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Abstract: Besides recurrently assessed water-based parameters, there are also some individual
characteristics that affect swimming performance that are not water related. In the past few years,
dynamic balance has been associated with land sports performance. Conversely, evidence on this
topic in swimming is scarce. The purpose of this study was to assess the association between on-land
dynamic balance and swimming performance. Sixteen young adults and recreational swimmers
were recruited for the present study (8 males 20.8 ± 2.0 years, and 8 females 20.1 ± 1.9 years). A set
of anthropometric features were measured. The upper quarter Y-balance test was selected as a
dynamic balance outcome, and swimming speed as the swimming performance indicator. The results
showed a moderate and positive correlation between dynamic balance and swimming performance
(p < 0.05). Speed fluctuation was highly and negatively related to swimming speed (p < 0.001),
i.e., swimmers who had higher scores in the dynamic balance were more likely to deliver better
performances. This suggests that in recreational swimmers, the stability and mobility of the upper
extremity had a greater influence on swimming performance. Therefore, swimming instructors are
advised to include dynamic balance exercises in their land-based training sessions to improve their
swimmers’ performance.

Keywords: swimming performance; speed; dynamic balance; Y-balance test

1. Introduction

The deterministic model for swimming performance shows that there is no single path
to enhance performance. Rather, the interplay of several parameters determines swimming
performance [1]. The underlying parameters affecting swim performance are not from a
single scientific domain. Instead, they come from various domains, pointing out the need
for an interdisciplinary approach to excel in swimming.

Besides task-related parameters (i.e., variables assessed during and related to actual
swimming), organismic-related parameters (i.e., variables related to the swimmer itself)
that are not specific to the swimming task have been indirectly correlated to swimming
performance, e.g., dry-land upper-body strength [2,3], has been reported to be positively
correlated with swimming speed. Anthropometric features, such as height [4,5], arm
span [6,7], and hand surface area [8], have been reported to directly or indirectly affect
swimming speed and other performance-related parameters [9–11].

The assessment of balance (a motor control outcome) by stabilometric techniques
has been used for decades in sport sciences [12] as well as in rehabilitation programs [13].
Notwithstanding, dynamic balance has gained some traction in the past decade. Dynamic
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balance aims to examine the ability of a subject to perform a certain movement or combina-
tion of movements and return to baseline without losing control over it (i.e., keeping the
balance). Field tests like the Star Excursion Balance Test (originally described by Gray [14])
or, more recently, the Y-balance test (originally proposed by Plisky et al. [15]) are used to
assess dynamic balance. These tests are more cost-effective yet reliable in comparison to
other techniques to monitor balance [15–17].

Although originally used to measure single-leg balance and reach distance, the Y-
balance test was eventually adapted to assess the upper quarter balance [18,19], i.e., the
subject’s ability to keep a plank position while reaching with one hand as far as possible
in three directions. Dynamic balance and, notably, the upper quarter Y-balance Test (UQ-
YBT) have been selected to monitor swimmers less than a handful of times as far as our
understanding goes. Studies explored the differences in balance scores between athletes
of different sports [20], competitive levels [21–23], and under different types of training
regimes [24]. One study selected the UQ-YBT as a benchmark standard to validate another
balance test in adolescent swimmers [25]. In addition to scarce literature, no records were
found exploring hypothetical associations between upper-quarter dynamic balance and
swimming performance.

Swimming speed is the parameter most often selected to assess performance in the
sport of swimming. It depends, among others, on the ability of the swimmer to produce
thrust, which in turn, is generated by the periodic action of the upper limbs [26,27]. More-
over, the arms’ actions are related to the swimmer’s motor control [1]. One can argue that
the dynamic balance is an indicator of motor control. Hence, it is possible to speculate that
a positive correlation between swimming speed and UQ-YBT might occur. Furthermore,
one might wonder about interlimb differences in recreational swimmers. On the one hand,
these swimmers lack an effective strength, flexibility, balance, or in-water technique training
program. This might preserve the natural dominant/non-dominant interlimb asymmetries,
also in dynamic balance. On the other hand, experienced and expert swimmers have shown
asymmetries in various performance-related parameters [28–32]. The presence of asymme-
tries in the upper quarter dynamic balance remains unexplored and seems of importance
given the literature stating that interlimb asymmetries might affect performance and/or
increase injury likelihood. Thus, the aim of the present study was to assess the correlation
of anthropometric features and the UQ-YBT with swimming performance, i.e., swimming
speed. Further, interlimb differences were tested. It was hypothesized that larger anthropo-
metric features and better UQ-YBT scores would be positively and significantly correlated
with swimming performance.

