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Abstract: This study introduces the Failure Decision Function, a novel approach for evaluating the
structural capacity of rectangular reinforced concrete columns under axial forces and moments, both
uniaxial and biaxial. The method simplifies existing practices, enhancing accuracy and integration
into design software. The methodology hinges on deriving exact biaxial bending failure surfaces,
utilizing integral expressions based on material properties and cross-sectional geometry. This direct
integration process uncovers failure surface characteristics previously undocumented. Results
confirm the utility of the Failure Decision Function through comparative analysis with established
literature, showcasing its potential for simplifying and improving structural capacity assessments.
The analytic procedure developed enables efficient computation of failure surfaces, streamlining
the inclusion of these functions in structural engineering software in two key ways: (1) compiling a
library of pre-calculated functions for quick capacity checks and (2) creating a dynamic application
that generates these functions based on specific design parameters, allowing users to explore various
load and moment scenarios. In conclusion, the Failure Decision Function represents a significant
advancement in structural engineering design, offering an accurate and user-friendly method for
assessing column performance under critical loading conditions.

Keywords: failure decision function; capacity assessment; design of concrete columns; interaction
diagrams; stress integration; biaxial bending; failure surfaces

1. Introduction

In structural engineering, assessing the capacity of columns is vital to ensure the
safety and efficiency of buildings and infrastructure. Traditional methods for analyzing
and designing reinforced concrete columns use practical tools like interaction diagrams,
which illustrate failure envelopes under axial load and uniaxial or biaxial bending (P-M-M).
These diagrams are based on the constitutive relationships of concrete and steel (stress
vs. strain), the geometry of the cross-section, and the consideration of the stress vs. strain
plane’s inclination and orientation, representing various failure modes. The calculation of a
point on the envelope corresponds to an inclination and orientation of the neutral axis in
the deformed state of the cross-section and the estimation of the axial force and bending
moment capacity of the section based on equilibrium and compatibility conditions.

The initial work on interaction diagrams, specifically biaxial design charts for rect-
angular reinforced concrete sections, was conducted by Grasser and Linse in 1972 [1,2].
Since then, various methods, including manual, experimental, numerical, and analytical
approaches, have been developed. Notable contributions by Nilson and Winter, 1991, [3]
expanded interaction diagrams to include biaxial bending through three-dimensional fail-
ure surfaces. Engineers typically use interaction diagrams in line with code provisions,
such as Eurocode 2-clause 5.8.9, although, according to Papanikolaou and Sextos, 2016, [4],
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the application of uniform interaction diagrams across Eurocode-compliant countries is not
easy due to the variability in specific parameters (e.g., the range of values of the reducing
factor for long-term effects in the National Annexes). Another contribution to the state of
the art is provided by Bhargav et al., 2023 [5], who introduce an algorithm using a modified
thick layer integration approach and a nested bisection method to generate exact load
contours and complete interaction surfaces.

Various interaction diagrams describing column behavior resulting from experimental
work have been provided by Dundar et al., 2008 [6] and Pallarés et al., 2008 [7]. Further,
structural analysis and design software packages use numerical techniques, as presented
by Fafitis, 2001 [8], Papanikolaou, 2012 [9], and Matuszak and P Pluciński, 2014 [10], to
produce these diagrams. The fiber method, which involves discretizing the section into
smaller elements (fibers) and using the uniaxial stress–strain relationship of each element,
was implemented by Lejano, 2007 [11] and further utilized by Christou et al., 2013 [12]
and Kwak and Kwak, 2010 [13] to calculate average forces in a section by aggregating the
resisting forces of all fibers. In addition, Bouzid and Demagh, 2011 [14] proposed a simple
formula to estimate the resistance capacity of biaxially loaded short reinforced concrete
columns, facilitating the development of interaction diagrams.

