

Control Parameters Symbols Units Values Remarks
5
Stiffness control parameters in the Kan N/m 20 x 105
approximate linear working interval Kan N/m 2.7 < 10
Kr1 N/m 8.6 x 10°
) 5
Stiffness control parameters outside Kar N/m 2.0 x 105 & .[0'1’ 301 _
. L Kano N/m a-2.7 x 10 « < 1, softening characteristic
the linear working interval 5 . o
Kgro N/m «-8.6 x 10 « > 1, hardening characteristic
. L 510 m B-6.125 x 10~*
Linear working interval length b0 m B-6.352 x 10~ B €02,5.0]
control parameters 4
OR0 m B-6.267 x 10
1 kg/s 159.155
Damping coefficients o kg/s 214.859
CR kg/s 684.366

Table 2. System structure parameter settings.

System Structure Parameters Symbols Units Values
Elastic modulus E N/m? 2.1 x 101
: 3 3
Characteristic parameters .Denélty . e kg/m 7.8 x 10
.o Poisson’s ratio u 0.28
of the cylindrical shell AR
Dissipation factor ¢ 0.01
Length, radius, thickness Loa,d m 2,0.4,0.02
Mass of the unit A ™y kg 50
S ¢ Mass of the unit A, ) kg 70
tructure parameters o Mass of the raft frame R mR kg 100
the units and the . . . 2
ftf Moment of inertia of the unit A; Jix: J1z Kg-m 1,05
ratt frame Moment of inertia of the unit A, Jox, J22 I<g~m2 15,1
Moment of inertia of the raft frame R Trx, IRz Kg‘m2 85,25
Linear complex stiffness Support stiffness of the unit A; kq N/m 2.0 x 10° x (1+0.17)
of the vibration Support stiffness of the unit Ay ky N/m 2.7 x 10° x (1+0.1j)
isolation supports Support stiffness of the raft frame R kr N/m 8.6 x 10° x (1+0.1j)
Centroid positioning of the unit A; b m 0.25
Centroid positioning of the unit A, by m 0.25
Installation position Centroid positioning of the raft
LR m 0.8
parameters frame R
Support spacing of the unit A; M1y, h1, m 0.2,0.3
Support spacing of the unit A, hoy, hos m 0.2,0.3
Support spacing of the raft frame R H,, H;, m 0.35,0.7

3.1. Modal Parameter Identification for the Cylindrical Shell—Underwater Acoustic Field
Coupled Subsystem

Taking the displacement derivative functions Hqy, H1p, and Hy4 as examples, their
fitting spectra obtained from the modal parameter identification method are compared
with the numerical spectra obtained by the calculation method in the literature [33], as
shown in Figure 3. It can be seen that the fitting results can match well with the original
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data, and the difference between the two is mainly related to the modal truncation (residual
admittance) and the computational error of the original data.
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Figure 3. Comparison of the fitting spectra and the numerical spectra: (a) Hy1; (b) Hip; (c) Hi4.

The first 10 orders of poles identified for the cylindrical shell—underwater acoustic
field coupled subsystem and their corresponding modal frequencies are listed in Table 3.
The values of the modal parameters @ij at the support connection points are listed in Table 4.

Table 3. The first 10 orders of poles and modal frequencies of the cylindrical shell—underwater
acoustic field coupled subsystem.

Orders i Poles s¢;, s¢;” * Modal Frequencies f¢; (Hz)
1 —0.366 + 8.277 x 10%j 131.73
2 —0.574 4+ 1.219 x 103 j 194.95
3 —0.660 + 1.672 x 10%j 266.24
4 —0.924 4 1.906 x 103 j 303.33
5 —1.246 42302 x 103 j 366.30
6 —1.753 +2.364 x 10%j 376.21
7 —1.307 4+ 2.621 x 103j 417.11
8 —1.586 + 3.065 x 10%j 487.86
9 —3.624 £ 3.304 x 103 525.88
10 —2.863 x 103 £ 1.973 x 10%j 553.34

* The poles sc; and sc;” are a pair of conjugate complex numbers.

Table 4. The values of the modal parameters %’j at the support connection points.

Orders i j=1 j=2 j=3 j=4
i=1 0.475 — 4.630 j 0.686 — 0.703 0.104 — 0.117j 0.163 — 0.172j
i=2 0.462 — 0.429 j 0.601 — 0.647 —0.317 +0.312j  —0.448 + 0.469 j
i=3 0.436 — 0.208 j 0.271 — 0.328 0.068 — 0.226 0.214 — 0.335]
i=4 0.510 — 0.529 j —0.274+0240j  —0.398 + 0.384 0.170 — 0.169
i=5 0.367 — 0.352 0.402 — 0.441j —0.347 +0.339j  —0.453 + 0.479j
i=6 0.159 — 0.407 —0.342 + 0.117 0.412 — 0.031j 0.006 +0.032j
i=7 0.473 — 0.475] —0.218+0.218j  —0.464 + 0.464j 0.215 — 0.215j
i=8 0.357 — 0.356 —0.317+0.318j  —0.261 + 0.261 0.233 — 0.234
i=9 0.470 — 0.434 j —0.254+0.271j  —0.361 + 0.357j 0.248 — 0.270
i=10 0.716 — 0.762 j 0.082 — 0.105] —0.244 +0.233j  —0.053 + 0.012

3.2. Effect of Nonlinear Stiffness with Softening Characteristic on the Low-Frequency
Vibro-Acoustic Characteristics for the Coupled System

3.2.1. Effect of Stiffness Ratio o

Figure 4 shows the bifurcation diagrams of the average vibration displacement and
velocity for the coupled system when B is 1.0 and « is 1.0, 0.9, 0.7, 0.5, 0.3, and 0.1, respec-
tively. Taking « = 0.1 as an example, the discontinuity points near 6.75 Hz in the figure are
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caused by the system resonating at the natural frequency, while the other discontinuity
points are caused by the simulation program setting different steps in different frequency
bands to improve the calculation efficiency. The discontinuity points in Figure 4 and in the
bifurcation diagram below are the same and will not be explained one by one. It can be
seen from Figure 4 that the steady vibration of the coupled system with nonlinear softening
stiffness supports is single-periodic motion.

