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Abstract: In this paper, an improved speed sensorless control method including the maximum power
point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind
turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop
(FLL) with the DC offset compensation capability is proposed. The rotor flux linkages are estimated
by the modified ROGI-FLL-based observer, of which the inputs are d-q axis rotor EMFs, and hence the
position of rotor flux linkage can be obtained directly based on these estimated flux linkages using the
arc tangent function. The DC offset in the estimated rotor flux linkages, which can cause oscillations in
estimated rotor speed, leading to oscillations in SCIG stator active power due to power signal feedback
(PSF)-MPPT algorithm, can be significantly reduced using the DC offset compensators included
in modified ROGI-FLL structure. Moreover, the negative effects of high-frequency components
on the performance of the rotor flux linkage estimation can be remarkably mitigated owing to the
excellent high-frequency component rejection capability of ROGI. The dynamic response analysis
of the modified ROGI-FLL with DC offset compensators is provided as well. The feasibility of
the proposed method has been demonstrated in comparison with dual SOGI-FLL with DC offset
compensator-based existing method.

Keywords: DC offset compensation; grid-connected wind turbine systems; modified ROGI-FLL;
MPPT; SCIG; sensorless control

1. Introduction

Recently, in the context of increasing concern about global warming, wind energy, with
its cleanness and renewability, has emerged as a highly competitive alternative to fossil fuel
resources [1–7]. For wind turbine systems employing full-scale power converters, utilizing
the squirrel-cage induction generator (SCIG) as an electromechanical energy conversion
device has become prevalent as the advantages of such generators, such as cost efficiency,
high reliability, and robustness [8]. Some notable examples of such wind power systems
can be shown as the SIEMENS SWT-3.6 (3.6 MW) [9], the RRB Energy PS1800 (1.8 MW),
and the AMSC WT5500FC (5.5 MW) [10].

The use of speed/position sensors in the SCIG wind energy conversion systems
can cause practical problems, such as an increase in the axial length of the generator,
decreased performance of the sensor itself in a hostile environment, difficulties regarding
the attachment of the sensor to the generator, electromagnetic noise interference, reduction
in reliability due to cables and sensor itself, increase in cost, etc. [11] (p. 283). Therefore,
there is a growing interest in the elimination of speed/position sensors from such systems.
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Speed sensorless control for the induction machine (IM) drive systems can be classi-
fied into signal injection-based [12,13] and model-based methods [14–19]. In the former
methods, the high-frequency signal, e.g., voltage signal, is injected into the IM, and then,
the rotor flux linkage can be estimated by analyzing the high-frequency components that
are extracted from the measured currents. Although such sensorless control methods can
work in very low-speed regions or even at zero speed, they can face the problem of torque
ripple caused by the injected high-frequency signal, whereas the latter can be realized by
various approaches, including real-time rotor flux estimation [14], model reference adaptive
systems [15], full- or reduced-order observers [16,17], Kalman filter-based estimator [18],
and sliding mode observers [19]. Among these, real-time rotor flux estimation stands
out as the most straightforward. Regarding this approach in the early days, the rotor
flux linkage can be estimated by a pure integrator with the input of rotor electromotive
force (EMF), which can be obtained from the mathematical model of IM. Even though
this estimation is simple to understand and easy to implement, it can become saturated
in the presence of a DC offset in rotor-EMF, no matter how small this offset is. To address
this challenge, the DC offset compensator should be integrated into the rotor flux linkage
estimator [14]. Alternatively, some studies have suggested flux estimation using a low-pass
filter (LPF) [20–22]. Although the LPF with fixed cut-off frequency can prevent flux estima-
tion from saturation, it may not consistently deliver the desired performance across the
entire speed range. To overcome this difficulty, a method using the combination of the LPF
and an adaptive compensator with a quadrature detector has been studied [20]. Instead of
an LPF with a fixed cut-off frequency, employing an LPF with a variable cut-off frequency
has demonstrated the potential to enhance real-time flux estimation [21–23]. Nevertheless,
consistency in terms of bandwidth and settling time of such rotor flux observer cannot
be achieved over the whole speed range, not to mention the effectiveness of this flux esti-
mation in achieving speed sensorless control is remarkably dependent on the accuracy of
synchronous speed estimation.

In recent times, the second-order generalized integrator (SOGI)–frequency-locked
loop (FLL)-based filter with its significant capability to reject high-frequency components
without inducing phase shift and amplitude attenuation has gained increasing attention [24].
This configuration has found extensive applications in both grid-connected [25–27] and
machine-control systems [28–30]. It is worth mentioning that the SOGI-FLL-based filter can
yield the in-phase and quadrature components of its input in steady-state operations. In
the IM drive systems, the stator flux linkages have been estimated by the dual SOGI-FLL-
based observer with the input of the stator EMFs derived from the mathematical model of
the machine [31]. Although the estimation performance offered by this method has been
improved compared to that offered by the methods using aforementioned LPF, the DC offset
can exist in the estimated stator flux linkage in the presence of DC offset in the derived stator
EMFs. To overcome this drawback as well as enhance the harmonic rejection capability
of the flux observer, multiple SOGI-FLLs have been employed instead of the dual SOGI-
FLL [32]. The utilization of the second-order SOGI-FLL for rotor flux linkage estimation has
also been suggested in permanent magnet synchronous machine (PMSM) drive systems [33].
Although both multiple and second-order SOGI-FLLs offer improvement in flux linkage
estimation, they do come with higher computational complexity.

