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Reynolds Number
J. J. H. Brouwers

Romico Hold VBA., 6226 GV Maastricht, The Netherlands; j.j.h.brouwers@gmail.com

Abstract: Predictions are presented of mean values of statistical variables of large-scale turbulent
flow of the widely used basic k-ϵ model, and of a new model, which is based on general statistical
descriptions of turbulence. The predictions are verified against published results of direct numerical
simulations (DNSs) of Navier–Stokes equations. The verification concerns turbulent channel flow
at shear Reynolds numbers of 950, 2000, and 104. The basic k-ϵ model is largely based on empirical
formulations accompanied by calibration constants. This contrasts with the new model, where
descriptions of leading statistical quantities are based on the general principles of statistical turbulence
at a large Reynolds number and stochastic theory. Predicted values of major output variables such as
turbulent viscosity, diffusivity of passive admixture, temperature, and fluid velocities compare well
with DNS for the new model. Significant differences are seen for the basic k-ϵ model.

Keywords: turbulent channel flow; k-ϵ model; new fundamentally based model; diffusion representations

1. Introduction

The description of turbulence has been an issue right from the beginning. A solid
starting point for analysis is the Navier–Stokes equations, which describe the flow. These
can be time-averaged, resulting in equations for mean values of velocity, pressure, and
temperature. The problem arises with the average values of the products of fluctuating
quantities within the non-linear convection terms in the equations. They describe the
effect of fluctuations on mean flow quantities. The proposed representations of average
nonlinear convective fluctuations are of a hypothetical nature, drawing analogies with
molecular chaos. Boussinesq [1] was the first to follow this line of thinking by introducing
the gradient hypothesis: the averaged nonlinear fluxes are proportional to the derivative of
the mean flow quantity, preceded by a constant termed the turbulent viscosity or turbulent
diffusion coefficient. Several versions and extensions based on the same idea have since
been put forward by the pioneers of turbulence theory: Taylor [2], Prandtl [3], and von
Karman [4], among others. They also form the basis of many of today’s computer models
used in engineering and environmental analyses; for example, see the books of Hanjalic
and Launder [5] and Bernard and Wallace [6].

An offspring of the aforementioned concept is the basic k-ϵ model, which is widely
used in engineering and environmental analyses [5,6]. This model describes the average
value of momentum fluxes through the gradient of the mean velocity. Fluctuations are
isotropic and the coefficient proceeding the gradient equals cµ

k2

ϵ , where k is the mean kinetic
energy of fluctuations, ϵ is the mean energy dissipation rate, and cµ is a calibration constant.
The model is completed by equations for k and ϵ. The gradient hypothesis is also applied
to several other flux terms in equations with different values of calibration constants.

The problems with gradient-based models include their hypothetical origin and lack of
uniqueness. Starting from a sketchy analogy with laminar diffusion, almost limitless forms
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of gradient representations and proceeding functional dependencies can be devised. A new
development that surpasses these limitations is the statistical description of anisotropic
inhomogeneous turbulence; see Brouwers [7–9]. Turbulence at a high Reynolds number
is featured by unstable eddies of whirling irregular fluid velocities whose behaviors are
governed by the domination of the inertial forces in the momentum balance; see Monin
and Yaglom, Vol. II, Ch.8 [10]. The eddies start at sizes of the configuration and then break
down to smaller ones until the point where viscous forces come into play at sizes of a
few millimeters. Here, Kolmogorov’s theory of small viscous scales comes into play [10].
Building on this framework of high Reynolds turbulence and using the methods of the
stochastic theory of Van Kampen [11] and Stratonovich [12], explicit statistical descriptions
of governing variables are obtained. They are the leading terms of asymptotic expansions
based on the small value of the inverse of the universal Lagrangian Kolmogorov constant.
The results represent unique descriptions of turbulent flow statistics, subject to deviations
due to truncated higher-order terms.

The results of direct numerical simulation (DNS) of the Navier–Stokes equations
offer an opportunity for testing the outcomes of turbulence models. With the evolution
of modern computing power, it has become possible to generate a wealth of accurate
data on turbulent flow at high Reynolds numbers. The recent DNS data of the turbulent
channel flow of Hoyas et al. [13,14] and Kuerten et al. [15] are particularly noteworthy.
Fluctuating channel velocities are strongly anisotropic and averages of flow quantities vary
strongly with distance from the wall. Inhomogeneity and anisotropy are characteristics of
turbulence, in practice. The DNS data provide a meaningful test case for models. In this
paper, a detailed comparison is presented of the DNS data, along with predictions of the
basic k-ϵ model and the new model based on general statistical descriptions, referred to as
the fundamental model.

2. The Basic k-ϵ Model and the New Fundamental Model

The turbulent flow of an incompressible or nearly incompressible fluid, e.g., a liquid
or gas flowing at speeds where the square of the Mach number is minimal, is considered.
The density ρ is assumed to be constant. Turbulent fluctuations measured at a fixed
point in space are treated as a statistical process that is stationary or almost stationary
in time compared to the time of velocity fluctuations. Statistical averages follow from
time-averaging over sufficiently long time intervals. The time-averaged representation of
the Navier–Stokes equations is given by the following:

• Conservation of mass:
∂ui
∂xi

= 0 (1)

• Conservation of momentum:

∂ui
∂t

+ uj
∂ui
∂xj

+
∂ < u′

iu
′
j >

∂xj
= − ∂p

∂xi
(2)

• Conservation of energy:

∂θ

∂t
+ uj

∂θ

∂xj
+

∂ < u′
jθ
′ >

∂xj
= 0 (3)

where angled brackets represent statistical averaging, t and x are time and space coordinates,
u, p, and θ are the mean or time-averaged values of fluid velocity, pressure, and temperature,
and u′ and θ′ represent fluctuations of velocity and temperature, referring to velocity and
temperature minus their mean value. As we are concerned with the flow at a high Reynolds
number, the contributions of the viscous forces and heat conductivity present in the Navier–
Stokes equations have been dropped. Their effect can be disregarded when considering the
main flow governed by the instability of the inviscid flow outside small boundary layers.
The average temperature in energy Equation (3) can also be used to describe the average
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distribution of passive or almost passive admixture in the fluid. Restricting the formulation
of the conservation equations to an incompressible or almost incompressible fluid implies
that the solutions to (1) and (2) are not affected by the value of the conservative scalar
temperature. The representation holds as long as the changes in temperature or admixture
imposed at external boundary conditions are of limited magnitude.