The analytical computation of these diagrams can be complex. Di Laora et al., 2019 [15]
introduced an analytical, code-compatible procedure for reinforced concrete circular sec-
tions, approximating an analytical solution to the computation of the interaction diagrams
without iterations and numerical computation. Rodriguez and Aristizabal-Ochoa, 1999 [16]
and Quaranta, Trentadue, and Marano, 2017 [17] addressed this by subdividing the sec-
tion and employing exact analytical stress distribution for closed-form integration of the
resulting expressions. Vaz Rodrigues, 2015 [18] developed an algorithm that subdivides
sections into trapezoidal elements using polygon clipping techniques, with exact numerical
integration on each trapezoid using the change of variables theorem and Gauss–Legendre
integration, 2021 [19]. Additionally, da Silva et al., 2009 [20] demonstrated that closed-form
solutions for multi-rectangular sections not only simplify calculations but also enhance com-
putational efficiency. These advancements highlight the diversity and potential precision
of techniques available for the structural analysis of reinforced concrete sections.

This study introduces a novel analytical framework for assessing the capacity of
short reinforced concrete rectangular columns through the development of a Failure De-
cision Function (FDF). The underlying theory addresses the mathematical challenge of
determining whether a point in space lies inside, on the boundary, or outside a closed three-
dimensional surface, such as an ellipsoid, as proposed by Schneider and Eberly, 2002 [21].
This innovative approach simplifies the generation of precise failure surfaces and enhances
the practical application of these findings in relevant software and decision-making strate-
gies, potentially reducing computational effort. The findings reveal unique characteristics
of the failure surfaces, distinct from those documented in existing literature, offering new
insights into the structural behavior of columns. This work underscores the importance of
continuous innovation in structural analysis and design, promising significant implications
for both theoretical research and practical engineering applications.

2. Methods
2.1. Model Description and Computational Methodology

Bending in columns arises when an eccentric load, aligned parallel to the vertical
axis of the column section, is applied. This eccentricity, denoted as e, is the distance from
the applied load to the column’s plastic centroid (PC), as illustrated in Figure 1. This
relationship establishes a specific pairing of axial load and bending moment for any given
eccentricity, leading to a strain distribution across the column section that can be described
by a plane equation. This distribution’s interface with the column’s cross-sectional plane
is marked by a straight line known as the neutral axis (NA) (Figure 2). At the point of
failure, this strain distribution corresponds to distinct values of axial load (PT) and bending
moments (MXT and MYT), where T signifies the total values. The resulting interaction



Inventions 2024, 9, 63 3 of 15

diagrams (for uniaxial bending) and failure surfaces (for biaxial bending) serve as graphical
representations of the column’s failure across an entire range of eccentricities, as shown in
Figure 3.
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Figure 1. Eccentric load applied on an RC column section.
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Figure 2. Strain distribution over a cross-section.
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Figure 3. Typical interaction diagram (uniaxial bending) and failure surface (biaxial bending).

The compressive capacity (PTO) and tensile capacity (Pten) of the column, under
concentric loading (where e = 0), where the strain plane is parallel to the column’s cross-
sectional plane, define the extremities of the failure envelope. The intersection of the
interaction diagram with the moment axis (horizontal axis) conceptually represents a
condition of pure bending, leading to failure at theoretically infinite eccentricity. Here,
MXTO and MYTO represent the moment capacities for such scenarios. Points within the
interaction diagram or on the failure surface delineate a range of eccentricities limited by
these critical values, indicating that failure is either dominated by axial loads at smaller
eccentricities or by bending moments at larger eccentricities.

This flexural model of this study is founded on a critical assumption regarding the
behavior of plane sections under bending stress. Specifically, it assumes that plane sec-
tions, which are planar prior to the application of flexure, maintain their planar geometry
throughout the flexural deformation process. Consequently, the model prescribes a linear
strain distribution across the section.
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A crucial aspect of the model concerns the strain in the reinforcement, which is
assumed to be consistent with the strain experienced by the adjacent concrete at their
interface. This assumption implies a perfect bond condition between the concrete and the
reinforcing bars, effectively eliminating any potential for debonding. Moreover, the model
simplifies the representation of reinforcing bars as geometric points, assigning to each an
area equivalent to that of the actual bar used. Despite their presence, the cross-sectional
area occupied by the steel reinforcements is considered negligible and, thus, is not deducted
from the concrete’s total cross-sectional area.