In the methods using the aforementioned SOGI-FLL, since the real-time flux estimation
is implemented in a similar manner with integration of the EMFs, such methods can offer
a more straightforward and inherently sensorless approach in comparison with other
model-based methods, e.g., methods using Luenberger observer. Moreover, fine-tuning
parameters [34,35] and eliminating the DC offset and sub-harmonics components in the
estimated flux linkages are non-trivial tasks when using the Luenberger observer. It is
worth mentioning that the methods mentioned above can also find application in generator
control systems, such as SCIG systems, even though they were initially developed for
motor drives. Even though the Luenberger observer can be modified for operation in
very low-speed regions [16], its suitability diminishes when applied to SCIG wind energy
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systems, where operating speeds typically exceed 45% of the rated speed. For the reasons
above, the sensorless control method with real-time rotor flux estimation is considered for
this study.

In addition to the dual SOGI-FLL, the reduced-order generalized integrator (ROGI)-FLL,
which has a simpler structure, has found applications in grid-connected systems [36,37]. To
enhance DC offset and harmonic rejection capabilities, the ROGI-FLL structures incorporat-
ing DC offset compensators [38,39], and in-loop filters [40] have been suggested. Moreover,
the dual ROGI-FLL has been studied for segregating positive- and negative-sequence compo-
nents of the grid voltage [41]. In grid current control systems, where the operating frequency
(i.e., the grid frequency) remains mostly constant, the ROGI, despite its simpler structure,
can demonstrate performance comparable to the dual SOGI [42]. Recently, the ROGI-FLL
has been applied to the rotor flux linkage estimation in SCIG systems [43]. Compared
to the dual SOGI-FLL-based rotor flux observer, the computational time in one sampling
period of ROGI-FLL-based one can be reduced by about 4 µs with the bilinear transform
method implemented in TMS320F28335 DSP. This has the potential to reduce the number
of DSPs required to handle the same workload as well as allow more time to spare during
the sampling period to introduce additional algorithms to improve the system performance.
However, the performance of the rotor flux estimation using the ROGI-FLL can be adversely
affected by the DC offset in the EMFs, which can cause a DC offset in the estimated rotor
flux linkages. As a result, oscillation exists in the estimated rotor shaft speed, leading to the
oscillation in the SCIG stator active power. Until now, there has been limited research on
the integration of DC offset compensators into the ROGI-FLL-based rotor flux observer for
machine drive systems in which the operating frequency can vary significantly.

In this paper, an improved sensorless control method for SCIG wind turbine systems
employing the modified ROGI-FLL with the DC offset compensator-based rotor flux ob-
server is proposed. The rotor EMFs, which are obtained from SCIG modeling, are regarded
as inputs, whereas the estimated rotor flux linkages are outputs of the proposed observer.
Based on these rotor flux linkages, the estimated rotor flux angle, which is used for stator
frequency estimation, is directly determined via the arctangent function. With DC offset
compensators integrated into the proposed observer, the negative effects of DC offset in the
rotor EMFs on the rotor flux linkage estimation can be significantly mitigated. Furthermore,
the excellent harmonic rejection capability of the ROGI-FLL allows the proposed method
to be robust to the high-frequency components. The feasibility of the proposed method is
validated in comparison with the dual SOGI-FLL with the DC offset compensator-based
existing method.

It is important to highlight that the proposed method represents an improved version
of the existing ROGI-FLL-based method in [43] which is developed for SCIG wind turbine
systems. Therefore, in this work, the mathematical models of standard ROGI-FLL, SCIG,
and wind turbines can be reused for expansion.

2. SCIG-Based Wind Energy Conversion Systems
2.1. Modeling of SCIG

The model of a SCIG using the d-q components is expressed in the stationary reference
frame as [11] (p. 238) and [44]

vs
ds = Rsis

ds +
dλs

ds
dt

(1)

vs
qs = Rsis

qs +
dλs

qs

dt
(2)

0 = Rris
dr +

dλs
dr

dt
+ ωrλs

qr (3)

0 = Rris
qr +

dλs
qr

dt
− ωrλs

dr (4)
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where vds and vqs represent the d- and q-axis components of stator voltage, respectively (V);
ids and iqs are the d- and q-axis components of stator current, respectively (A); idr and iqr are
the d- and q-axis components of rotor current, respectively (A); ωr is the rotor shaft angular
velocity (rad/s); Rs and Rr are the stator and rotor resistances (Ω), respectively; λds and λqs
represent the d- and q-axis components of stator flux linkage, respectively (Wb); λdr and
λqr represent the d- and q-axis components of rotor flux linkage, respectively (Wb). The
stator and rotor flux linkages in (1)–(4) can be derived as

λs
ds = Lsis

ds + Lmis
dr (5)

λs
qs = Lsis

qs + Lmis
qr (6)

λs
dr = Lmis

ds + Lris
dr (7)

λs
qr = Lmis

qs + Lris
qr (8)

where Lm is the magnetizing inductance (H); Lls and Llr are the stator and rotor leakage in-
ductances, respectively (H); Ls and Lr are the stator and rotor self-inductances, respectively
(H). It is noted that Ls = Lls + Lm, and Lr = Llr + Lm.