10> 10_3

s a=1.0 0.5 i s a=1.0
= gl a=0.9 - a=09
= Ca=07 % 04 B T a=07
"11:: 6F a=05 g 4 a=05
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] 4 a=0.1 "'-U: a=01
= 5} Taa < 02
{=9 . i W .

L7 :
% v = z
"2 far 5
= i =
4 <
2l =

—f . - - . . i .
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Frequency (Hz) Frequency (Hz)
(@) (b)

Figure 4. Effect of the strength variation of the nonlinear softening stiffness characteristic on the
periodic bifurcation properties for the coupled system (B = 1.0): (a) bifurcation diagram of the average
vibration displacement; (b) bifurcation diagram of the average vibration velocity.

Figure 5 shows the motion phase diagrams of the coupled system corresponding
to the resonance frequencies of Figure 4. According to Figure 5a—d, when the softening
characteristic is weak (x = 0.9), the units Aj, A, and the raft frame all are presented as
approximate harmonic vibration modes. As the stiffness ratio decreases, the motion phase
diagrams gradually show irregular closed graphics, indicating that the motions of the units
A1, Ay and the raft frame are still single-periodic, but there are superharmonic components.
According to Figure 5e, the vibration form at the connection points of the lower vibration
isolators with the cylindrical shell is much more complex than that of the units A, Ap
and the raft frame, and the smaller the «, the more complex the vibration form. When « is
equal to 0.1, the motion phase diagrams have become disordered or even chaotic. It can
also be seen from Figure 5 that in a certain range of stiffness ratio « < 1.0, the resonance
displacement amplitudes of the units Aj, A, and the raft frame are larger than those of
« = 1.0 (linear stiffness), and the smaller the «, the larger the amplitudes. The resonance
velocity amplitudes show the opposite trend. In contrast, at the connection points of the
lower vibration isolators with the cylindrical shell, the amplitudes of both the resonance
displacement and resonance velocity decrease with the decrease in a. But the above law no
longer holds when & decreases to a certain extent, as shown in Figure 5e, which is broken
when « is equal to 0.1.

In addition, it can be found from Figure 5 that, when the vibration isolation supports
have softening stiffness characteristics, the motion laws at the connection points of the
upper vibration isolators with units A; and A, are basically the same, and the motion laws
at the connection points of the upper and lower vibration isolators with the raft frame are
also basically similar. In fact, through the simulation analysis, it can be seen that the above
laws are also established when the vibration isolation supports have hardening stiffness
characteristics. Therefore, in the following, only the motion phase diagrams are shown
and analyzed at the connection points of the upper vibration isolators with the unit Ay,
the lower vibration isolators with the raft frame, and the lower vibration isolators with the
cylindrical shell.
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Figure 5. Effect of the strength variation of the nonlinear softening stiffness characteristic on the
low-frequency vibration modes for the coupled system (8 = 1.0): (a) motion phase diagram at the
connection points of the upper vibration isolators with the unit Aj; (b) motion phase diagram at the
connection points of the upper vibration isolators with the unit Ay; (c) motion phase diagram at the
connection points of the upper vibration isolators with the raft frame; (d) motion phase diagram at
the connection points of the lower vibration isolators with the raft frame; (e) motion phase diagram
at the connection points of the lower vibration isolators with the cylindrical shell.

Figure 6 shows the transmitted power flow spectrum through the lower vibration
isolators input to the cylindrical shell in the coupled system when § is 1.0 and « is 1.0, 0.9,
0.7, 0.5, 0.3, and 0.1, respectively. As can be seen from Figure 6, compared to the linear
stiffness, the softening nonlinear characteristic of the support stiffness makes the resonance
region of the system shift to lower frequencies, and the resonance peak and the second
peak decrease. The smaller « is, the more significant the above effect is.
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Figure 6. Effect of the strength variation of the nonlinear softening stiffness characteristic on the
vibro-acoustic transfer characteristics for the coupled system (8 = 1.0).
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3.2.2. Effect of Approximate Linear Working Interval Length Control Parameter 3

Figure 7 shows the bifurcation diagrams of the average vibration displacement and
velocity for the coupled system when « is 0.5 and §is 5.0, 3.0, 2.0, 1.0, and 0.2, respectively.
Comparing Figure 7 with Figure 4, it can be seen that the two are quite similar, and the
steady state vibration of the coupled system is still single-periodic motion.
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Figure 7. Effect of the length variation of the approximate linear working interval on the periodic
bifurcation properties for the coupled system (a = 0.5): (a) bifurcation diagram of the average vibration
displacement; (b) bifurcation diagram of the average vibration velocity.