An additional simplification inherent in this model is the complete disregard for the
tensile strength of concrete. This assumption is predicated on the understanding that
concrete’s contribution to tensile resistance is minimal relative to its compressive capacity.
The model identifies the onset of failure as the point at which any location within the
section attains the maximum compressive strain defined for concrete.

It is important to note that the proposed model does not accommodate variations in the
material behavior of concrete attributed to confinement effects. This limitation underscores
a simplification in modeling the complex interactions within the concrete under varying
stress states.

Throughout this investigation, a specific sign convention is employed for clarity and
consistency in reporting results. According to this convention, compressive quantities are
denoted as positive, while tensile quantities are represented as negative. This approach
facilitates a straightforward interpretation of the model’s outcomes.

In the analytical framework outlined in this study, the stress–strain relationships
for concrete and steel reinforcement are essential in understanding and predicting the
structural behavior under load. The model for concrete stress–strain (Figure 4a) follows the
modified Hognestad curve [22–25], aligning with the recommendations made by Park and
Paulay, 1975 [26]. This particular curve offers a refined approach to capturing the complex
behavior of concrete under compression, emphasizing a more realistic representation
of the material’s response up to and including failure. For the steel reinforcement, the
stress–strain relationship (Figure 4b) is characterized by an elastic–plastic model, again
reflecting the guidelines proposed by Park and Paulay, 1975 [26]. This assumption permits
a straightforward interpretation of the reinforcement’s behavior, focusing on the transition
from elastic performance to plastic deformation, a critical aspect in understanding the
overall flexural behavior of reinforced concrete elements. It is important to acknowledge
the flexibility of the model in terms of integrating alternative stress–strain curves. This
adaptability underscores the model’s potential applicability to a broad range of concrete
and reinforcement materials, provided their stress–strain behaviors are well-documented
and understood.
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Central to the proposed analytical model is the concept of failure, which is explicitly
defined as the point at which concrete undergoes crushing at a strain level denoted as
εcu. This definition implies that any strain distribution across a cross-section signifies a
potential failure state if it includes at least one point where the concrete strain reaches
εcu. This approach to defining failure is instrumental in constructing interaction diagrams,
which graphically represent the relationship between axial forces and bending moments.

Determining a specific point on the interaction diagram involves analytical integration
of the stresses corresponding to a given strain distribution. This calculation is critical in
mapping out the failure envelope for the structure, providing insights into the limits of its
load-bearing capacity. Bending moments, a key factor in this analysis, are calculated with
respect to the plastic centroid of the section. This methodology facilitates a comprehensive
understanding of the structural behavior, enabling the prediction of failure modes under
various loading conditions.

Through this analytical framework (Figure 5), a robust tool for the assessment of
reinforced concrete elements is aimed to be provided, offering insights that are crucial for
both the design and analysis of such structures.
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A key contribution of this study is the formulation of analytic functions designed for
determining precise points on the failure surface. These functions derive from the interplay
between the geometry and material characteristics of rectangular sections, accommodating
various patterns of steel reinforcement. Detailed in Supplementary S1 are the integral
expressions for PT, MXT, and MYT, which outline the cross-sectional capacity. To facilitate
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computation, this process is delineated into 14 distinct cases and sub-cases, as expounded
in Supplementary S2.

Utilizing MATLAB software R2020b [27], these integrals are calculated, yielding
analytic expressions that explicitly specify the axial force and bending moments across any
possible strain distribution of the section, inclusive of all orientations of the neutral axis
(NA). The expressions resulting from these calculations are cataloged in Supplementary S3.
Remarkably, this means that a single set of expressions suffices for any rectangular column
section and any combination of reinforcement. In essence, this framework requires only
one comprehensive set of expressions to analyze all rectangular sections.