2.1. Turbulent Diffusion in the Basic k-ϵ Model

The appearance of turbulent fluxes—in the convection terms of the averaged conserva-
tion equations—results in an unclosed set of equations for mean flow variables. It is known
as the closure problem. To resolve this issue, a diffusion hypothesis has been introduced
in the basic k-ϵ model. In this hypothesis, turbulent fluxes are treated as isotropic and are
described by [5,6].

< u′
ju

′
i >=

2
3

kδij − νt(
∂uj

∂xi
+

∂ui
∂xj

) (4)

< u′
jθ
′ >= −νt

∂θ

∂xj
(5)

where νt is a scalar that represents diffusivity or turbulent viscosity, which is defined by
the following:

νt = cµ
k2

ϵ
(6)

where k is the average kinetic energy of fluctuations, k = 1
2 < u′2

i >, and ϵ = 1
2 ν < (

∂u′
i

∂xj
+

∂u′
j

∂xi
)2 > denotes the average energy dissipation rate, with ν being kinematic viscosity; cµ in

(4) and (5) is a calibration constant whose value is usually taken as 0.09 [5,6]. In Equation (5),
correction factors are sometimes added to the diffusion constant, i.e., a turbulent Prandtl
number and a turbulent Schmidt number for temperature and admixture, respectively. But
these numbers are generally close to unity and are omitted here.

2.2. Turbulent Diffusion in the Fundamental Model

The derivation of the fundamental model starts from a Langevin equation for fluid
particle velocity [8–10]. In this equation, the limiting form of Kolmogorov’s theory of small
scales is implemented, i.e., where the characteristic times for velocity fluctuations are much
larger than the times of viscous scales. This is the case when the Reynolds number is large;
see Kolmogorov [16]. One further step involves an expansion, in terms of the inverse of the
Kolmogorov constant C0. Matching predictions with measurements and DNS data reveal
values of C0 at around 6–7; in the present analysis, a value of 7 is adopted. Furthermore,
the area where the Lagrangian description applies can be reduced to a point in the Eulerian
flow description in the limit of small C0

−1. In this way, Lagrangian-based descriptions are
connected to Eulerian ones. The following descriptions for the flux terms are obtained [8,9]

< u′
ju

′
i >=

2
3
(k + Dnk

∂un

∂xk
)δij − Dik

∂uj

∂xk
− Djk

∂ui
∂xk

(7)

< u′
jθ
′ >= −Dik

∂θ

∂xk
(8)

where the fundamentally based diffusion tensor, Dij, is described by the following:

Di J = 2C−1
0 ϵ−1σinσnj + 2C−2

0 ϵ−2σliσjkun
∂σlk
∂xn

− 4C−2
0 ϵ−1σkjun

∂

∂xn
(ϵ−1σimσmk) (9)

and
σin =< u′

iu
′
n > (10)
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is covariance or Reynolds stress. Relations (8)–(10) are part of the description, which
holds in the entire flow configuration (except the thin viscous layers at walls) once they
are coupled to conservation Equations (1)–(3). In this way, the turbulent flux change at
each point, x, as described by (7) and (8), is connected to the kinetic energy and energy
dissipation changes. Although the presence of ν in the expression for energy dissipation

ϵ = 1
2 ν < (

∂u′
i

∂xj
+

∂u′
j

∂xi
)2 > may suggest otherwise, ϵ is a characteristic of the main inviscid

flow outside the boundary layers [10]. The magnitude of velocity gradients in turbulence
is governed by the small viscous scales. It scales as 1/

√
ν and makes the magnitude of ϵ

independent of ν. This independence is reflected in the equations for k and ϵ, presented in
the next section.

The above expressions for the diffusion of the fundamental model reveal the depen-
dency on mean gradients, which are of a more complex structure than those in the basic
k-ϵ model. This reflects the anisotropy of the fluctuating velocity field and reveals a more
complex dependency on flow statistics.

The application of the fundamentally based diffusion approximation to a scalar, as
conducted in Equation (8), is only justified if the scalar is conservative [8,9]. The value
of the conservative scalar is constant when following a fluid particle and fluctuates in
value in a fixed coordinate system due to fluid particle fluctuations. This is the case for
temperature in an incompressible fluid such as liquids. It is approximately correct if the
fluid is almost incompressible, as is the case in gases flowing at speeds where the square
of the Mach number is small. The scalar representation can also be applied to passive or
almost passive admixtures in fluids, such as aerosols in air [7–9]. It leads to errors when
applied to non-conservative scalars such as kinetic energy and pressure; see Section 5.

3. Equations for k and ϵ

Incorporating the expressions for turbulent diffusion from the basic k-ϵ model and the
fundamental model into the averaged conservation equations introduces two unknowns:
the mean kinetic energy, k, and the mean energy dissipation rate, ϵ. Equations for k and ϵ
can be obtained from the Navier–Stokes equations [8,9]. Our aim is to describe flow away
from the thin, viscous layers near walls, which are only a few millimeters. In line with
this approach, the contributions in the equations for k and ϵ from laminar viscosity will be
disregarded (as was conducted in the conservation Equations (1)–(3)). To provide boundary
conditions at the wall, the viscous layer is surpassed by applying the solutions of the log
layer at x = 0: [5,6].