Figure 8 shows the motion phase diagrams of the coupled system corresponding to
the resonance frequencies of Figure 7. Since the stiffness ratio &« = 0.5 here has determined
that the vibration isolation supports have softening stiffness characteristics, reducing
the approximate linear working interval will further strengthen their nonlinear stiffness
characteristics. The results are that the amplitudes of the resonance displacement and
resonance velocity of the unit, the raft frame, and the connection points of the lower
vibration isolators with the cylindrical shell generally tend to increase with the decrease
in B. From the perspective of motion form, the motion phase diagram of the unit is
approximately a closed ellipse, that is, it is approximately a harmonic vibration. The
motion phase diagram of the raft frame is irregular and closed, indicating that it contains
strong superharmonic components. The motion phase diagram at the connection points of
the lower vibration isolators with the cylindrical shell is relatively complex, indicating that
the superharmonic components are complex and strong, and the phase diagram trajectory
tends to be messy or even chaotic due to the enhancement of the nonlinear softening
characteristic.
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Figure 8. Effect of the length variation of the approximate linear working interval on the low-
frequency vibration modes for the coupled system (a = 0.5): (a) motion phase diagram at the
connection points of the upper vibration isolators with the unit A;; (b) motion phase diagram at the
connection points of the lower vibration isolators with the raft frame; (c) motion phase diagram at
the connection points of the lower vibration isolators with the cylindrical shell.
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Figure 9 shows the transmitted power flow spectrum in the coupled system when «
is 0.5 and B is 5.0, 3.0, 2.0, 1.0, and 0.2, respectively. Comparing Figure 9 with Figure 6,
it can be seen that the effect of reducing S is similar to that of reducing a«. Both of them
enhance the nonlinear softening stiffness effect and make the resonance region move to the
lower frequency for the coupled system. Reducing « has a more obvious effect on reducing
the fundamental frequency of the system and also weakens the resonance sharpness. But
reducing B is more effective for reducing the transmitted power flow at higher frequencies
after the fundamental frequency. For example, when « is equal to 0.5 and f is equal to 0.2 in
Figure 9, the transmitted power flow level is significantly reduced on the band after the
fundamental frequency and, especially, the second peak tends to disappear.
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Figure 9. Effect of the length variation of the approximate linear working interval on the vibro-
acoustic transfer characteristics for the coupled system (« = 0.5).

3.3. Effect of Nonlinear Stiffness with Hardening Characteristic on the Low-Frequency
Vibro-Acoustic Characteristics for the Coupled System

3.3.1. Effect of Stiffness Ratio o

Figure 10 shows the bifurcation diagrams of the average vibration displacement and
velocity for the coupled system when fis 1 and w is 1.0, 1.2, 1.5, 2.0, 2.5, and 3.0, respectively.
It can be seen that the steady vibration of the coupled system with nonlinear hardening
stiffness supports is dominated by single-periodic motion, but when the nonlinear harden-
ing characteristic is enhanced (« = 2.0, 2.5, 3.0), aperiodic motion (quasi-periodic or chaotic)
appears in a frequency band after the fundamental frequency resonance region.
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Figure 10. Effect of the strength variation of the nonlinear hardening stiffness characteristic on the
periodic bifurcation properties for the coupled system (8 = 1.0): (a) bifurcation diagram of the average
vibration displacement; (b) bifurcation diagram of the average vibration velocity.

Figure 11 shows the motion phase diagrams of the coupled system corresponding
to the resonance frequencies of Figure 10. According to Figure 11a, when the hardening
characteristic is weak (« = 1.2, 1.5, 2.0), the unit is presented as an approximate harmonic
vibration mode. But as the stiffness ratio further increases (« = 2.5, 3.0), the motion phase
diagrams gradually become nonelliptical closed graphics, indicating that the motion of
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the unit is still single-periodic, but there are superharmonic components. According to
Figure 5b,c, the motion phase diagrams of the raft and the connection points of the lower
vibration isolators with the cylindrical shell are all irregular closed graphics, indicating that
their vibration modes are all single-period motion with superharmonics, and the vibration
form at the connection points of the lower vibration isolators with the cylindrical shell is
particularly complex. Through the calculation and analysis at different frequencies, it can
be found that the above vibration modes and laws are universal in the coupled system
with hardening characteristic stiffness supports. It can also be seen from Figure 11 that,
when stiffness ratio & > 1.0, the resonance displacement amplitudes of the unit and the raft
frame are smaller than those of « = 1.0 (linear stiffness), and the larger the «, the smaller
the amplitudes. The resonance velocity amplitudes have no consistent change rule. In
contrast, at the connection points of the lower vibration isolators with the cylindrical shell,
the amplitudes of both the resonance displacement and resonance velocity increase with
the increase in «. But they do not conform when « is equal to 3.0, indicating that the above
law only holds in a certain range of a > 1.0.
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Figure 11. Effect of the strength variation of the nonlinear hardening stiffness characteristic on the
low-frequency vibration modes for the coupled system (B = 1.0): (a) motion phase diagram at the
connection points of the upper vibration isolators with the unit A;; (b) motion phase diagram at the
connection points of the lower vibration isolators with the raft frame; (c) motion phase diagram at
the connection points of the lower vibration isolators with the cylindrical shell.

Figure 12 shows the transmitted power flow spectrum in the coupled system when
is1.0and wis 1.0, 1.2, 1.5, 2.0, 2.5, and 3.0, respectively. Comparing Figure 12 with Figure 6,
it can be seen that the hardening and softening characteristics of the support stiffness have
a significantly opposite effect on the transmitted power flow of the coupled system. The
hardening nonlinear characteristic of the support stiffness makes the resonance region of
the system shift to higher frequencies, and the resonance peak and the second peak increase
slightly. The larger a is, the more significant the above effect is.
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Figure 12. Effect of the strength variation of the nonlinear hardening stiffness characteristic on the
vibro-acoustic transfer characteristics for the coupled system (8 = 1.0).
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3.3.2. Effect of Approximate Linear Working Interval Length Control Parameter 3

Figure 13 shows the bifurcation diagrams of the average vibration displacement and
velocity for the coupled system when « is 1.5 and $is 5.0, 3.0, 2.0, 1.0, and 0.2, respectively.
Comparing Figure 13 with Figure 10, it can be seen that the two are quite similar, and the
steady state vibration of the coupled system is always single-periodic motion when « is
equal to 1.5.
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Figure 13. Effect of the length variation of the approximate linear working interval on the periodic
bifurcation properties for the coupled system (a = 1.5): (a) bifurcation diagram of the average vibration
displacement; (b) bifurcation diagram of the average vibration velocity.