2.2. Modeling of Wind Turbines

The mechanical power Ptur regarded as the output of the wind turbines can be ob-
tained as

Ptur = 0.5ρACp(β, λ)V3
w (9)

where ρ is air density (kg/m3); A is blade swept area (m2); Vw is wind speed (m/s); and Cp
(β, λ) is power conversion coefficient determined based on the blade pitch angle β and the
tip-speed ratio λ. The tip–speed ratio and power conversion coefficient can be expressed
as [45]

λ =
ωtR
Vw

(10)

Cp(λ, β) = 0.22
[

116
Λ

0.4β − 5
]

e−
12.5
Λ (11)

where R is blade radius (m); ωt is wind turbine shaft angular velocity (rad/s); the factor Λ
can be obtained by

1
Λ

=
1

λ + 0.08β
− 0.035

1 + β3 (12)

The power coefficient curves under various conditions of β and λ are illustrated in
Figure 1. Since the desired operating points of the wind turbine systems are the ones
corresponding to the maximum values of Cp, the maximum power point tracking (MPPT)
algorithm, which can ensure that Cp maintains = its optimal values, is commonly used in
such systems [46].
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2.3. MPPT Algorithm for Wind Turbine Systems

Figure 2 shows the relationship between turbine power and turbine speed under
various conditions of wind speed. The operating points of the wind turbine located in
the red curve in Figure 2, i.e., the optimal power curve, are called the maximum power
points. The MPPT algorithms for wind turbine systems, which ensure that the operating
points of the wind turbine track the maximum power points corresponding to the optimal
value of Cp, can be categorized as hill-climb search (HCS) control, tip–speed ratio (TSR)
control, and power signal feedback (PSF) control [46]. Although the HCS control is the
simplest algorithm among these, its performance can be significantly deteriorated under
rapid changes in the wind speed [47]. For the TSR control algorithm, the tip–speed ratio in
(10) is adjusted to optimal value by controlling the turbine speed or generator rotor speed to
vary with wind speed. Although the TSR control can offer high efficiency and fast response,
it requires information on wind speed, which can be obtained using an anerometer, and
this makes the system more costly, not to mention that wind speed measurement of the
anemometer can be inaccurate due to non-uniformities in wind speed along the length
of the blades, as well as before and after passing through turbine blades [48]. It is also
important to note with TSR control that regulating the generator rotor speed under rapid
changes in wind speed can cause a fast variation in electromagnetic torque, which can
adversely affect the mechanical parts of the system. Compared to TSR control, although
the PSF control offers lower efficiency, it can provide robustness and cost-effectiveness
with no need for the anemometer. Furthermore, for PSF control, setting the reference of
generator active power corresponding to the rotor speed based on the optimal power curve
depicted in Figure 2 can alleviate the rapid fluctuations in generator torque that may occur
with the TSR control algorithm, as well as provide the direct regulation of the amount of
active power from the generator to the grid. For the reasons above, the PSF MPPT control
is considered for this research.
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2.4. Control of SCIG-Based Wind Energy Conversion Systems

The configuration of the SCIG-based wind energy conversion system is shown in Figure 3,
in which the SCIG is connected to the grid via the back-to-back converter consisting of the
generator-side and the line-side converters. Both the generator-side and line-side converters use
the cascade control scheme including the two cascaded control loops, of which the inner loop is
designed for the current regulation. The PSF MPPT algorithm is realized by the generator-side
converter. By regulating the d- and q-axis line-side currents, respectively, the DC-link voltage
and power factor can be controlled by the line-side converter.
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3. Proposed Sensorless Control Method
3.1. Standard ROGI Structure

Figure 4 shows the structure of the ROGI-based adaptive filter (AF), in which x1 and
x2 are the input signals, x1′ and x2′ are the output signals, k is ROGI gain and ω′ is the
tuning frequency.
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In the stationary reference frame for the three-phase systems, if x1 and x2 are the
rotating components that are in quadrature with each other, the ROGI-based AF transfer
functions can be derived from Figure 4 as [36]

G1(s) =
x1′
x1

=
ks +

(
k2+jkω′

)
s2 + 2ks+(k2+ω′2) (13)

G2(s) =
x1′
x2

=
jks+

(
jk2 − kω′

)
s2 + 2ks+(k2+ω′2) (14)

G3(s) =
x2′
x1

=
−jks +

(
kω′ − jk2)

s2 + 2ks + (ω′2 + k2)
(15)

G4(s) =
x2′
x2

=
ks +

(
k2 + jkω′

)
s2 + 2ks + (ω′2 + k2)

(16)

From (13)–(16), the relationship between x1′ and x2′ can be obtained as

x1′
x2′

=
jks +

(
jk2 − kω′

)
ks + (k2 + jkω′) = j (17)

It is worth noting from (17) that x1′ and x2′ are the two quadrature components,
regardless of whether ω′ equals the rotational frequency of x1′ and x2′.

The poles of the ROGI transfer functions can be solved by finding the roots of denomi-
nators of (13)–(16) as

s1,2 = −k ± jω′ (18)
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From (18), it is noted that the stability of ROGI can be guaranteed if k is higher than
zero. Moreover, since the real parts of s1,2 are −k, the settling time of the ROGI response
can be approximated as

ts(ROGI) ≈ 5/k (19)

From (19), it is worth mentioning that k can be arbitrarily selected to achieve the
pre-specified settling time. However, the high value of k can deteriorate the harmonic
rejection capability of ROGI.