The equation for k reads as follows [5,6]:

∂k
∂t

+ ui
∂k
∂xi

+
∂ < u′

ik
′ >

∂xi
+ ρ−1 ∂ < u′

i p
′ >

∂xi
= P − ϵ (11)

where P is the mean production of turbulent fluctuations, defined by the following:

P = −σij
∂ui
∂xj

(12)

and where k′ and p′ are the fluctuating parts of kinetic energy and pressure, respectively,
which are the kinetic energy and dissipation rates minus their time-averaged values. There
are two turbulent flux terms in Equation (11), i.e., the third and fourth terms on the
LHS of (11), which need to be modeled. In the basic k-ϵ model, both terms are lumped
together [5,6] and are described by the following:

• Basic k-ϵ model

< u′
ik
′ > +ρ−1 < u′

i p
′ >= − νt

σk

∂k
∂xi

(13)

where σk is a calibration constant, which is usually taken unity: σk = 1 [5,6].
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• Fundamental model

The theory underlying the fundamental model provides general expressions for tur-
bulent scalar fluxes, which are free from calibration factors. However, these expressions
are only valid for conservative scalars and lead to disagreement with DNS results when
applied to turbulent fluxes of kinetic energy and pressure [8]. A fallback to empirical
construction is needed. It reads as follows:

< u′
ik
′ > + ρ−1 < u′

i p
′ >= −ckDij

∂k
∂xj

(14)

where it is noted that if k was a conserved scalar, its diffusion should be described by Dij
∂k
∂xj

.
Factor ck represents correction for non-conservative behavior and includes the relatively
small contribution of pressure diffusion [8]. The above relations for the diffusion of kinetic
energy and pressure will be compared and calibrated with the DNS results in Section 5.

The equation for ϵ, conventionally applied in CFD models, is largely an empirical
construction [5,6]. Its basic form follows from the Navier–Stokes equations. It contains
a number of terms that are governed by small viscous scales. These terms are generally
replaced by expressions that meet the criteria of matching the results of decaying grid
turbulence and the log layer of turbulent channel flow. The equation reads as follows:

• Basic k-ϵ model
∂ϵ

∂t
+

∂uiϵ

∂xi
=

∂

∂xi
(

νt

σϵ

∂ϵ

∂xi
) + (cϵ1P − cϵ2ϵ)

ϵ

k
(15)

• Fundamental model

∂ϵ

∂t
+

∂uiϵ

∂xi
=

∂

∂xi
(

Dij

σ∗
ϵ

∂ϵ

∂xj
) + (cϵ1P − cϵ2ϵ)

ϵ

k
(16)

The constant cϵ2 ensures matching with the case of grid turbulence. Its value is usually
taken to be 1.9, which is somewhat less than the theoretical limit value of 2 for the infinite
Reynolds number; see George [17]. The von Karman constant κ is equal to 0.4. For the basic
k-ϵ model, the calibration constant, σϵ, is usually taken to be around 1.3, and cϵ1 is specified
by the equation (Equation (8.41) of [16]):

√cµσϵ

κ2 (cϵ2 − cϵ1) = 1 (17)

The values appropriate for cϵ1 and σ∗
ϵ for the fundamental model are determined in

Section 6.

4. Channel Flow

The objective is to compare the results of the basic k-ϵ model and the fundamental
model with those of the DNS of the channel flow. The channel consists of parallel planes in
between, where the mean velocity, u1, is unidirectional in the direction, x1, parallel to the
planes. Its magnitude and the value of statistical averages related to velocity fluctuations
only change in the direction, x2, normal to the planes. For channel flow, there is an exact
solution for the mean pressure [9], which reads as follows:

p
ρ
= −u2

τ
x1

H
− σ22 (18)

where uτ is shear velocity and 2H is channel height. The shear velocity is determined by
the pressure drop in direction x1 at a given u1. There are theoretical and experimentally
confirmed relations for the relationship determining uτ . Another exact result for the channel
flow is the description of the covariance, σ12 or < u′

1u′
2 >.

σ12 = −u2
τ(1 −

x2

H
) (19)
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which is valid outside the thin viscous layer at the wall, [9].
In the subsequent analysis of channel flow, we shall make use of dimensionless formula-

tions: ui is made dimensionless by uτ, σij and
p
ρ

by u2
τ, x1 and x2 by H, and P and ϵ by

u3
τ

H
; the

subscript 2 of x2 will be dropped. In this new notation, Equations (18) and (19) are as follows:

p
ρ
= −x1 − σ22 (20)

which is valid outside the thin viscous layer at the wall.

σ12 = −(1 − x) (21)

Furthermore, Equation (12) becomes

P = (1 − x)
du1

dx
(22)

The above solutions follow from the averaged momentum equations adapted to the case of
channel flow [9]. A complete specification of all variables follows from the expressions for
turbulent fluxes and the equations for k and ϵ. In the case of channel flow, these reduce to
the following:

• Basic k-ϵ model

σ11 = σ22 = σ33 =
2
3

k (23a)

σ12 = −νt
du1

dx
(23b)

< θ′u′
2 > = −νt

dθ

dx
(23c)

νt = cµ
k2

ϵ
(23d)

d
dx

(
νt

σk

dk
dx

) + P − ϵ = 0 (23e)

d
dx

(
νt

σϵ

dϵ

dx
) + (cϵ1P − cϵ2ϵ)

ϵ

k
= 0 (23f)

• Fundamental model:

σ22 =
2
3
(k + D12

du1

dx
) (24a)

σ33 = σ22 (24b)

σ11 =
2
3
(k − 2D12

du1

dx
) (24c)

σ12 = −D22
du1

dx
(24d)

< θ′u′
2 > = −D22

dθ

dx
(24e)

D12 =
2

ϵC0
σ12(σ11 + σ22) (24f)

D22 =
2

ϵC0
(σ2

12 + σ2
22) (24g)

ck
d

dx
(D22

dk
dx

) + P − ϵ = 0 (24h)

1
σ∗

ϵ

d
dx

(D22
dϵ

dx
) + (cϵ1P − cϵ2ϵ)

ϵ

k
= 0 (24i)
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In the subsequent sections, we shall compare the above descriptions with the results
of DNS.