Figure 14 shows the motion phase diagrams of the coupled system corresponding
to the resonance frequencies of Figure 13. In the case of a given «, the amplitudes of the
resonance displacement and resonance velocity of the unit and the raft frame generally
tend to decrease with the decrease in . From the perspective of motion form, the motion
phase diagram of the unit is approximately a closed ellipse, that is, it is approximately a
harmonic vibration. The motion phase diagram of the raft frame has obvious irregularity,
indicating that it contains strong superharmonic components. The motion phase diagram
at the connection points of the lower vibration isolators with the cylindrical shell is the most
complex, and with the decrease in §, the stability of the phase diagram orbits deteriorates
and tends to be messy or even chaotic.
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Figure 14. Effect of the length variation of the approximate linear working interval on the low-
frequency vibration modes for the coupled system (a« = 1.5): (a) motion phase diagram at the
connection points of the upper vibration isolators with the unit A;; (b) motion phase diagram at the
connection points of the lower vibration isolators with the raft frame; (c) motion phase diagram at
the connection points of the lower vibration isolators with the cylindrical shell.

Figure 15 shows the transmitted power flow spectrum in the coupled system when « is
1.5and Bis 5.0,3.0,2.0, 1.0, and 0.2, respectively. Comparing Figure 15 with Figure 12, it can
be seen that the effect of reducing f is similar to that of increasing «. Both of them enhance
the nonlinear hardening stiffness effect and make the resonance region move to the higher
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frequency for the coupled system. Increasing a leads to a larger range of fundamental
frequency variation of the system. But decreasing 8 extends the effect of nonlinear stiffness
characteristics to higher frequencies. For example, when « is equal to 1.5 and S is equal
to 0.2 in Figure 15, the effect of the nonlinear hardening characteristics of the vibration
isolators extends significantly to higher frequency bands, increasing the transmitted power
flow level on the band after the fundamental frequency for the coupled system.
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Figure 15. Effect of the length variation of the approximate linear working interval on the vibro-
acoustic transfer characteristics for the coupled system (a = 1.5).

4. Conclusions

The present study was designed to study the effect of support stiffness nonlinearity on
the low-frequency vibro-acoustic characteristics for the mechanical equipment—floating
raft—cylindrical shell—underwater acoustic field coupled system. Firstly, the state space
equations were established for the coupled system containing the vibration isolation sup-
ports with nonlinear stiffness characteristics, and in this process, the modal parameter
identification method was deduced theoretically and verified by numerical simulation for
the cylindrical shell—underwater acoustic field coupled subsystem. Then, the nonlinear
stiffness constitutive relation was expressed in general by the softening and hardening
characteristics for the vibration isolation supports, and the calculation formulas of the
transmitted power flow in the nonlinear vibration isolation system were deduced. Finally,
applying the Runge—Kutta method for the dynamics simulation, the effect of the variation
of the nonlinear stiffness characteristics parameters on the low-frequency vibration modes
and vibro-acoustic transfer characteristics was analyzed and discussed for the coupled
system. The main findings are as follows:

1. For the coupled system with a nonlinear softening stiffness characteristic of the vibra-
tion isolation supports, the steady state vibration mode under harmonic excitation
is single-periodic motion, but the superharmonic phenomenon is common. And
the smaller the stiffness ratio is, the more superharmonic components are and the
more complex the vibration form is. Compared with the linear stiffness case, the
softening nonlinear stiffness can reduce the fundamental frequency and decrease the
low-frequency vibro-acoustic transmission level within and after the resonance region
for the vibration isolation system. And the stronger the softening characteristic is, the
more significant the above effect is;

2. For the coupled system with a nonlinear hardening stiffness characteristic of the
vibration isolation supports, the vibration mode under harmonic excitation is single-
periodic motion at most frequencies, and the existence of superharmonics is its main
vibration feature. And the larger the stiffness ratio is, the more superharmonic com-
ponents are and the more complex the vibration form is. In a frequency band slightly
higher than the fundamental frequency, it may show a nonperiodic motion mode
(quasi-periodic or chaotic). Compared with the linear stiffness case, the hardening
nonlinear stiffness can increase the fundamental frequency, broaden the resonance
band and slightly raise the low-frequency vibro-acoustic transmission level within



Inventions 2023, 8, 118

18 of 24

and after the resonance region for the vibration isolation system. And the stronger
the hardening characteristic is, the more significant the above effect is;

3. For the determined nonlinear stiffness ratio, the variation of the length of the approxi-
mate linear working interval has no effect on the periodicity of the vibration of the
coupled system. For the coupled system with a nonlinear softening stiffness charac-
teristic of the vibration isolation supports, the smaller the length of the approximately
linear working interval is, the lower the low-frequency vibro-acoustic transfer level
after the fundamental frequency resonance region is; while for the coupled system
with a nonlinear hardening stiffness characteristic of the vibration isolation supports,
the smaller the length of the approximately linear working interval is, the higher the
low-frequency vibro-acoustic transfer level after the fundamental frequency resonance
region is.
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Appendix A. State Space Model of the Cylindrical Shell—Underwater Acoustic Field
Coupled Subsystem

Appendix A.1. Solutions of the Admittance Functions for the Coupled Subsystem

A cylindrical coordinate system Or¢z is established on the middle surface of the
cylindrical shell. Let the coordinate origin be located at the center of the left end face
of the cylindrical shell, r and z be the distance from the spatial point o(r, ¢, z) to the
central axis of the cylindrical shell and the left end face, respectively, and ¢ be the angle of
o(r, ¢, z) deviating from the vertical direction. The transformation relationship between the
cylindrical coordinates and the rectangular coordinates: x = rcos¢, y = rsing, z = z.