3.2. ROGI-FLL for Rotor Flux Linkage Estimation

By considering (14) and (15), x1′ and x2′ can be derived in the time domain as

x1′(t) =
−k2ω

[
k2 + (ω + ω′)2

]∫
x2(t)dt[

k2 + (ω + ω′)2
][

k2 + (ω − ω′)2
] + x2(t)

[
k
(
ω3 − ω′3

)
+
(
k3 + kωω′

)
(ω − ω′)

][
k2 + (ω + ω′)2

][
k2 + (ω − ω′)2

] (20)

x2′(t) =
k2ω

[
k2 + (ω + ω′)2

]∫
x1(t)dt[

k2 + (ω + ω′)2
][

k2 + (ω − ω′)2
] + x1(t)

[
k
(
ω′3 − ω3)+ (k3 + kωω′

)
(ω′ − ω)

][
k2 + (ω + ω′)2

][
k2 + (ω − ω′)2

] (21)

where ω is the rotational frequency of x1 and x2.
With the use of the frequency-locked loop (FLL) structure shown in Figure 5, ω′ can

be adapted to ω [27]. Hence, (20) and (21) can be re-written under the assumption ω ≈ ω′
as follows:

x1′(t) = −ω′
∫

x2(t)dt (22)

x2′(t) = ω′
∫

x1(t)dt (23)
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In (22) and (23), if x1 and x2 are the rotor EMFs, es
dr and es

qr, which are found from the
mathematical model of SCIG as

es
dr =

Lr
((

vs
ds − Rsis

ds
)
− σLsdis

ds/dt
)

Lm
(24)

es
qr =

Lr

((
vs

qs − Rsis
qs

)
− σLsdis

qs/dt
)

Lm
(25)

where σ is the leakage factor, defined as σ = 1 − L2
m/LsLr.

Then, from (22) and (23), the d-q axis rotor flux linkage λs
dqr can be estimated from the

ROGI outputs, es
dr′ and es

qr′, as
^
λ

s

dr =
es

qr′
ω′ (26)
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^
λ

s

qr = −
es

dr′
ω′ (27)

where the caret “ˆ” represents the estimated value.
Based on (22)–(27), the rotor flux observer using the ROGI-FLL is shown in Figure 6.

The estimated rotor flux angle
^
θe and rotor speed

^
ωr can be obtained as

^
θe = arctan

(
^
λ

s

qr/
^
λ

s

dr

)
(28)

^
ωr =

^
ωe −

^
ωsl (29)

where
^
ωe is the estimated synchronous speed and

^
ωsl is the estimated slip speed given by

^
ωsl =

LmRr

(
^
λ

s

dris
qs −

^
λ

s

qris
ds

)

Lr

(
^
λ

s2

dr +
^
λ

s2

qr

) (30)
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Theoretically,
^
ωe in (29) can be determined by taking the derivative of

^
θe. However,

with the utilization of the arctangent function in (28),
^
θe can be changed suddenly from

π to −π, and this can cause spikes in
^
ωe. To deal with this difficulty,

^
ωe can be obtained

by an estimator, as shown in Figure 7. In the speed estimator depicted in Figure 7, the PI
controller gains, kp and ki, are selected as 100 and 2000, respectively, corresponding to the
bandwidth of 100 rad/s.
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It is worth mentioning that with the excellent harmonic rejection capability of ROGI,
the rotor flux observer using ROGI-FLL shown in Figure 6 can offer robust estimation
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performance against switching ripples, electromagnetic noises, sensing circuit noise, etc. In
addition, the structure of that observer is simpler than that of the rotor flux observer using
dual SOGI-FLL [31].

In the case of the existence of DC offset components, which are mainly caused by
the measurement errors or differences in the switching behavior of power devices [49–51],
in the rotor EMFs in (24) and (25), the DC offset components in the estimated rotor flux

linkages in (26) and (27),
^
λod and

^
λoq, can be derived as

^
λod =

Eodk
ω′

√
k2 + ω′2

sin
(

tan−1 ω′
k

)
+

Eoqk

ω′
√

k2 + ω′2
cos
(

tan−1 ω′
k

)
(31)

^
λoq =

Eoqk

ω′
√

k2 + ω′2
sin
(

tan−1 ω′
k

)
− Eodk

ω′
√

k2 + ω′2
cos
(

tan−1 ω′
k

)
(32)

where Eod and Eoq are the DC offset components in es
dr and es

qr, respectively.
From (31) and (32), it is noted that the DC offset components in and λs

dr are λs
qr affected

by both Eod and Eoq. Notably, although the negative effects of DC offset components on the
rotor flux estimation when using the ROGI-FLL are mitigated compared with when using
the dual SOGI-FLL [43], those DC offset components can cause oscillations in estimated
rotor speed. As a result, oscillations can exist in the stator active power since the stator
active power reference is obtained from a look-up table with the input of estimated rotor
speed according to the PSF MPPT algorithm [46].

3.3. Modified ROGI-FLL Including DC Offset Compensators for Rotor Flux Linkage Estimation

As mentioned, the DC offset in the estimated rotor flux linkages can negatively affect
the system performance. To address this difficulty, a modified ROGI-FLL with DC offset
compensator-based rotor flux observers is proposed, as shown in Figure 8. Using the
proposed observer, the DC offset components of es

dr and es
qr in (24) and (25) can be estimated.

After that, the sum of these estimated DC offset components, and the proposed observer
outputs are feedbacked to modify the signals e1 and e2 in Figure 8. As a result, the DC
offset components in es

dr′ and es
qr′ can be significantly reduced [38,39]. The configuration

of the SCIG control system with the proposed observer is shown in Figure 9, in which the
PSF MPPT algorithm is implemented by adjusting the generator active power reference to
correspond with variations in estimated rotor speed in accordance with the optimal power
curve shown in Figure 2.
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To help readers better understand the proposed flux observer, thereby making it easier
to choose its parameters, the next sub-section of the paper will clarify the influences of the
parameters on the dynamic response of the proposed flux observer, for example, settling
time of response, harmonic rejection capability, error in ω′ under variation in ωe.