5. Testing the Diffusion Representations by DNS

In deriving equations for the mean values of flow quantities, the diffusion representa-
tion of mean fluxes has been used, i.e., the mean value of products of fluctuating quantities.
Their correctness and accuracy will be assessed by comparing with the DNS results pub-

lished for friction Reynolds numbers, Reτ = uτ
H
ν

of 950 [15], 2000 [13], and 104 [14]. The
comparison focuses on the flow in the main region—the region outside the thin boundary
layer at the wall. In the main region, flow statistics are governed by unstable large eddies
governed by inertia forces, while the effect of viscosity in this region is negligibly small.
The presented basic k-ϵ as well as the fundamental model intend to describe these statistics.

The boundary layer is governed by viscous forces and is situated in the region x <
100
Reτ

;

that is, x < 0.1, 0.05 and 0.01 for Reτ = 950, 2000, and 104, respectively. The DNS results of
the boundary layer near x = 0 are omitted in this analysis.

5.1. Diffusion of Momentum

In the case of channel flow, turbulent momentum transport is apparent in the equation,
as follows:

< u′
1u′

2 >= −vDNS
du1

dx
(25)

where νDNS is turbulent viscosity according to the DNS results, which is the value calculated

from Equation (25) when substituting the values of < u′
2u′

1 > and
d

dx
u1 obtained from

DNS data. The value according to the basic k-ϵ model νt is given by Equation (6) and
the value according to the fundamental model D22 is given by Equation (24g), where the
RHSs of these equations are evaluated from the DNS data. The DNS data used are those
of Reτ = 104 [14]. The three calculated turbulent viscosities are shown as functions of x

in Figure 1. The ratios
νt

νDNS
and

D22

νDNS
versus x are shown in Figure 2. Disregarding the

thin viscous layer at the wall, the fundamental model gives satisfactory agreement over the
entire x range without the use of calibration factors. Deviations are less than 10% from the
DNS results. They can be ascribed to the truncation of higher-order terms in the expansions
in powers of C−1

0 , which were used in the theory that led to the presented expressions [8,9].
The same conclusion was arrived at when using the DNS data of Reτ = 2000 [9,13]. The
basic k-ϵ model, on the other hand, disagrees quite a lot with DNS. The disagreement is
the largest at small x values and gradually becomes smaller when approaching the central
axis of the channel: x = 1. The dependency on x is apparently not well captured by
representation (23d), in contrast with (24g), which shows satisfactory agreement over the
entire range.

5.2. Diffusion of Temperature

Temperature is considered a conservative quantity in incompressible flow at high
Reynolds numbers, where heat conductivity through molecular vibration is negligibly
small outside thin layers at the walls. From the theory underlying the fundamental model,
it follows that the thermal diffusion constant equals Dik: cf. Equation (8). In the case
of channel flow, it becomes D22 and becomes equal to that of turbulent viscosity: cf.
Equations (24d) and (24e). This result is confirmed by the Lagrangian-based DNS of chan-
nel flow at Reτ = 950 [15], where the thermal diffusion coefficient, according to DNS,
< u′

2θ′ >

dθ

dx

is compared to that of the fundamentally based model, D22. The agreement
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closely resembles that shown in Figures 1 and 2, c.q.,
< u′

2u′
1 >

du1
dx

and D22. Deviations

of the predictions of the basic k-ϵ model are likely as equally large as those shown in
Figures 1 and 2.
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DNS

Basic k−ε model

Fundamental model

Figure 1. Turbulent viscosities according to νDNS at Reτ = 104, fundamental model D22, and the basic
k-ϵ model νt versus the dimensionless distance from the wall, x. Results from DNS are represented
by the solid line, results from the fundamental model are represented by a dash–dot line, and results
from the basic k-ϵ model are represented by the dashed line.
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Figure 2. Ratio of turbulent viscosity of the fundamental model to that of DNS at Reτ = 104 D22

νDNS
(lower line) and the ratio of turbulent viscosity of the basic k-ϵ model to that of DNS at Reτ = 104

νt

νDNS
(upper line) versus the dimensionless distance from the wall, x.
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5.3. Diffusion of Kinetic Energy and Pressure

In the basic k-ϵ model, fluxes of kinetic energy and pressure are lumped together, as
shown in Equation (13). For channel flow, these terms become the following:

< k′u′
2 > + < p′u′

2 >= − νt

σk

dk
dx

(26)

From Equation (14), we have the following for the fundamental model:

< k′u′
2 > + < p′u′

2 >= −ckD22
dk
dx

(27)

The description is used in the numerical solution of the equation for k in Section 6.
In Figure 3, we show the sum of both fluxes versus x, when the RHSs of (26) and (27)

are evaluated by the DNS data. Values for the calibration constants σk and ck of 1 and 1.3
were taken. Also, the value of the sums is obtained by the direct calculation of their values
using the DNS of Reτ = 104. The empirical construction of Equation (27), based on the
fundamental model, offers surprisingly good agreement. The agreement extends over the
entire x range and is obtained with the calibration constant, ck = 1.3.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4
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d
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f 
s
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 o
f 
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e
ti
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n
e
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y
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n
d
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s
s
u
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 [
−

]

x [−]

 

 

DNS

Basic k−ε model (σ
k
=1)

Fundamental model (c
k
=1.3)

Figure 3. Sum of turbulent fluxes of kinetic energy and pressure versus the dimensionless distance
from the wall, x. The solid line is the sum according to DNS at Reτ = 104, the dash–dot line is the
empirical construction using the fundamental model, and the dashed line is the empirical construction
of the basic k-ϵ model.