Let the length, thickness, and central radius of the cylindrical shell be L, d, and a,
respectively, and the density, elastic modulus, and Poisson’s ratio of the material of the
cylindrical shell be p, E, and y, respectively. A harmonic excitation force F,-el“!along
the Oz axis direction is applied to the inside of the cylindrical shell at ge(@e, ze). Let
u(z, ¢, t) = U(z, p)-e“t, v(z, ¢, t) = V(z, p)-e“!, and w(z, ¢, t) = W(z, ¢)-el“f denote the
vibration displacement of the point (¢, z) on the cylindrical shell in z, ¢, and r coordinate
directions, respectively. Then, u, v, and w satisfy the following differential equations
of motion:

S1(u,v,w) + pd-0%u/ot? = F,-0(@ — @e)-6(z — ze) -/t
So(u,v,w) + pd-0%v/dt? = 0 (A1)
S3(u,v,w) + pd-0*w/ot? = —p(r, 9,2)|,_,

where p is the radiated underwater acoustic pressure generated outside the cylindrical shell
due to its vibration; Sy, Sp, and S3 are differential operators, and

SalUL,V, W) = B [ B 1 (1 Y Vv
Sa(UV, W) = 4 [ 4 L2 (1- £92)V + (L + H VW]

2_ R 1P a2t 2 o 1 ot
where V —aZZ+a23(P2,V = + —+ .
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The pressure p = P(r, ¢, z)-el! of the underwater acoustic field outside the cylindrical
shell satisfies the Helmholtz equation:

V2P +K*P =0 (A3)
There are boundary conditions on the interface between the cylindrical shell and the
external underwater acoustic field:

opP

3
op Y Y qHY cosli(p— ge)lsin(4E) (0<z < 1)
ar |, j=0k=11=1

0(z<0orz>1L)

(A4)

—_

where pg is the density of the acoustic field medium; H]-k (G, k=1, 2, 3, 4) denotes a
displacement admittance function, which means that when a unit excitation is applied
along the direction of the support force at the connection point o, of the support and the
cylindrical shell, the displacement response is generated at the connection point 0.

The displacement admittance matrix of the cylindrical shell—underwater acoustic
field coupled subsystem is denoted by:

H(jew) = [H|, (A5)

For the calculation of the admittance functions of the cylindrical shell—underwater
acoustic field coupled subsystem, see also Equations (11)—(18) in [33]. It can be seen from
these equations that, due to the complexity of the calculation formulas, only discrete
numerical solutions of the admittance functions can be given. Figure A1 shows examples
of calculated results for the admittance functions of the cylindrical shell along the support
direction (taking Hq1, H1p, and Hy4 as examples).
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Figure A1. Examples of the calculation results for the admittance along the support direction: (a) Hyy;
(b) Hio; (¢) Hyg.

Appendix A.2. Modal Parameter Identification of the Coupled Subsystem

Since the main focus is on low-frequency vibration problems in this paper, only the
first f-order modes are intercepted. Also, the admittance function is expressed as a ratio of
two polynomial functions:

H.:

r(jw) ~

an(jo)" " + a1 ()" + -+ ap(jw) + a4y

wherej, k=1,2,3,4,n=2f+1,m=2f — 1.
Let ij (jw) be the discrete numerical spectrum of Hjx(jw) obtained by theoretical

()" 4 by (jw) 2+ -+ bo(jw) + by

(A6)

calculation, and for a number of frequencies w1, wy,ws, ..., wy, there are H ki = : ik (jwi),

(i=1,2,..., N). Noting that a = [a1, ay, .

By am]T/ b= [bl/ b2/ .. -/bl’lfllT/ pi =

(1, jwi, ..,
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(jwi)™ 1, ;= ij,i [1,jw;, ..., Gow)" 21, hi = (jw;)" ! ij,i, e;=pia—qb—h;, P=[py,p2 ...
pS]T, Q=Ig91, 92 --. qs]T, and h =[hy, hy, ..., hs]T, the matrix expression and the total mean

squared error can be obtained:
e=Pa—Qb—h (A7)

J=ele* =x"Agx — 2Bx + |h|2 (A8)

PT P* o PT Q*
LQTP* Q'Q )
B = |hyPRr +hiP; - (h%QR +hiQ I)} , Pr and Py are the real and imaginary parts of P,
respectively; Qr and Qg are the real and imaginary parts of Q, respectively; hr and hy are
the real and imaginary parts of h, respectively; AR is the real part of A.

Consider the total mean squared error J as a function of x. To obtain a minimum of J,
let the gradient of Equation (A8) to x be 0:

. . : . a
where the superscript **’ represents conjugation relation; x = {b] JA =

V] =Arx—B' = 0= x=Ay'B’ (A9)

The polynomial coefficients of the admittance function numerator and denominator
can be fitted using the above equation.

Appendix A.3. Establishment of State Space Equation for the Coupled Subsystem

For a continuous structure, its vibration displacement response w(c, ) can be expressed
in the form of vibration model superposition:

w(e, ) = Y 900 (A10)
i=1

where 1;(0) is the ith-order vibration mode function and g;(t) is the ith-order modal coordinate.
A modal damping ratio ¢; is introduced, and the modal coordinate equation is obtained
by using the orthogonality of the vibration mode function:

g; + 28wig; + wigi = Y F(ty;(oy), (i=1,2,...) (A11)

where w; is the i-th order modal frequency; Fj(t) is the concentrated excitation force of the
cylindrical shell subjected to the support at point 0; (j = 1, 2, 3, 4); §; = ¢;//M is the
regular vibration mode function; M; = [ myy?(c')do is the i-th order modal mass, my, is
the areal density.