2. Materials and Methods

The sample was composed of 16 young adults (8 males: 20.8 ± 2.0 years old; 8 females
20.1 ± 1.9 years old). They were all recreational swimmers with a previous background in
swimming (4.1 ± 2.0 years) and were taking part in a swimming program twice a week for
the 6 months prior to this study. All participants were clinically healthy, with reports of
any musculoskeletal injury in the past six months. The tests took place on two consecutive
days. On the first day, the participants performed the UQ-YBT, and the anthropometric
parameters were measured. On the second day, they performed a 25 m all-out front-crawl
bout. All procedures were in accordance with the Declaration of Helsinki regarding human
research, and the participants provided informed consent. The Polytechnic Ethics Board
approved the research design (No. 72/2022).

2.1. Dynamic Balance Measurements

According to the literature, there is a learning curve undergoing the UQ-YBT for the
first time. Thus, subjects were asked to attend a demonstration of the procedure beforehand
and to perform four practice trials as suggested elsewhere [33,34].

The UQ-YBT was performed according to the procedure described in detail in the
literature [18]. Participants were asked to be in a push-up position with their feet shoulder-
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width apart. With one hand on the stand, the other was free to move and push the moving
platform along the measuring tape: (i) in the medial direction, (ii) under the trunk in the
inferolateral direction, and (iii) in the superolateral direction. Figure 1 depicts the UQ-YBT
protocol. The test was performed three times with the dominant limb and then repeated
three times with the non-dominant limb. This test sequence and number of repetitions
were the same for both the right and left upper limbs for all participants. A trial would be
deemed invalid and repeated if the subject was unable to keep the balance on the one hand
on the platform (or either touched the floor with the reach hand or fell off the platform),
forcefully pushed the moving platform away, used that platform for support, failed to
return the reach hand to the starting position in a controlled manner, or lifted one foot off of
the floor. To avoid bias, two researchers simultaneously and independently scored the trials
that were averaged afterward. The maximum reached distances were then divided by the
subject’s upper limb length, i.e., were relativized to allow between-subjects comparisons.
For all participants, medial, inferolateral, and superolateral scores were averaged into a
final composite score for the right hand (UQ-YBT_R) and the other for the left hand (UQ-
YBT_L). Limb symmetry index (LSI) was calculated for the composite scores, as described
in the literature [35]. The index was computed as the ratio of the dominant upper-limb
composite score over the non-dominant upper-limb composite score. Furthermore, for
all three directions of movement, the difference between limbs was calculated for: (i) the
interlimb reach distance difference (AbsDif, in cm) and (ii) the interlimb reach distance
difference after being relativized to the limb length (RelDif, in %).
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2.2. Anthropometric Measurements

The body mass (BM, in kg) was measured on an electronic scale (Tanita, MC 780-P,
Tokyo, Japan). The height (H, in cm) was measured by an electronic stadiometer (Seca, 242,
Hamburg, Germany). The arm span (AS, in cm) and the hand surface area (HSA, in cm2)
were measured by digital photogrammetry. To measure AS, swimmers were placed near a
2D calibration object in the upright position with both upper arms in lateral abduction at
a 90◦ angle to the trunk. Both upper arms and fingers were fully extended. The distance
between the tips of the third fingers was measured with a dedicated software program
(UDruler v3.8, AVPSoft, Pittsburgh, PA, USA) [36]. For the measurement of the hand
surface area (HSA), the swimmers’ palms were photographed with a digital camera (Sony
a6000, Tokyo, Japan). Each HSA was calculated using a dedicated software program again
(Udruler, AVPSoft, USA) [36].