5.4. Diffusion of Energy Dissipation

DNS data do not provide information on the average values of products of velocity
fluctuations and dissipation fluctuations. Direct verification of the diffusion representation
is, thus, not possible. Further, the differential equation for mean energy dissipation in both
models is largely an empirical construction. What remains possible is to verify the values
of quantities derived from the solutions of the coupled differential equations for mean
kinetic energy and mean energy dissipation rate against DNS data. This is the subject of
the next section.
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6. Solutions of k and ϵ Compared with DNS

In the previous section, predictions of individual components of the models were
verified by DNS. Further testing is executed by comparing numerically obtained solutions
of the model equations as a whole with DNS.

6.1. Equations and Boundary Conditions

Model equations are given by coupled differential equations for mean kinetic energy
and mean energy dissipation. For mean energy dissipation, the variable G is introduced,
which is defined by the following:

G = κϵx (28)

Near the wall, outside the viscous layer, solutions should comply with the solutions of the
log layer. Inertial subrange asymptotics [18] reveal that production, P, and dissipation,
ϵ, are equal in this region: P = ϵ. Furthermore, κ du1

dx = 1, so that G = 1. DNS results
show values of G in the log layer, which are between 0.9 and 1 [13,14]. In the present
analysis, the theoretical value of 1 is taken. Making use of relations (21), (23b), (23d), and
(28), differential equations (23e) and (23f) can be transformed into the following coupled
equations for k and G, which are appropriate for the basic k-ϵ model.

• Basic k-ϵ model equations:

κ2

σk

x
G

d
dx

(
Ax
G

dk
dx

) +
(1 − x)2

A
− 1 = 0 (29)

κ2

σϵ

x2

G2
d

dx
(

Ax
G

d
dx

(
G
x
)) +

1
k
(

cϵ1(1 − x)2

A
− cϵ2) = 0 (30)

where
A = cµk2 (31)

where values of the empirical constants will be taken in agreement with [5,6]: κ = 0.4,
cµ = 0.09, σk = 1, σϵ = 1.3, cϵ1 = 1.49, cϵ2 = 1.9. The boundary conditions are as follows:

x = 0; k =
1

√cµ
; G = 1 (32)

x = 1;
dk
dx

= 0 ;
dG
dx

= G (33)

The boundary condition for k at x = 0 follows from relations (21), (23b), and (23d), with

ϵ =
du1

dx
in the log layer. The boundary condition for G at x = 1 corresponds to the zero

slope of ϵ at x = 1.
The equations appropriate for the fundamental model follow from (24h) and (24i)

upon using (28), (21), (24a)–(24g).

• Fundamental model equations:

ckκ2x
G

d
dx

(B
x
G

dk
dx

) +
(1 − x)2

B
− 1 = 0 (34)

κ2x2k
G2σ∗

ϵ

d
dx

(
B

x
G

d
G
x

dx

)
+

cϵ1(1 − x)2

B
− cϵ2 = 0 (35)

and
B =

2
C0

(σ2
12 + σ2

22) =
2

C0
((1 − x)2 + σ2

22) (36)
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In these equations, k and σ22 are related to each other by an algebraic relation, which is
obtained by the systematic elimination of ϵ−1 du1

dx , σ12, σ11, σ33, D12, D22 from Equations (21),
(24a), and (24g), as follows:

k = σ22
3σ2

22 + (1 − x)2

2(σ2
22 − (1 − x)2)

(37)

The relation can be used to eliminate σ22 from (34) and (35), resulting in two differential
equations for k and G. However, the analysis of the above relation for k shows that in
an area close to x = 0, according to (37), σ22 can have two values for one value of k. The
verification of (37) using the results of DNS confirms the correctness of the equation and
the double dependency in this area. The other way around is not the case: For each value
of σ22, there is only one value of k possible. The easiest approach is then to substitute the k
relation (37) into the two differential equations, i.e., Equations (34) and (35), and solve for
σ22 and G. The value of k is subsequently obtained from (37). The boundary conditions are
as follows:

x = 0; G = 1 ; σ22 =

√
C0

2
− 1 (38)

x = 1;
dσ22

dx
= 0 ;

dG
dx

= G (39)

where the boundary condition for σ22 at x = 0 follows from Equations (21), (24d), and
(24g), with ϵ = du1

dx in the log layer, as in the basic k-ϵ model, cϵ2 = 1.9. A value of ck of 1.3
was established in Section 5.3 (Figure 3). A value of σ∗

ϵ of 0.2 is found to lead to the best
agreement with DNS.

The value of cϵ1 follows from Equation (35) by letting x approach x = 0. It yields
the following relation:

cϵ1 = cϵ2 −
k0κ2

σ∗
ϵ

(40)

which is analogous to Equation (17) for the basic k-ϵ model; k0 is the value of k at x = 0
obtained from Equation (37). For cϵ2 = 1.9, C0 = 7, σ∗

ϵ = 0.2 and k0 = 4.48, cϵ1 = −1.68.
This suggests negative production. However, for the first term on the LHS of Equation (35),
one can write the following:

x2 d
dx

(B
x
G

d G
x

dx
) = x2 d

dx
(

B
G

dG
dx

)− x
dB
dx

+ B (41)

where the last two terms have the same character as that of production, making the total of
production-like terms positive.

6.2. Numerical Solution

Numerical instability is encountered when solving Equations (29), (30), (34), and (35),
a feature not uncommon for k-ϵ equations; see Lew et al. [19]. The way out is to convert

the equations into a diffusion problem by adding the terms
dk
dt

and
dG
dt

on the RHS of (29)

and (30),
dσ22

dt
and

dG
dt

on the RHS of (34) and (35). This requires starting from a suitably
chosen initial solution at t = 0; see Borse [20]. After sufficient time, the solution converges
to the desired stationary result.