According to Equations (A10) and (A11), the admittance function can be expressed as:

Hj (jw) ~

f T
y ¥ () $i (%) 1 _ 1 (A12)
i—1 jz\/@wi jw 4 Giwi —j /1= Bw;  jw + Eiw; +]y/1 — Fw;

According to the above relation, if H(jw) is known, each Hjx(jw) has the same poles

s; = —Ciw; +j4/1— gfwi, (i=1,2,...,f). Since Is;| = w;, the poles are sorted by ls; | <
Is;| < Is3l <..., and the modal parameters are determined as follows:

wj = [si|, & = —Re{s;}/|si| (A13)

9i(01) = \Ji2im{s;}-[Hir- o — i), (A14)
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¥i(05) =

j2im{s;}- [Hp- (o —si)].,_ =s; j2Im{s;}

lPi(Ul) (]Cd - Si)]jw:sl
Substituting the above relations into Equations (A11) and (A10), the modal coordinate

equation and the modal superposition formula of vibration displacement expressed in
terms of the admittance functions are obtained:

—s)].
i; — 2Re{s;}q; + |si[q; = \/j2Im{s;} ZF K (i

¢Han )ljos

I
=
»
~
S—

(A16)

f STmls,
m%0=2mw¢mnﬂ‘“} -0~ 9)]jusy (= 1,2,3,4) (A1)

i=1 (]w - Si)]jw:s,

The above theories are based on proportional damping assumption, and the vibration
mode function is a real function by default. But applying Equation (A14) in practical
analysis mostly yields complex numbers, that is, complex modes appear. If the complex
modes are substituted into Equations (A11) or (A16), the modal coordinate equation will
be made to have complex terms, and ultimately the displacement response obtained
from Equation (A17) will also become a complex number, which is inconsistent with its
physical meaning. Considering the universality of complex modes in this kind of problem,
Equations (A11), (A12), and (A17) are modified as:

L g i
ik ijvik
= L= gw—# (19
e }
X ¢yF(t)
j=1
[01] [s1 1 [v1]
= $E (0
N ’ ¢f]' j t
v S v i=1
i;]f ; ! st 011: =4 — (A19)
. . L ¢y;F(1)
j=1
o] | 57] [VF]
gﬁij(t)
Lj=1 i

g

w(oj 1) = Y 2[Re{vy()} Re{g; b —m{ui() - {5 }], (1= 1,2.3,4)  (a20)

Il
—_

where the poles s; and s;" (i = 1,2, ..., f) are the f pairs of conjugate latent roots obtained
in solving the eigenvalue problem for the state space equation; v; is obtained by variable
substitution g = @v;® is a complex modal matrix consisting of @; and ®;"; &; and ®;"
are complex eigenvectors corresponding to s; and s;; @i]- is obtained by using the residue

105, _ Hp(o=si) |

methOd, i T — an ij H ’
(Pl] Hll"(]w 5i )l]w:si (Pl] \/ 11'(jw_s?)|jw=s’-k
i

The upper part and the lower part of Equation (A19) are repeated (conjugate relation),
so only the upper part is abbreviated to a state space equation:

uc = Scuc + acl:y (A21)
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where uc = [ucy, ucy, ucs, -- ., ucf]T is a state variable; Fy = [Fy1, Fy2, Fys, Fy4]T is an
excitation force column vector of the connection supports to the cylindrical shell; Sc =
diag[sc1, sca, Scs- - -, Scrl is a diagonal matrix composed of poles (sorted by Isc1 | < Isca |
< lscal <...< Iscrl); @c is a matrix consisting of the modal parameter ¢;;, and

P11 P12 P13 P
P11 P Paz Py
D = |93 ‘P32 ‘P33 4’34 (A22)

oy ‘sz (Pfs ‘Pf4

The functional relation between wy; and the state space variable uc is
—T —T —T
wy = 2Re{d>cuc} - 2(Re{¢c}.Re{uC} - Im{q)C}.Im{uC}) (A23)
where wy = [wy1, wy2, Wys, wy4]T.

Appendix B. Control Parameters in Simulation Calculation

MATLAB is used in the simulation calculation in this paper. The specific theory of
mathematical operations has been described in detail in Section 2 and Appendix A. Here,
some control parameters related to computational convergence are supplemented.

As mentioned above, the displacement response of the coupled system at any time
t is war = [wa1, Wa2, W3, Waal', w2 = [Was, Wae, Wa7, Was]", wi = [ Wa, W, Wi, Wy,
Wis, W6, Wiz, Wig]T, Wy = [Wp1, W, Wz, Wpa]T, and wy = [wy1, Wy, Wy3, Wys]". The above
displacement responses are assembled into a total displacement vector

T
y

there isatimet, =t + T, the displacement response is w’, and the velocity response is

T
w = [wgl, wh,, wi, wl, w ] whose corresponding Velocity vector is w. Suppose

w . Considering w "and w as two points in phase space, according to Poincaré mapping
theory, if these two points can coincide, then the system has a period T. However, due to
the error caused by the precision of numerical calculation, it is difficult to strictly meet this
condition. Therefore, a tolerance criterion ¢ is set so that:

M < (A24)

If the displacement responses w and w’ satisfy the above condition, the calculation is
considered to be convergent, that is, the motion of the system is periodic (T is a period).
Otherwise, it is divergent, that is, the motion of the system is nonperiodic (quasi-periodic
or chaotic).

Similarly, the velocity responses w and @ should also satisfy the condition, that is:

Hw —w

2
=,
The above tolerance criterion ¢ is set to 1.0 x 107> in the simulation example of
this paper.
Figure A2 shows the convergence process of simulation calculation under « = 0.5 and
B = 1.0 as an example of the connection points of the upper vibration isolators with unit A;.

It can be seen from Figure A2a,b that convergence is obtained when t = 1.7 s. Figure A2c
shows a sequence of state as it move to the attractor.

<e (A25)
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Figure A2. The convergence process of the calculation at the connection points of the upper vibration
isolators with the unit A; (« = 0.5, f = 1.0): (a) time that the displacement response calculation took to
obtain convergence; (b) time that the velocity response calculation took to obtain convergence; (c) the
sequence of state as it moves to the attractor.