3.4. Dynamic Response Analysis of Proposed Rotor Flux Observer
3.4.1. Influences of k and kd on Rotor Flux Estimation

In Figure 8, the transfer functions of the proposed rotor flux observer are expressed as

Gd(s) =
es

dr′
es

qr
=

jks3 + (−kω′+ jkA1)s
2 − kkdω′2s

s4 + 2A1s3 +
(

A2
1 + ω′2)s2 + 2kdω′3s + k2

dω′4 (33)

Gq(s) =
es

qr′
es

dr
=

−jks3 + (kω′ − jkA1)s
2 + kkdω′2s

s4 + 2A1s3 +
(

A2
1 + ω′2)s2 + 2kdω′3s + k2

dω′4 (34)

where A1 = (k + kdω′), and kd is the gain of the DC offset compensators.
Figure 10 shows the frequency responses of (33) and (34) in terms of magnitude under

various conditions of k and kd when ω′ is 2π50 rad/s. It is worth mentioning that the
frequency responses at the frequencies below ω′ are affected by both kd and k, whereas
those at the frequencies above ω′ are only affected by k. Furthermore, Figure 10 shows
that the magnitude of the DC offset components in the proposed observer outputs are
significantly reduced as kd increases.
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Four poles of Gd(s) and Gq(s) in (33) and (34) are defined as

s1,2 = −a ± jb (35)

s3,4 = −c ± jd (36)
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where a, b, c, and d are positive real numbers. If kd in (33) and (34) is set to zero, the
poles s3,4 are eliminated. In other words, s3,4 occur due to the employment of the DC
offset compensators.

In (35) and (36), for the value of a to be equal to the value of c, the selection of k and kd
should meet the following requirements:

k = kdω′ (37)

4k2 ≤ ω′2 (38)

Then, the a, b, c, and d in (35) and (36) can be expressed as

a = c = k (39)

b =

√
ω′2 − 2k2+ω′

√
ω′2 − 4k2

2
(40)

d

√
ω′2 − 2k2 − ω′

√
ω′2 − 4k2

2
(41)

The settling time of ROGI output, in this case, can be approximated as

ts(ROGI) ≈
5
a

(42)

For example, k and kd are selected as 157 and 0.5, respectively, ω′ is locked to
2π50 rad/s, and hence, the requirements in (37) and (38) are met. Figure 11 shows the per-
formance of rotor flux linkage estimation using the proposed observer. The EMFs es

dr and

es
qr are shown in Figure 11a. In Figure 11b,c, the amplitude

∣∣∣∣∣^λ
s

r

∣∣∣∣∣, i.e.,

√√√√(^
λ

s

dr

)2

+

(
^
λ

s

qr

)2

,

and the estimated DC offsets, i.e., o1 and o2, are shown, respectively. Note that for Figure 11
and other figures illustrating the waveforms of quantities from now on, the names of the
waveforms in each sub-figure will be shown in the figure caption, and the scale of the
horizontal axis representing the time is placed at the bottom of the figure, while the scale of
vertical axis representing the value is placed in the lower right corner of each sub-figure.

As seen in Figure 11b, the setting time of response of

∣∣∣∣∣^λ
s

r

∣∣∣∣∣ is about 35 ms, which is similar to

the results obtained by (42), i.e., ts(ROGI) ≈ 32 ms. Under another operating condition, the
performance of rotor flux linkage estimation in the presence of the DC offset in es

dqr (10% of
rotor EMF amplitude) is shown in Figure 12. Similar to that of Figure 11, the settling time

of response of

∣∣∣∣∣^λ
s

r

∣∣∣∣∣ is about 35 ms, as shown in Figure 12b.

Figure 13 shows the root loci of (33) and (34) in response to different values of ω′
which can be significantly varied during the operation of the system. As aforementioned,
with k and kd of 157 and 0.5 are selected, respectively, the requirements in (37) and (38)
can be met if ω′ is 2π50 rad/s. In this case, the real parts of poles of (33) and (34), i.e., a
and c in (35) and (36), are the same, as derived in (39). If ω′ is not 2π50 rad/s, and the
requirements in (37) and (38) are not met; these real parts are different from each other, as
shown in Figure 13. Therefore, it can be said that the values of a, b, c, and d in (35) and (36)
are not always obtained by (39)–(41) due to the variation in ω′.
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From Figure 13, for the cases in which ω′ is not 2π50 rad/s, it is worth mentioning that
the rotor flux observer output responses to any changes in its inputs es

dqr consists of two
portions, they are fast and slowly changing portions corresponding to the settling times
ts(ROGI_fast) and ts(ROGI_slow), respectively, which are approximated as

ts(ROGI_fast) ≈ 5/A2 (43)

ts(ROGI_slow) ≈ 5/C2 (44)

where
A2 ≈ k + kdω′ − C2 (45)

C2 ≈
k3

dω′5 − 3k2
dkω′4 + kdω′3C1

k4
dω′4 − 4k3

dkω′3 + 2k2
dω′2(2k2 + C1)− 4kdkω′C1 + C2

1
(46)

with C1 =
(
k2 + ω′2

)
.