Another difficulty encountered in the execution of the numerical calculations concerns
the boundary condition for G at x = 1: cf. Equations (33) and (39). These are replaced by
(d/dx)G = 0 at x = 1. The effect of this simplification is limited to a small region near
x = 1.

Figures 4 and 5, respectively, show the distributions of kinetic energy, k, and the
energy dissipation rate, G, versus x, according to DNS, the basic k-ϵ model (calculated
from Equations (29) and (30)), and the fundamental model (calculated from Equations (34)
and (35)).
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Figure 4. Distribution of kinetic energy, k, versus x, according to DNS (solid line), the numerically
and analytically assessed basic k-ϵ model (dashed and full lines, respectively), and the numerically
and analytically assessed fundamental model (dash–dot and full lines, respectively).
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Figure 5. Distribution of kinetic energy, G, versus x, according to DNS (solid line), the numerically
and analytically assessed basic k-ϵ model (dashed and full lines, respectively), and the numerically
and analytically assessed fundamental model (dash–dot and full lines, respectively).

6.3. Analytical Solution

The distinction is made between the area near the wall referred to as the outer region
and the area near the center of the channel referred to as the inner region. The outer
region is the area where the production and dissipation of energy are dominant. Turbulent
diffusion of kinetic energy and pressure and turbulent diffusion of dissipation are negligibly
small. It is the area where the log layer description for mean flow applies and where
production equals dissipation [21]. In the inner region, turbulent diffusion of kinetic energy
and pressure, as well as turbulent diffusion of dissipation, are important and in balance
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with energy dissipation, while production is negligibly small. For each region, analytical
solutions can be derived, which are subsequently matched to arrive at a complete solution.

6.3.1. Solutions for k and G in the Outer Region

Solutions valid in the outer region are obtained by retaining the second and third
terms in Equations (28) and (33), yielding A = (1 − x)2 and B = (1 − x)2, or in terms of k
and σ22

• Basic k-ϵ model:

k =
1

√cµ
(1 − x) (42)

• Fundamental model:

σ22 =

√
(

C0

2
− 1)(1 − x) (43)

Using the relation between k and σ22, according to the fundamental model, cf. Equation (37),
we have the following:

• Fundamental model:

k = k0(1 − x) (44)

where k0 is the value of k at x = 0,

k0 =
1
2

√
(

C0

2
− 1)

(
3C0 − 4
C0 − 4

)
(45)

which amounts to k0 = 4.48 for C0 = 7.
To derive the equations for G, which are applicable in the outer region, the second

and third terms of Equation (41) need to be taken into account (and replacing B with A in
Equation (41), for the basic k-ϵ model). Noting that in the outer region A = (1 − x)2 and
B = (1− x)2 one obtains for G from Equation (30) using relation (17) and from Equation (35)
using relation (40), the result:

• Basic k-ϵ model and fundamental model:

G = (1 − x)
√
(1 + x) (46)

The above descriptions for k and G are rather simple. They compare well with the
numerical results for values of x, up to about 0.5. At greater distances from the wall, they
start to deviate and fail to meet the conditions of the zero slope at x = 1. To overcome this
deficiency, solutions valid for the inner region are developed.

6.3.2. Solutions for k in the Inner Region

Solutions for k are developed by describing k by a series of successive powers of
η = 1 − x. The linear term in η is omitted in order to satisfy the zero-slope condition at
η = 0. Disregarding terms of O(η3) and higher, we write the following for k:

k = k1 + aη2 (47)

where k1 is the value of k at x = 1; and k1 and a are to be determined. Substituting
expression (47) in Equations (29) and (34), and equating the leading terms of O(η0) for a in
the basic k-ϵ and fundamental models, respectively, we obtain the following relations:

2a
cµκ2k2

1
σk

= G2
1 (48)
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and
16ackκ2k2

1
9C0

= G2
1 (49)

where G1 is the value of G at η = 0. In deriving result (49), we take for σ22 at η = 0 the
value 2

3 k1 in accordance with Equation (37). The boundary between the inner and outer
region is defined by η0 = 1 − x0. At this boundary, the value of k and its slope should
match the values of the outer region. This yields the following relations:

k1 + aη2
0 =

η0√cµ
; k1 + aη2

0 = η0k0 (50)

2aη0 =
1

√cµ
; 2aη0 = k0 (51)

for basic k-ϵ and the fundamental model, respectively. From Equations (47)–(51), the
following solutions are obtained:

• For the basic k-ϵ model:

η0 = 4σkG2
1

√cµ

κ2 ; k1 =
η0

2√cµ
; a =

1
2√cµη0

(52)

• and for the fundamental model:

η0 =
9G2

1C0

2κ2k3
0ck

; k1 =
k0η0

2
; a =

k0

2η0
(53)

The above solution parameters can be determined by implementing the values of the system
parameters, σk, cµ, κ, C0, k0, and ck. The value of G1 is taken from the numerical results:
G1 = 0.25 in the case of the basic k-ϵ model and G1 = 0.44 in the case of the fundamental
model. An alternative approach to determine G1 is to couple the above analytical solution
of k to that of G presented in Section 6.3.3 below. It yields values for G1 without recourse to
the numerical results. The values are practically equal to those of the numerical results.

A complete analytical description of k for the outer and inner regions is obtained from
Equations (41) and (44) when x ≤ x0, and Equations (47) and (52) when x ≥ x0, where
x0 = 0.47 in the basic k-ϵ model, and x0 = 0.33 in the fundamental model. The results are
shown in Figure 4 with solid blue and red lines.