Similarly, at the connection points of the upper vibration isolators with the unit Ay,
the upper vibration isolators with the raft frame, the lower vibration isolators with the
raft frame, and the lower vibration isolators with the cylindrical shell, and under other
nonlinear stiffness conditions, simulation calculation of the periodic motion has similar
convergence properties, which will not be shown here one by one.

References

1. Smirnov, V.; Mondrus, V. Comparison of linear and nonlinear vibration isolation system under random excitation. Procedia Eng.
2016, 153, 673-678. [CrossRef]

2. Santhosh, B. Dynamics and performance evaluation of an asymmetric nonlinear vibration isolation mechanism. J. Braz. Soc. Mech.
Sci. Eng. 2018, 40, 169. [CrossRef]

3. Dutta, S.; Chakraborty, G. Performance analysis of nonlinear vibration isolator with magneto-rheological damper. J. Sound Vib.
2014, 333, 5097-5114. [CrossRef]

4. Suman, S.; Balaji, PS.; Selvakumar, K.; Kumaraswamidhas, L.A. Nonlinear vibration control device for a vehicle suspension using
negative stiffness mechanism. J. Vib. Eng. Technol. 2021, 9, 957-966. [CrossRef]

5. Araki, Y,; Asai, T.; Kimura, K.; Maezawa, K.; Masui, T. Nonlinear vibration isolator with adjustable restoring force. J. Sound Vib.
2013, 332, 6063-6077. [CrossRef]

6. Zhao, F;Ji, J.C,; Ye, K.; Luo, Q. Increase of quasi-zero stiffness region using two pairs of oblique springs. Mech. Syst. Signal
Process. 2020, 144, 106975. [CrossRef]

7. Zhao, F;Ji, ]J.C; Ye, K.; Luo, Q. An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. ]. Mech. Sci.
2021, 192, 106093. [CrossRef]

8.  Ye, K, Ji, J.C.; Brown, T. Design of a quasi-zero stiffness isolation system for supporting different loads. J. Sound Vib. 2020,
471, 115198. [CrossRef]

9.  Chang, Y,; Zhou, J.; Wang, K.; Xu, D. A quasi-zero-stiffness dynamic vibration absorber. J. Sound Vib. 2021, 494, 115859. [CrossRef]

10. Bouna, H.S.; Nbendjo, B.R.N.; Woafo, P. Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a
multi-span continuous beam bridge under pier base vibrating excitation. Nonlinear Dyn. 2020, 100, 1125-1141. [CrossRef]

11. Drezet, C.; Kacem, N.; Bouhaddi, N. Design of a nonlinear energy harvester based on high static low dynamic stiffness for low
frequency random vibrations. Sens. Actuators A Phys. 2018, 283, 54—64. [CrossRef]

12. Lu, Z.; Wu, D; Ding, H.; Chen, L. Vibration isolation and energy harvesting integrated in a Stewart platform with high static and
low dynamic stiffness. Appl. Math. Model. 2021, 89, 249-267. [CrossRef]

13. Hao, R;; Lu, Z.; Ding, H.; Chen, L. Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness:
Experiment and analysis. Int. J. Mech. Sci. 2022, 222, 107237. [CrossRef]

14. Hao, R; Lu, Z.; Ding, H.; Chen, L. A nonlinear vibration isolator supported on a flexible plate: Analysis and experiment. Nonlinear
Dyn. 2022, 108, 941-958. [CrossRef]

15.  Sun,Y.; Zhou, J.; Thompson, D.; Yuan, T.; Gong, D.; You, T. Design, analysis and experimental validation of high static and low
dynamic stiffness mounts based on target force curves. Int. . Non-Linear Mech. 2020, 126, 103559. [CrossRef]

16. Yao, Y, Li, H.; Li, Y.; Wang, X. Analytical and experimental investigation of a high-static-low-dynamic stiffness isolator with
cam-roller-spring mechanism. Int. . Mech. Sci. 2020, 186, 105888. [CrossRef]

17.  Chong, X.; Wu, Z.; Li, F. Vibration isolation properties of the nonlinear X-combined structure with a high-static and low-dynamic

stiffness: Theory and experiment. Mech. Syst. Signal Process. 2022, 179, 109352. [CrossRef]


https://doi.org/10.1016/j.proeng.2016.08.221
https://doi.org/10.1007/s40430-018-1084-x
https://doi.org/10.1016/j.jsv.2014.05.028
https://doi.org/10.1007/s42417-020-00275-6
https://doi.org/10.1016/j.jsv.2013.06.030
https://doi.org/10.1016/j.ymssp.2020.106975
https://doi.org/10.1016/j.ijmecsci.2020.106093
https://doi.org/10.1016/j.jsv.2020.115198
https://doi.org/10.1016/j.jsv.2020.115859
https://doi.org/10.1007/s11071-020-05580-z
https://doi.org/10.1016/j.sna.2018.09.046
https://doi.org/10.1016/j.apm.2020.07.060
https://doi.org/10.1016/j.ijmecsci.2022.107237
https://doi.org/10.1007/s11071-022-07243-7
https://doi.org/10.1016/j.ijnonlinmec.2020.103559
https://doi.org/10.1016/j.ijmecsci.2020.105888
https://doi.org/10.1016/j.ymssp.2022.109352

Inventions 2023, 8,118 24 of 24

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Leutcho, G.D.; Kengne, J. A unique chaotic snap system with a smoothly adjustable symmetry and nonlinearity: Chaos,
offset-boosting, antimonotonicity, and coexisting multiple attractors. Chaos Solitons Fractals 2018, 113, 275-293. [CrossRef]