For example, k and kd are selected as 157 and 0.5, respectively, similarly to that in

Figure 11, and ω′ is locked to 2π16 rad/s. As seen in Figure 14b, the response of

∣∣∣∣∣^λ
s

r

∣∣∣∣∣ consists

of fast and slowly changing portions corresponding to the settling times of 28 ms and 340 ms,
respectively, which are similar to results obtained by (45) and (46), i.e., ts(ROGI_fast) ≈ 26 ms
and ts(ROGI_slow) ≈ 333 ms.
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In the steady-state operation, the proposed observer outputs, es
dr′ and es

qr′, can be
derived as

es
dr′ = Ecos(ωet) + ∑ ∞

h=2ζhEhcos(hωet + arctanθh) (47)

es
qr′ = Esin(ωet) + ∑ ∞

h=2ζhEhsin(hωet + arctanθh) (48)

where E and Eh are the fundamental and harmonic component amplitudes of es
dqr′ , respec-

tively, and h is the harmonic order of es
dqr′. The coefficient ζh and angle θh are expressed as

ζh = k/
√

k2 + (ω′ − hωe)
2 (49)

θh = (ω′ − hωe) (50)

From (49) and (50), it is worth mentioning that although k can be arbitrarily selected
to meet the pre-specified requirements of the settling time of responses, the high value of
k can deteriorate the harmonic rejection capability of the ROGI, and this can be seen in
Figure 10a as well. Moreover, in (47) and (48), the harmonic components are not affected by
kd, as shown in Figure 10b as well.
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3.4.2. Influence of Г on Rotor Flux Estimation

Under operations with
.

ωe ≈ 0, assuming that ω′ approximates ωe and DC offset
component of ROGI outputs are significantly compensated, the errors e1 and e2 in Figure 8
can be derived as

e1 ≈ es
qr′(ω′−ωe)/k (51)

e2 ≈ es
dr′(ωe − ω′)/k (52)

For the FLL structure in Figure 8,
.

ω′ can be expressed as(
e2es

dr′ − e1es
qr′
)

Γ(
es

dr′
)2

+
(
es

qr′
)2 =

.
ω′ (53)

From (51) and (52), (53) can be re-written as

−(ω′−ωe)Γ/k =
.

ω′ (54)

Then, the transfer function of FLL can be obtained from (54) as

ω′(s)
ωe(s)

=
Γ/k

s+Γ/k
(55)

where k/Г is the time constant corresponding to the settling time of the FLL response,
which can be derived as

ts(FLL) ≈ 5k/Γ (56)

Assuming that there is a variation in the synchronous speed ∆ω within the duration
∆t, the ramp input rin(t) and ramp response rres(t) of the FLL based on (55) are obtained
as [52]

rin(t) = ∆ωt/∆t (57)

rres(t) = (∆ωt/∆t − ∆ωk/(∆tΓ)) + ∆ωk/(∆tΓ)e−Γt/k (58)

It is worth mentioning that the time constant of FLL should be high enough to that
of ROGI with a DC offset compensator. Therefore, in this work, k = 157 and kd = 0.5 are
selected, corresponding to the ROGI time constant of 6.4 ms at a tuning frequency of
2π50 rad/s, and Г = 6160 is selected, corresponding to the FLL time constant of 25.5 ms.
In Figure 15, ωe is varied from 2π34 rad/s to 2π50 rad/s within 133 ms. From (58), the
tuning frequency estimation error ∆ωk/(∆tГ) is about 19.3 rad/s, which approximates the
simulation result, i.e., 19.2 rad/s, as shown in Figure 15b. It is observed that after the actual
value of ωe reaches the steady-state value of 2π50 rad/s at t = t2, the settling time of the
FLL response is about 124 ms, which is similar to the result obtained from (56), i.e., 127 ms.
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It can be noted that ∆ωk/(∆tГ) always exists under variations in ωe, as shown in

Figure 15. However, since the stator frequency is estimated based on
^
θe, as shown in

Figure 7, this estimation error ∆ωk/(∆tГ) does not nearly affect the rotor speed estima-
tion performance.

4. Results and Discussion

In the PSIM platform, a simulation system with a power rating of 2 MW, of which the
specifications are listed in Tables 1 and 2, is built to verify the effectiveness of the proposed
method. The DC link voltage is controlled to 1200 V. The switching frequency is 5 kHz.

Table 1. Parameters of SCIG.

Parameters Values

Stator frequency 50 Hz
Rated stator power 2 MW

Rated line–line stator voltage 690 V
Rated stator current 2000 A

Pole pairs 2
Stator resistance 1.102 mΩ

Magnetizing inductance 2.1346 mH
Stator leakage inductance 0.0649 mH

Rated speed 1520 rpm

Table 2. Wind turbine specification.

Parameters Values

Rated power 2 MW
Blade radius 45 m

Gear ratio 1:123
Cut-in/Cut-off speed 4 m/s~25 m/s

Rated wind speed 12 m/s
Operating speed range 675 rpm~1500 rpm

For the parameters of the ROGI-FLL with the DC compensators, k = 157 and kd = 0.5
are selected to achieve ts(ROGI) = 32 ms at the operation stator frequency of 50 Hz, and
Г = 6160 is selected corresponding to ts(FLL) = 127 ms.

Figure 16 shows the performance of the rotor flux linkage estimation in response to
wind speed fluctuation using the proposed flux observer. The wind speed pattern is shown
in Figure 16a. It is noted that the negative effects of high-frequency components in rotor
EMFs in Figure 16b on the estimated rotor flux linkages can be significantly reduced, as
shown in Figure 16c. The estimated rotor flux linkage angle and synchronous angular
velocity are illustrated in Figure 16d and Figure 16e, respectively. Figure 16f shows the error
in rotor shaft speed estimation, which is relatively small (about 0.4% of the actual speed).