2.2. Generation of the Interaction Diagrams and Failure Surfaces

The analytic expressions are implemented in an algorithm coded in MATLAB to
generate the array of points for all failure states (tension to compression) and plot the exact
shape of the failure surface. The plot is based on a series of curves, each of which represents
a failure state that corresponds to an orientation of the NA (defined by the angle θ). Each
plot for θ includes the points (PT, MXT, MYT) that correspond to any inclination of the strain
plane (defined by the angle φ), which has a strain equal to εcu at point Q1 and a strain
value equal to εs at the extreme steel fiber (Figure 2). The inclinations of the strain plane are
achieved by varying the strain values εs through the range εsmax ≤ ε < εcu, where εsmax is
the maximum tensile strain on the stress–strain curve for steel. The change of εs essentially
defines a shift of the NA. This procedure is repeated for orientations of the NA ranging
from 0◦ ≤ θ < 90◦ to plot the failure surface in the first quadrant.

The process is repeated by changing successively the points from Q2 to Q4 and assign-
ing the value of εcu at the respective locations (points Q2 to Q4). For any Qi the curve is
generated in the respective quadrant of the failure surface. It is worth mentioning that if
the reinforcement layout is symmetric, the values of axial force and bending moments in
the quadrants are equal in magnitude but different in signs. As a result, for such cases, after
the development of the failure surface in the first quadrant, the generation of the failure
surface in the rest of the quadrants is trivial.

For the purpose of validating the effectiveness and accuracy of the proposed analytic
method, its results have been benchmarked against established examples from the academic
literature, as detailed in Table 1. Specifically, Section A compares the results with Example
7.7 from the work of Leet and Bernal, 1997, referenced as [28]. Section B engages with
Example 13.14.1, as presented in the study by Wang and Salmon, 1979 [29]. Furthermore,
Section C evaluates Example 8.1, derived from the research of Nilson and Winter, 1991 [3].
The comparison reveals that the outcomes of the analytic method closely align with those
documented in the literature, underscoring its reliability and precision. Notably, certain
discrepancies were observed across all cases, which are consistently accounted for and
thoroughly examined in the subsequent discussion.

1. A lower value for the ultimate load, PTO (Table 1), is calculated using the analytic
method. The difference is attributed to the way of the calculation of the ultimate
load. Based on examples found in the literature: PTO = 0.85 f ′c Ac + fy As where Ac
is the net area of concrete and As is the area of steel reinforcement. While this may
be reasonable, it is not consistent with the assumptions regarding the failure of the
section, which states that at least one point in the section must reach εcu. However,
the stress in concrete is 0.85 f ′c at strain level ε0 and not at εcu. At strain level εcu the
stress in concrete is 0.852 f ′c = 0.7225 f ′c resulting in the smaller value of axial force
calculated by the analytic method.

2. The curves for various orientations of the NA follow a pattern that is not of planar
nature (Figure 6) as shown for typical interaction diagrams found in the literature.
The non-planar shape explains why numerical methods sometimes cannot converge
to particular points on the interaction diagram.
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Table 1. Comparative Analysis of Verification Examples.

AA Cross Section Interaction Diagram Failure Decision Function

A

Example 7.7—Leet and Bernal
(1997)
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3. The upper part of the interaction diagram or the failure surface calculated by the
analytic method (Table 1) at strain levels just before the case of pure compression
(i.e., when the strain on one side of the section equals to εcu and on the other side is
just below εcu as shown in Figure 7 shows that the moments change sign/orientation.
When the section is in pure compression, the strain distribution is uniform at the value
εcu and the bending moments become zero (assuming that the section is symmetric).
Observing the stress–strain relation of concrete (Figure 4a), we note that prior to εo
as the value of the strain increases, so does the value of the stress. However, when
the strains are greater than εo then, as the value of the strain increases, the value
of the stress decreases. As the strain plane tends to become horizontal (i.e., state
of pure compression, ε = εcu) then all points on the plane have values greater than
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εo (Figure 7). Based on the above, the stresses in the shaded area of the section are
less than those in the non-shaded area. Considering that the area on both sides of
the plastic centroid (shaded and non-shaded) are equal, then the resulting force on
the shaded area is less than that of the non-shaded area, causing a moment with
opposite sign.
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2.3. Failure Decision Function