6.3.3. Solutions for G in the Inner Region

For G in the inner region, the following expansion is used:

G = G1(1 − η) + aη2. (54)

where the linear term, G1η, is introduced to satisfy the boundary condition at x = 1:
cf. Equations (33) and (39). The values of G1 and a are to be determined. Substituting
description (54) into Equations (30) and (35) and equating the leading terms of O(η0) yield
the following:

a = αG3
1 (55)

where
α =

σϵcϵ2

2κ2cµk3
1

(56)

and
α =

9C0σ∗
ϵ cϵ2

16κ2k3
1

(57)
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for the basic k-ϵ model and fundamental model, respectively. At the boundary of the inner
and outer regions, η = η1, the values of G and its slope, according to the outer and inner
regions, should become equal. This yields the following relations:

η1

√
(2 − η1) = (1 − η1)G1 + αG2

1η2
1 (58)

(2 − 3
2 η1)√

2 − η1
= −G1 + 2αG2

1η1 (59)

Eliminating G1 from the above equations yields the following irreducible equation for η1:

α =
2
η4

1

(1 − η1
2 )3

(1 − η1
4 )3

(1 − 3η1

4
+

η2
1

4
) (60)

The value of α follows from Equation (56) by using the system’s values for the various
parameters and taking for k1 the value of the numerical calculations, i.e., k1 = 0.8. Con-
sequently, α = 134 and α = 18 for the basic k-ϵ model and the fundamental model,
respectively. Iteratively, one finds from Equation (60) that for the basic k-ϵ model η1 = 0.31
(x1 = 0.69) and the fundamental model, η1 = 0.47 (x1 = 0.53). A complete analytical
description of G for the outer and inner regions is obtained from Equation (46) when x ≤ x1
and Equations (54)–(56) when x ≥ x1. The results are shown in Figure 5 with solid blue
and red lines.

6.4. Discussion of Results

Numerical and analytical solutions for kinetic energy, k, and energy dissipation, ϵ,
with the latter in terms of G = κxϵ, have been developed for the basic k-ϵ model and a
new fundamental model. The solutions are compared with DNS results and are shown in
Figures 4 and 5. Our conclusions are as follows:

1. Analytical solutions agree in a satisfactory manner with numerical solutions. The
analytical solutions reveal the relative contributions of turbulent diffusion, energy
production, and energy dissipation in the outer and inner regions of the channel. They
show to what extent the descriptions are empirically or fundamentally based and
depend on calibration factors.

2. Solutions for k in the outer region (x ≤ 0.33) according to the fundamental model do
not depend on calibration constants. They have a fundamental basis. The differences
with DNS can be ascribed to errors as a result of truncation in the expansion with
respect to C−1

0 , which underlies the fundamental model.
3. Solutions for k in the inner region (x ≥ 0.33) according to the fundamental model

depend on the calibration factor, ck.
4. Solutions for k in both the outer and inner regions, according to the basic k-ϵ model,

depend on the calibration factors cµ and σk.
5. Solutions for G in the outer region, according to the fundamental model and the

basic k-ϵ model, (x ≤ 0.53) and (x ≤ 0.69), do not depend on calibration factors.
Differences with DNS are due to some deviation between the value of production and
dissipation in this area.

6. Solutions for G in the inner region, according to the fundamental model and the basic
k-ϵ model, (x ≥ 0.69) and (x ≥ 0.53), respectively, depend on the calibration factors
σ∗

ϵ and σϵ.
7. Using standard calibration constants in the solutions of the basic k-ϵ model results

in notable deviations compared to DNS data. The deviations can be reduced by
recalibrating σϵ, cµ and σk. Deviations between diffusion constants remain significant
because of different functional dependencies; see Figures 1–3.
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7. Velocity Distributions

The basic k-ϵ model is based on the assumption of an isotropic turbulence field. It
cannot predict the anisotropic behavior of covariances or turbulent stresses. For the funda-
mental model, the distribution of σ22 follows from the solution of Equation (34). According
to Equation (24b) σ33 = σ22, while σ11 = 1

2 k − σ22, where k is given by Equation (37). In
Figure 6, the distribution, versus x, of the calculated values of the standard deviations
of the fluctuations

√
σ11,

√
σ22, and

√
σ33, is shown, according to the fundamental model

and the results of DNS. Deviations are similar to those shown in [9] and are ascribed to
the truncation of the expansions of C−1

0 , underlying the theory of the fundamental model.
Deviations of the three variances, σ11, σ22, σ33 from k, which describe anisotropy, are next to
the leading order in the C−1

0 expansion (cf. Equations (24a)–(24c)), and are, therefore, more
sensitive to the truncation error.
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Figure 6. Distribution of the standard deviations of fluctuating velocities
√

σ11,
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σ22, and
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σ33,
versus x, according to DNS (solid line) and the fundamental model (dash–dot line).

For the gradient of the mean flow, the following relations can be derived. For the basic
k-ϵ model from Equations (21) and (23b), we have the following:

du1

dx
=

1 − x
νt

(61)

For the fundamental model from Equations (21) and (24d), we have the following:

du1

dx
=

1 − x
D22

(62)

In Figure 7, the distributions are shown of κx du1
dx versus x, according to DNS, the basic k-ϵ

model, and the fundamental model. The deviations between DNS and the basic k-ϵ model
are similar to those shown for νDNS and νt in Figures 1 and 2. Similarly, the agreement

between νDNS and D22 is shown in Figures 1 and 2. According to (21), P = (1 − x)
du1

dx
,

indicating that the disagreement of production with DNS in the case of the basic k-ϵ model
is similar to that shown in Figure 7, and that the agreement of production with DNS for the
fundamental model is similar to that shown in Figure 7.



Inventions 2024, 9, 38 17 of 20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

x [−]

κ
 x

 (
d

/d
x
)u

1

 

 

DNS

Basic k−ε model

Fundamental model

Figure 7. Distribution of κx du1
dx , versus x, according to DNS (solid line), the basic k-ϵ model (dash–dot

line), and the fundamental model (dashed line).