Yan, B.; Ma, H,; Jian, B.; Wang, K.; Wu, C. Nonlinear dynamics analysis of a bi-state nonlinear vibration isolator with symmetric
permanent magnets. Nonlinear Dyn. 2019, 97, 2499-2519. [CrossRef]

Rahman, Z.AS.A; Jasim, B.H. Hidden Dynamics Investigation, Fast Adaptive Synchronization, and Chaos-Based Secure
Communication Scheme of a New 3D Fractional-Order Chaotic System. Inventions 2022, 7, 108. [CrossRef]

Li, Y; Yi, Y; Wu, J.; Gu, Y. A novel feature extraction method for ship-radiated noise based on hierarchical refined composite
multi-scale dispersion entropy-based Lempel-Ziv complexity. Deep Sea Res. Part I Oceanogr. Res. Pap. 2023, 199, 104111. [CrossRef]
Karimov, A.; Rybin, V.; Dautov, A.; Karimov, T.; Bobrova, Y.; Butusov, D. Mechanical Chaotic Duffing System with Magnetic
Springs. Inventions 2023, 8, 19. [CrossRef]

Dreau, J.; Magnain, B.; Batailly, A. Multi-element polynomial chaos expansion based on automatic discontinuity detection for
nonlinear systems. J. Sound Vib. 2023, 567, 117920. [CrossRef]

Cassidy, L.L.; Scruggs, ].T. Nonlinear stochastic controllers for power-flow-constrained vibratory energy harvesters. J. Sound Vib.
2013, 332, 3134-3147. [CrossRef]

Silva, O.M.; Neves, M.M.; Jordan, R.; Lenzi, A. An FEM-based method to evaluate and optimize vibration power flow through a
beam-to-plate connection. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 413-426. [CrossRef]

Varghese, C.K.; Shankar, K.K. Damage identification using combined transient power flow balance and acceleration matching
technique. Struct. Control. Health Monit. 2014, 21, 135-155. [CrossRef]

Yang, J.; Xiong, Y.; Xing, J. Vibration power flow and force transmission behaviour of a nonlinear isolator mounted on a nonlinear
base. Int. J. Mech. Sci. 2016, 115, 238-252. [CrossRef]

Shi, B.; Yang, J. Quantification of vibration force and power flow transmission between coupled nonlinear oscillators. Int. J. Dyn.
Control. 2020, 8, 418-435. [CrossRef]

Ren, Y;; Chang, S.; Liu, G.; Wu, L.; Wang, H. Vibratory power flow analysis of a gear-housing-foundation coupled system. Shock.
Vib. 2018, 2018, 5974759. [CrossRef]

Zhang, Y.; Zhou, L.; Wang, S.; Yang, T.; Chen, L. Vibration power flow characteristics of the whole-spacecraft with a nonlinear
energy sink. J. Low Freq. Noise Vib. Act. Control 2019, 38, 341-351. [CrossRef]

Xu, D.; Du, J.; Zhao, Y. Flexural vibration and power flow analyses of axially loaded beams with general boundary and
non-uniform elastic foundations. Adv. Mech. Eng. 2020, 12, 1687814020921719. [CrossRef]

Mahapatra, K.; Panigrahi, S.K. Effect of general coupling conditions on the vibration and power flow characteristics of a two-plate
built-up plate structure. Mech. Based Des. Struct. Mach. 2021, 49, 841-861. [CrossRef]

Liu, S.; Huo, R.; Wang, L. Vibroacoustic Transfer Characteristics of Underwater Cylindrical Shells Containing Complex Internal
Elastic Coupled Systems. Appl. Sci. 2023, 13, 3994. [CrossRef]

More, S.; Padmanabhan, C. Power flow based analysis of a floating raft vibration isolation system. Am. Phys. Soc. 2014, 72,
691-708.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.chaos.2018.05.017
https://doi.org/10.1007/s11071-019-05144-w
https://doi.org/10.3390/inventions7040108
https://doi.org/10.1016/j.dsr.2023.104111
https://doi.org/10.3390/inventions8010019
https://doi.org/10.1016/j.jsv.2023.117920
https://doi.org/10.1016/j.jsv.2013.01.023
https://doi.org/10.1007/s40430-015-0360-2
https://doi.org/10.1002/stc.1551
https://doi.org/10.1016/j.ijmecsci.2016.06.023
https://doi.org/10.1007/s40435-019-00560-7
https://doi.org/10.1155/2018/5974759
https://doi.org/10.1177/1461348419829363
https://doi.org/10.1177/1687814020921719
https://doi.org/10.1080/15397734.2019.1701492
https://doi.org/10.3390/app13063994

	Introduction 
	Materials and Methods 
	Model of a Mechanical Equipment—Floating Raft—Cylindrical Shell—Underwater Acoustic Field Coupled System 
	State Space Model of the Coupled System 
	Expression of Nonlinear Stiffness for Vibration Isolation Supports 
	Evaluation Index of Vibro-Acoustic Transfer Characteristics for the Nonlinear Coupled System 

	Results and Discussion 
	Modal Parameter Identification for the Cylindrical Shell—Underwater Acoustic Field Coupled Subsystem 
	Effect of Nonlinear Stiffness with Softening Characteristic on the Low-Frequency Vibro-Acoustic Characteristics for the Coupled System 
	Effect of Stiffness Ratio  
	Effect of Approximate Linear Working Interval Length Control Parameter  

	Effect of Nonlinear Stiffness with Hardening Characteristic on the Low-Frequency Vibro-Acoustic Characteristics for the Coupled System 
	Effect of Stiffness Ratio  
	Effect of Approximate Linear Working Interval Length Control Parameter  


	Conclusions 
	Appendix A
	Solutions of the Admittance Functions for the Coupled Subsystem 
	Modal Parameter Identification of the Coupled Subsystem 
	Establishment of State Space Equation for the Coupled Subsystem 

	Appendix B
	References