The core objective of this research is to enhance the efficiency and accuracy of evaluat-
ing structural sections subjected to combined axial forces and bending moments. Central to
this approach is the introduction of the Failure Decision Function (FDF), which simplifies
the assessment process. The FDF is designed to quickly, accurately, and reliably determine
the safety of a section under any combination of axial force and bending moments. This
paper outlines the development process for the Failure Decision Function, detailing the
steps necessary to achieve a tool that practitioners in the field can rely on for rapid and
precise evaluations.

a. Setup the model to develop the analytic functions for the computation of the exact
shape of the failure surface (Section 2);

b. Generate the failure surface for various types of cross-sections and reinforcement
patterns using the analytic functions (Section 3);

c. Develop a polynomial approximation for the failure surface by fitting a surface of the
form F(PT , MXT , MYT) = 0 through the points of the actual curve. In this work, we
utilized the MATLAB optimization toolbox coupled with an R2 test to ensure high
accuracy. To ensure that the reduced set of points is well approximated by a smooth
function, it is important to approximate each quadrant of angle θ, of the failure surface
separately. Basic reflection and reinforcement rearrangement operations enable the
reduction of the approximation problem to fit in the first quadrant. Figure 8 shows a
sample of the exact points (in blue) and points obtained by the best-fit polynomial
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(in red). The R2 approximation index was computed at 0.97, which is considered
satisfactory. The high accuracy of the approximation is also reflected in the Figure.
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d. Define the Failure Decision Function. Considering that for a particular value of PT
there are multiple-moment couples (MXT , MYT) the failure surface in any quadrant
cannot be expressed in the form of PT = f (MXT , MYT). Rather, one can choose any
of the two moments to be approximated as functions of the axial load and the other
moment. The simplicity of polynomials, coupled with their significant approximation
properties [30], has led the authors to select MYT = f (PT , MXT) as a polynomial
function of PT and MXT. Numerical simulations indicate that the choice of moment
on the right-hand side does not affect the quality of the approximation. The Failure
Decision Function is defined as:

F(PT , MXT , MYT) = f (PT , MXT)− MYT (1)

As shown in the next section, numerical simulations indicate that polynomials up to
and including terms of degree three are sufficient for this problem. As a result, the Failure
Decision Function in Equation (1) takes the form (2):

F(PT , MXT , MYT)
= a00 + a10PT + a01MXT + a20PT

2 + a11PT MXT + a02MXT
2

+ a30PT
3 + a21PT

2MXT
+a12PT MXT

2 + a03MXT
3 − MYT

(2)

The Failure Decision Function F(PT , MXT , MYT) can be used for a reliable and quick
check of whether a section is safe or not subject to any combination of axial force and
bending moments

(
P∗

T , M∗
XT , M∗

YT
)
. In detail, if F

(
P∗

T , M∗
XT , M∗

YT
)
< 0, the section is safe

as the point is inside the failure surface, whereas if F
(

P∗
T , M∗

XT , M∗
YT

)
> 0, the section is

not safe as the point is outside the failure surface.
Figure 9 provides an illustrative depiction of the Failure Decision Function (FDF)

applied to evaluate the structural integrity of a fixed rectangular section—specifically,
Section B, as outlined in Table 1—under various reinforcement scenarios. The Figure
showcases four distinct reinforcement cases, each represented by different colors for clarity:
purple, yellow (representing the two scenarios with lesser reinforcement), and orange,
blue (depicting scenarios with greater reinforcement). A black circle illustrates a specific
combination of axial load and bending moments applied to the section.
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not safe as the point is outside the failure surface. 

Figure 9 provides an illustrative depiction of the Failure Decision Function (FDF) ap-
plied to evaluate the structural integrity of a fixed rectangular section—specifically, Sec-
tion B, as outlined in Table 1—under various reinforcement scenarios. The Figure show-
cases four distinct reinforcement cases, each represented by different colors for clarity: 
purple, yellow (representing the two scenarios with lesser reinforcement), and orange, 
blue (depicting scenarios with greater reinforcement). A black circle illustrates a specific 
combination of axial load and bending moments applied to the section. 