The distribution of mean velocity u1 predicted by the basic k-ϵ model and the funda-
mental model is obtained by integrating the RHSs of Equations (61) and (62). Because the
models do not describe the velocity in the viscous layer at the wall, the integration starts at

some distance from the wall for which the position x =
100
Reτ

is taken. The value of u1 at

this point, according to the DNS results of Reτ = 104, is 17.2, which agrees with the values
obtained from the measurements; see Monin and Yaglom, Vol. I, Figure 25 [21]. The results
of the integration are shown in Figure 8, where the distributions of the mean velocity of
the two models and DNS are presented. It is seen that for equal shear velocity (i.e., for
equal longitudinal pressure gradient in the channel), the fundamental model somewhat
overestimates mean velocity (by 5%), while the basic k-ϵ model underestimates it by 18%.
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line), the basic k-ϵ model (dash–dot line), and the fundamental model (dashed line).
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8. Discussion

An analysis is presented of two models to determine the mean values of turbulent
flow variables, i.e., velocity, ui, pressure, p, turbulent diffusion, Dij, kinetic energy, k, and
energy dissipation, ϵ. The two models are the basic k-ϵ model widely used in engineering
applications and environmental analysis [5,6], as well as a new fundamentally based
model, which is derived from recently published statistical descriptions of inhomogeneous
anisotropic turbulence [7–9]. The analysis focused on turbulent channel flow, which is
highly anisotropic and inhomogeneous. It is of direct relevance to duct flow applications,
turbulent boundary layers around bodies, and the atmospheric surface layer around the
earth. Model predictions were verified against the published results of direct numerical
simulations (DNS) for shear Reynolds numbers of 950 [15], 2000 [13], and 104 [14]. The
comparison focused on the regions outside the thin viscous boundary layers, which are a
few millimeters at the wall. The development status of DNS is mature; its results can serve
as a reliable source for verifying model predictions.

The basic k-ϵ model is built on an empirical isentropic representation of the turbulence
field. It contains a gradient hypothesis for turbulent diffusion, which is supplemented
by calibration constants. Using conventionally proposed values for the calibration con-
stants [5,6], model predictions of several variables are found to deviate remarkably from
the results of DNS. A summary is presented in Table 1.

Table 1. The predictions of the basic k-ϵ model and the new fundamental model, compared with the
DNS of turbulent channel flow.

Variable Basic k-ϵ Model New Fundamental Model

Turbulent viscosity Empirical Equation (23d).
Significant deviations: Figures 1 and 2

Fundamentally based Equation (24d).
Satisfactory agreement: Figures 1 and 2

Turbulent diffusion of temperature,
smoke, aerosol

Empirical Equation (23c).
Significant deviations similar to

Figures 1 and 2

Fundamentally based Equation (24e).
Satisfactory agreement similar to

Figures 1 and 2

Turbulent diffusion of kinetic energy
and pressure

Empirical Equation (26). Deviation:
Figure 3

Empirical Equation (27).
Satisfactory agreement Figure 3

Mean value of kinetic energy Empirical Equation (29). Deviation:
Figure 4

In the outer half of the channel:
Fundamentally based Equation (55). In
the inner half: Empirical Equation (55).

Satisfactory agreement Figure 4

Mean value of energy dissipation rate

In the outer half of the channel:
fundamentally based Equation (46). In the

inner half: empirical Equation (55).
Deviation: Figure 5

In the outer half of the channel:
fundamentally based Equation (46). In the

inner half: Empirical Equation (55).
Satisfactory agreement: Figure 5

RMS values of fluctuations No prediction Qualitative agreement: Figure 6

Mean value of velocity Empirical Equation (61). Deviations:
Figures 7 and 8

Fundamentally based Equation (62).
Satisfactory agreement Figures 7 and 8

The fundamental model is derived from a theory that has a theoretical basis [7–9].
Expressions for the turbulent diffusion of momentum and of conservative scalars, such
as temperature and passive admixture (smoke, aerosols), are of a general nature. They
are free from calibration constants. They are found to agree in a satisfactory manner
with DNS results at all distances, x, from the wall (outside the thin boundary layer at the
wall). The theory underlying the fundamental model does not provide generally valid
expressions for the turbulent diffusion of non-conservative scalar kinetic energy, pressure,
and energy dissipation. The non-conservative diffusion terms are only important for the
determination of k and ϵ in the inner half of the channel. Here, non-conservative behavior
has been modeled by using the diffusion expressions of conservative scalars provided with
calibration factors. A summary is presented in Table 1.
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9. Conclusions

CFD codes are generally based on empirical propositions for diffusion by turbulent
fluctuations. This includes the basic k-ϵ model widely used in engineering and environ-
mental analyses. The limitation of these models is that they lack generality. It is uncertain
whether the constituting variables are truly and accurately represented by the proposed
expressions, both in magnitude and spatial dependency. The addition of calibration factors
tempers the prediction inaccuracies to some extent. At the same time, they need to be
specified for each new case. However, calibration predictions can still deviate markedly
from the correct results at different positions in the flow field.

Models that are derived from generally valid principles do not suffer from these
limitations. The presented new model contains descriptions of important diffusion terms,
which satisfy this criterion. Calibration factors are absent, and because of their generality,
applicability exceeds that of channel flow. Points for improvement of the new model are
as follows:

(i) The agreements between the new model and DNS are satisfactory but not perfect,
due to the truncation of the expansion in powers of the inverse of the universal Kol-
mogorov constant that underpins the theoretical foundation of the model. Extending
the expansion will reduce the truncation error significantly.

(ii) What is missing is a general description of the turbulent dispersion of non-conservative
scalars. Their impact is limited to the description of k and ϵ in the interior part of the
channel, or more generally, substantially away from walls where shear is imposed.
The development of well-based descriptions for the diffusion of k and ϵ will eliminate
the remaining empiricism of the model.
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