In this work, the performance comparison between the proposed method and the dual
SOGI-FLL with DC offset compensator-based method, of which the rotor flux observer
is shown in Figure 17, is conducted. To achieve similar settling times to those of ROGI-
FLL, the parameters of dual SOGI-FLL, i.e., k, kd, and Г, are set to 1, 0.272, and 19.7,
respectively, corresponding to ts(SOGI) = 32 ms at the operation stator frequency of 50 Hz
and ts(FLL) = 127 ms.
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The sensorless control performance when subjected to wind speed fluctuation, which
can cause the variation in wind turbine torque and parameter mismatch using the existing
method based on dual SOGI-FLL with DC offset compensators [32] is shown in Figure 18.
Under this operating condition, the variations in the SCIG parameters, i.e., ∆R = +50% and
∆L = +20%, are considered. Figure 18a depicts the wind speed pattern. The d-axis stator
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current is controlled to 890 A, whereas the q-axis stator current is regulated to obtain the
desired active power regarding the MPPT algorithm, as shown in Figure 18b and Figure 18c,
respectively. Figure 18d illustrates the amplitude of the estimated rotor flux linkage. As
can be seen in Figure 18e,f, when the magnitude of SCIG active power is greater than that
of a wind turbine, the rotor shaft speed is decreased and vice versa. The average error in
speed estimation is about 7 rpm (0.48% of rotor shaft speed) in the presence of variation
in SCIG parameters, as shown in Figure 18g. It is noted that since this existing method is
based on the model, the effects of parameter mismatch are inevitable. However, the adverse
effects of this deviation on SCIG wind turbine system performance can be negligible, as
evidenced by the fact that it can be seen no significant changes in q-axis stator current and
stator active power controls when the parameter mismatch begins to occur in Figure 18c
and Figure 18e, respectively.
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Figure 18. Sensorless control performance when subjected to wind speed fluctuation and parameter
mismatch using an existing method based on dual SOGI-FLL with DC offset compensator [32]:
(a) wind speed (m/s); (b) d-axis stator current (A); (c) q-axis stator current (A); (d) amplitude of
estimated rotor flux linkages (Wb); (e) stator active power and turbine power (W); (f) estimated rotor
speed (rpm); (g) rotor speed estimation error (rpm).

Figure 19 depicts the sensorless control performance when subjected to wind speed
fluctuation and parameter mismatch using the proposed method. It can be noted from
Figures 18 and 19 that there is no significant difference between the system performances
using the existing method in [32] and the proposed method. However, as the computational
burden of ROGI-FLL is less than that of dual SOGI-FLL [43] when the proposed method
is used, there is the execution of a greater number of tasks within one sampling period
compared to when the existing method in [32] is used. This can enable system performance
improvement as well as the reduced requirement for the number of digital signal processors
(DSP) when handling similar workloads. It is worth mentioning that if there is no DC offset
in derived rotor EMFs, the performance of the proposed method and that of the existing
method based on ROGI-FLL in [43] are almost similar to each other.
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Figure 19. Sensorless control performance when subjected to wind speed fluctuation and parameter
mismatch using the proposed method: (a) wind speed (m/s); (b) d-axis stator current (A); (c) q-axis
stator current (A); (d) amplitude of estimated rotor flux linkages (Wb); (e) stator active power and
turbine power (W); (f) estimated rotor speed (rpm); (g) rotor speed estimation error (rpm).

In the presence of stator voltage disturbance, the sensorless control performances
when using the existing methods based on dual SOGI-FLL and ROGI-FLL [31,43] are
shown in Figure 20 and Figure 21, respectively. In this case, the DC offset of 10% of the
rated stator phase voltage, i.e., 56 V, is considered, which is intentionally added to the
phase-A stator voltage reference in the software code. In Figure 20d, it is observed that the
maximum error in speed estimation corresponding to the dual SOGI-FLL-based method is
about 40 rpm, whereas that corresponding to the ROGI-FLL-based method is only about
20 rpm, as shown in Figure 21d. This difference in the speed estimation error comes from
the difference in the behavior of the gain characteristics of the transfer functions of dual
SOGI-FLL- and ROGI-FLL-based observers at the frequency of zero [43]. But no matter
what, these errors are quite large, and they can cause oscillations in the SCIG active power
due to the MPPT algorithm.
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Figure 20. Sensorless control performance in the presence of stator voltage disturbance when using
an existing method based on dual SOGI-FLL [31]: (a) d-q axis rotor EMFs (V); (b) estimated rotor
flux linkages (Wb); (c) amplitude of estimated rotor flux linkages (Wb); (d) rotor speed estimation
error (rpm).
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Figure 21. Sensorless control performance in the presence of stator voltage disturbance when using
an existing method based on ROGI-FLL [43]: (a) d-q axis rotor EMFs (V); (b) estimated rotor flux
linkages (Wb); (c) amplitude of estimated rotor flux linkages (Wb); (d) rotor speed estimation
error (rpm).