Analysis via the FDF reveals that the sections with lower levels of reinforcement (pur-
ple and yellow) are inadequate, as indicated by the black circle’s position outside their 
respective curves. This external positioning signifies that the applied loads surpass the 
sections’ failure thresholds, leading to a failure scenario. Conversely, for the sections with 
higher levels of reinforcement (orange and blue), the black circle falls within the safety 
bounds of their curves, indicating that these sections can safely withstand the applied load 
and moment combinations without failure. This graphical representation underscores the 
utility of the FDF in discerning between safe and unsafe structural configurations under 
specific loading conditions. 
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Figure 9. Representation of the Failure Decision Function for fixed rectangular RC concrete section
with four distinct reinforcement options.

Analysis via the FDF reveals that the sections with lower levels of reinforcement
(purple and yellow) are inadequate, as indicated by the black circle’s position outside their
respective curves. This external positioning signifies that the applied loads surpass the
sections’ failure thresholds, leading to a failure scenario. Conversely, for the sections with
higher levels of reinforcement (orange and blue), the black circle falls within the safety
bounds of their curves, indicating that these sections can safely withstand the applied load
and moment combinations without failure. This graphical representation underscores the
utility of the FDF in discerning between safe and unsafe structural configurations under
specific loading conditions.

3. Results
Implications to Software

The proposed analytical procedure introduces a simplified approach for efficiently
computing the failure surface and the Failure Decision Function (FDF) across a broad spec-
trum of cross-sectional shapes and material properties. This innovative method promises to
significantly reduce the time and effort traditionally required for such analyses, presenting
a one-time computation process that yields extensive utility for various engineering applica-
tions. Following the initial determination of the failure surface and FDF, this methodology
facilitates its integration into structural engineering software, enhancing the capabilities of
such applications in two significant aspects:

a. Compile a library of Failure Decision Functions, similar to Table 2, in software ap-
plications and perform capacity checks without the requirement of developing the
failure surfaces, thus saving computational time. Further, include a feature that will
enable the software to “suggest” safe cross sections and reinforcement combinations
for the applied

(
P∗

T , M∗
XT , M∗

YT
)
. The latter will provide the user with the flexibil-

ity to experiment with dimensions and reinforcement options prior to running the
analysis again.
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Table 2. Sample Failure Decision Functions.

AA Section

Failure Decision Function
F(PT, MXT, MYT) = a00 + a10PT + a01MXT +
a20PT

2 + a11PTMXT + a02MXT
2 + a30PT

3 +
a21PT

2MXT + a12PTMXT
2 + a03MXT

3 − MYT

A

Example 7.7—Leet and Bernal (1997)
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6.0 cm 48 cm
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6.0 cm
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f'c = 20.5MPa
fy = 345MPa

6.5 cm 37 cm

17 cm

6.5 cm

6.5 cm

6.5 cm

As = 25.8cm²
f'c = 24MPa
fy = 345MPa

a00 = −146.9,
a10 = −0.08211,
a01 = −0.1805,
a20 = 0.00005179,
a11 = −0.000390,
a02 = 0.03124,
a30 = 5 × 10−10,
a21 = 3.779 × 10−7,
a12 = 1.07 × 10−6,
a03 = −0.00003449.

B

Example 13.14.1—Wang and Salmon (1979)
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As a practical demonstration of the methodology’s applicability, Table 3 lists an ex-

tract of 24 test scenarios from a dataset encompassing 123 distinct test scenarios, each 
characterized by unique configurations of concrete dimensions and steel reinforcement 
layouts. Additionally, the table documents the outcomes generated by the Failure Deci-
sion Function (FDF) when applied to a specific set of loading conditions. The function is 
evaluated for the loading scenario (𝑃∗், 𝑀௑்∗ , 𝑀௒்∗ ) =  (300, 150, −200), which represents 
a particular combination of axial force and bending moments. These data not only validate 
the FDF’s efficacy across a diverse range of structural scenarios but also demonstrate its 
potential for reliable, real-time analysis in structural engineering applications. In the pro-
posed software application, users input a loading scenario consisting of an axial load and 
biaxial moments (𝑃∗், 𝑀௑்∗ , 𝑀௒்∗ ) , along with the proposed cross-sectional dimensions, 
number of steel bars, bar diameter, and location of each steel bar. The application provides 
real-time feedback indicating whether the selected combination is likely to fail. In the 
event of a failure, users can modify the dimensions or adjust the steel reinforcement to 
explore alternative configurations that meet the non-failure criteria. In addition, the ap-
plication enables users to explore various options of non-failure configurations. 

Table 3. Test cases with the implementation of the Failure Decision Function (Bar Diam. = 16 mm 
(Y16), nx = # of bars in x direction, ny = # of bars in y direction, A, B = Cross Section Dimensions). 

A ny B nx FDF A ny B nx FDF 
0.3 2 0.5 5 F 0.4 2 0.6 2 F 
0.3 3 0.5 5 F 0.5 5 0.4 4 P 
0.3 2 0.6 2 F 0.4 3 0.6 2 F 
0.3 3 0.6 2 F 0.4 4 0.6 2 F 
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0.4 4 0.5 3 F 0.4 3 0.6 3 F 
0.4 2 0.5 4 F 0.4 4 0.6 3 P 
0.4 3 0.5 4 F 0.4 2 0.6 4 F 
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5 cm 30 cm

30 cm
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5 cm
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a00 = −205.1,
a10 = −0.1815,
a01 = −0.2328,
a20 = 0.00004419,
a11 = −0.0005301,
a02 = 0.005983,
a30 = −1.827 × 10−9,
a21 = 7.375 × 10−8,
a12 = 1.643 × 10−7,
a03 = −4.974 × 10−6.
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As a practical demonstration of the methodology’s applicability, Table 3 lists an
extract of 24 test scenarios from a dataset encompassing 123 distinct test scenarios, each
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characterized by unique configurations of concrete dimensions and steel reinforcement
layouts. Additionally, the table documents the outcomes generated by the Failure Decision
Function (FDF) when applied to a specific set of loading conditions. The function is
evaluated for the loading scenario

(
P∗

T , M∗
XT , M∗

YT
)
= (300, 150,−200), which represents

a particular combination of axial force and bending moments. These data not only validate
the FDF’s efficacy across a diverse range of structural scenarios but also demonstrate
its potential for reliable, real-time analysis in structural engineering applications. In the
proposed software application, users input a loading scenario consisting of an axial load and
biaxial moments

(
P∗

T , M∗
XT , M∗

YT
)
, along with the proposed cross-sectional dimensions,

number of steel bars, bar diameter, and location of each steel bar. The application provides
real-time feedback indicating whether the selected combination is likely to fail. In the event
of a failure, users can modify the dimensions or adjust the steel reinforcement to explore
alternative configurations that meet the non-failure criteria. In addition, the application
enables users to explore various options of non-failure configurations.

Table 3. Test cases with the implementation of the Failure Decision Function (Bar Diam. = 16 mm
(Y16), nx = # of bars in x direction, ny = # of bars in y direction, A, B = Cross Section Dimensions).

A ny B nx FDF A ny B nx FDF

0.3 2 0.5 5 F 0.4 2 0.6 2 F
0.3 3 0.5 5 F 0.5 5 0.4 4 P
0.3 2 0.6 2 F 0.4 3 0.6 2 F
0.3 3 0.6 2 F 0.4 4 0.6 2 F
0.3 2 0.6 3 F 0.4 2 0.6 3 F
0.4 4 0.5 3 F 0.4 3 0.6 3 F
0.4 2 0.5 4 F 0.4 4 0.6 3 P
0.4 3 0.5 4 F 0.4 2 0.6 4 F
0.4 4 0.5 4 P 0.4 3 0.6 4 P
0.4 2 0.5 5 F 0.4 4 0.6 4 P
0.4 3 0.5 5 P 0.5 2 0.5 2 F
0.4 4 0.5 5 P 0.5 3 0.5 2 F