Figures 22 and 23 illustrate the sensorless control performances in the presence of
stator voltage disturbance when using the existing method based on dual SOGI-FLL with
DC offset compensation in [32] and the proposed method, respectively. It can be seen
in Figures 22d and 23d, with the use of a DC offset compensator, the oscillations in the
speed estimation errors caused by the DC offset in rotor EMFs are remarkably reduced,
leading to reducing the oscillations in the SCIG stator active power, as the power signal
feedback MPPT method is used. This not only increases system efficiency but also reduces
mechanical stresses on the rotating shaft, which can be caused by oscillations in SCIG
electromagnetic torque. As a result, the lifespans of SCIG and gearbox systems can be
increased, also the maintenance and operational costs can be decreased. As observed from
Figures 22d and 23d, the maximum value of error in speed estimation using the proposed
method is about 12 rpm (0.83% of rotor shaft speed), and it is lower than that using the
existing method based on dual SOGI-FLL with DC offset compensator, i.e., about 33 rpm
(2.27% of rotor shaft speed). Therefore, it can be said that in this case, there is superiority of
the proposed method over the existing method [32] in reducing the speed estimation error.
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Figure 22. Sensorless control performance in the presence of stator voltage disturbance when
using dual SOGI-FLL-based method with DC offset compensation [32]: (a) d-q axis rotor EMFs (V);
(b) estimated rotor flux linkages (Wb); (c) amplitude of estimated rotor flux linkages (Wb); (d) rotor
speed estimation error (rpm).
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Since the rotor EMFs derived from the machine modeling are regarded as input of
the proposed rotor flux observer, the suggested sensorless control method faces challenges
starting from zero speed when there is no information on rotor EMFs. To address this
challenge, the V/f method is employed during the startup phase while the rotor flux
linkage angle is estimated but it is not used for the sensorless control yet. Once the
estimated rotor shaft speed reaches a predetermined minimum speed, such as 200 rpm [11]
(pp. 298–299) [43], the estimated rotor flux linkage angle becomes the basis for coordinate
transformation, and the MPPT algorithm is initiated.

Despite the starting issue mentioned above, the proposed sensorless control method is
entirely suitable for the SCIG wind turbine systems employing full-scale power converters
since the typical operating speed range of such systems is usually from 45% to 100% of the
rated speed. Moreover, the proposed rotor flux observer can also be developed with slight
modifications for permanent magnet synchronous generator wind turbine systems utilizing
full-scale power converters, where the field flux phase angle is needed for sensorless control.
However, for doubly fed induction generator wind turbine systems using partial-scale
power converters, the proposed rotor flux observer cannot be applied, although there has
been a study of utilization of dual SOGI structure for rotor position estimation in such
systems [53].

As shown in Figure 3, the GSC is connected to the grid via the LSC and DC-link
capacitor. Therefore, grid disturbances directly affect the performance of the LSC without
causing major impacts on the performance of the GSC. In other words, despite grid dis-
turbances, the effectiveness of ROGI-FLL, including DC offset compensators-based flux
estimation for SCIG active power control, is almost unchanged compared to the normal
working conditions.

From the above analysis of the relationship between the dynamic response and param-
eters of the proposed rotor flux observer, it can be said that the design of such an observer
is not dependent on the power rating of the system but on the specific requirements related
to the dynamic response of rotor flux observer.

Since the proposed sensorless control method with the V/f starting method only
makes changes in the software and does not modify the hardware, it can theoretically be
applied to any existing SCIG wind turbine systems with the three-phase voltage-source
PWM converter. However, this application needs to be carefully considered as it relates
to the specific operating procedures of each SCIG wind turbine system, which have been
verified and issued by the manufacturer, for example, acceleration during the startup phase,
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rotation speed for beginning applying the estimated rotor flux angle, how to handle a
converter fault, etc.

5. Conclusions

In this paper, the improved sensorless control scheme, including the MPPT algorithm
for grid-connected SCIG wind turbine systems, is proposed. This method utilizes the
rotor flux linkage observer based on modified ROGI-FLL with DC offset compensation
capability. The ROGI-FLL, known for its excellent harmonic rejection capability, can en-
hance the robustness of rotor flux linkage estimation by effectively handling high-frequency
components. Moreover, the DC offset compensators combined with the ROGI-FLL play
a pivotal role in reducing the DC offset component in the estimated rotor flux linkages.
This reduction is crucial as the DC offset can induce oscillations in the estimated rotor shaft
speed, consequently causing oscillations in SCIG active power when the MPPT algorithm
is applied.

To validate the proposed method, a 2 MW SCIG wind turbine simulation system
has been built. Via the verification results, it is noted that the average error in the speed
estimation in the presence of parameter mismatch, i.e., ∆R = +50% and ∆L = +20%, when
using the proposed method is about 7 rpm (0.48% of rotor shaft speed), and there are no
serious effects on the system performance caused by this error. In addition, despite the
stator voltage disturbance of 10% of rated stator phase voltage, i.e., 56 V, the DC offset
component in the estimated rotor flux linkages almost does not exist owing to the DC
offset compensation. As a result, the oscillation in the SCIG active power is significantly
mitigated.

Conducting the comparison of the proposed method using the modified ROGI-FLL
with DC offset compensators with an existing method using the dual SOGI-FLL with DC
offset compensators in [32], the advantages of the proposed method have been highlighted.
The proposed method demonstrates a simpler structure, thereby reducing the required
number of DSPs as well as having the potential to improve system performance. Addi-
tionally, under stator voltage disturbance, the proposed method can yield a lower speed
estimation error, approximately 1.44% less than the existing method in [32].

It is worth noting that the expected performance of the proposed method cannot be
achieved when faults caused by the failures of power electronic switching devices occur, for
example, open-circuit switch faults. Hence, it is crucial to address the challenges associated
with such faults, which will be investigated in future studies, to enhance the reliability of
the speed sensorless control method for SCIG systems.
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