In each of the 123 test cases, the authors precisely computed the failure surface points
utilizing analytic formulas, subsequently constructed the Failure Decision Function, and
applied it to assess the specific axial load and moment combination

(
P∗

T , M∗
XT , M∗

YT
)
=

(300, 150,−200). These computations were efficiently performed in just fifteen (15) seconds
on an i7 processor equipped with 12 GB of RAM. This performance highlights the method’s
efficiency, demonstrating that the failure check for a load–moment combination relative to
a single section can be executed almost instantaneously.

b. Develop an application that dynamically generates the Failure Decision Function for
any specified set of cross-sectional geometries, material properties, and reinforcement
patterns. This tool will allow users to “experiment” with different combinations of
axial loads and bending moments to evaluate the structural suitability of various
sections. The capability to provide instantaneous assessments makes this application
particularly valuable in several key engineering activities:

i. Preliminary Design Stage: The application can be utilized to generate trial sec-
tions during the initial design phase, enabling designers to quickly iterate over
different section configurations. By assessing various combinations of loads
and moments, engineers can optimize structural elements efficiently, ensuring
that the preliminary designs meet all necessary safety and performance criteria;

ii. Site Inspection: During construction or routine inspections, especially in in-
stances where there are deviations from the initial designs, the application
serves as a critical tool for on-the-spot assessments of section capacity. This
functionality is crucial for verifying the structural integrity of sections when
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unexpected changes or errors are detected in the construction phase, thereby
aiding in immediate decision-making to address potential safety concerns.

The real-time operation of this application not only enhances the flexibility and ef-
ficiency of structural design and verification processes but also supports the adaptive
assessment capabilities required in dynamic construction environments.

4. Discussion

The novelty of the approach that is presented in this study relies on the fact that the
capacity assessment of the section for any loading scenario is provided through the Failure
Decision Function (FDF). The main outcomes of the study are listed below:

• Analytic method for constructing uniaxial interaction diagrams and biaxial bending
failure surfaces for rectangular reinforced concrete sections. This method utilizes the
nonlinear stress–strain relationships for concrete and steel reinforcement to develop
precise mathematical expressions;

• Analytic formulae developed within this paper enable the rapid computation of
the FDF;

• Failure Decision Function (FDF) is a tool designed to assess the structural integrity of
columns subjected to axial forces and either uniaxial or biaxial bending moments.

A major contribution of this research is the detailed characterization of the geometry
of the failure surface. It has been revealed that the curves, which depend on the orientation
(angle θ) of the neutral axis, are not planar. Particularly at higher parts of these curves,
near the pure compression strain levels, the moments exhibit changes in sign or orientation.
This insight adds significant depth to the existing literature on structural failure analysis.

Additionally, the computation of the maximum axial force, derived from the analytic
method at the critical strain level (εcu), aligns with established failure assumptions but
presents a lower force value than traditionally cited in the literature, which typically uses a
different baseline strain (εo). This finding suggests that a potential recalibration of standard
practices might be warranted to enhance the accuracy and safety of structural assessments.

5. Conclusions

This study introduces an approach for assessing rectangular reinforced concrete
columns using the Failure Decision Function (FDF). It develops an analytic method for
constructing uniaxial interaction diagrams and biaxial bending failure surfaces by utiliz-
ing nonlinear stress–strain relationships and section properties, enabling mathematical
expressions for axial force and bending moments. This method enhances the safety and
accuracy of capacity failure representation in the design of rectangular reinforced concrete
columns. The FDF facilitates real-time testing of various section dimensions and reinforce-
ment configurations. When integrated into software, this capability streamlines design and
evaluation processes, making them efficient and responsive. Additionally, the FDF can be
incorporated into software libraries for immediate assessment of structural integrity under
axial forces and bending moments, further improving the efficiency and responsiveness
of structural analysis software. The study’s detailed characterization of the failure surface
reveals non-planar curves dependent on the neutral axis orientation, enhancing the under-
standing of structural failure of rectangular reinforced concrete columns. In conclusion, the
findings advance the efficiency of structural design and assessment for reinforced concrete
columns, simplifying structural assessments.
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