2.3. Swimming Speed Measurement

Before data collection, swimmers underwent a standard pre-race warm-up protocol
for sprint events, as suggested in the literature [37].

A nylon cable that unfolded over the trial from a speedometer device (SpeedRT,
ApLab, Rome, Italy) and attached to a belt tied around the swimmer’s waist was used
to measure swim speed. The speedometer transmitted the signal to software (Speed RT
2013, ApLab, Rome, Italy) that was streaming the swimmer´s speed in real-time [38].
After an auditory signal, the swimmer performed a push-off from the headwall without
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underwater kicking. To avoid possible large variability in swimming speed when breathing,
swimmers were requested to perform non-breathing stroke cycles between the 10th and
the 20th meters marks. To correctly identify the crossing of the vertex at the 10th and
20th-meter marks, a video camera (Hero 7, GoPro Inc., San Mateo, CA, USA) recorded
the bout in the sagittal plane. To synchronize the speedometer and the camera, a light
trigger in the recording field was turned on whenever the former began recording. The
speedometer acquired data at a rate of 100 Hz, which was thereafter exported to a signal
processing software (AcqKnowledge v3.9.0, Biopac Systems, Santa Barbara, CA, USA).
After residual analysis, the signal was handled with a Butterworth 4th-order low-pass filter
(cut-off: 5 Hz). The speed of the 10-m length was averaged. The intra-cyclic variation of
the speed (speed fluctuation, dv) was also calculated from the speed-data signal according
to the literature [39].

2.4. Statistics

Mean and one standard deviation were calculated as descriptive statistics. Shapiro–
Wilk test was used to check data normality. Spearman’s correlation coefficient was selected
and interpreted as: negligible if rs < 0.3; low if 0.3 ≤ rs < 0.5; moderate if 0.5 ≤ rs < 0.7;
high if 0.7 ≤ rs < 0.9 and very high if 0.9 ≤ rs ≤ 1 as suggested elsewhere [40]. Correlation
agreements between both sexes (swimming speed vs. remaining variables) were computed
by Fischer’s z-score [8]. Overall, non-significant differences (p < 0.05) were noted between
correlations (only in one variable, i.e., medial reach for absolute and relative difference,
a significant difference was noted), suggesting that both sexes could be pooled together.

3. Results

Mean ± 1SD for anthropometrics, balance, and swimming are presented in Table 1. In
Table 2 can be seen that there was a moderate and positive correlation between swimming
speed and both balance variables: YBT_R (rs = 0.568, p = 0.027) and YBT_L (rs = 0.539,
p = 0.038). Furthermore, there was a negative and high correlation between swimming
speed and dv (rs = −0.804, p < 0.001) (Table 2). Composite scores (YBT_R and YBT_L)
were correlated to each other (rs = 0.954, p < 0.001) (Table 2). The LSI was higher than the
standard 90% cut-off value (Table 1).

Table 1. Descriptive statistics (mean ± 1SD) for all variables in the study.

Mean ± 1SD

BM [kg] 71.67 ± 7.81
H [cm] 173.20 ± 7.67
AS [cm] 173.13 ± 7.44
HSA_R [cm2] 130.90 ± 121.02
HSA_L [cm2] 123.81 ± 12.49
YBT_R [%] 87.10 ± 12.88
YBT_L [%] 88.42 ± 11.32
LSI [%] 96.03 ± 2.57
AbsDif_medial [cm] 5.30 ± 3.24
AbsDif_inferolateral [cm] 5.57 ± 3.53
AbsDif_superolateral [cm] 4.40 ± 3.94
RelDif_medial [%] 5.97 ± 3.85
RelDif_inferolateral [%] 6.44 ± 3.39
RelDif_superolateral [%] 5.17 ± 4.27
v [m·s−1] 1.21 ±1.17
dv [%] 29.71 ± 13.37

BM—Body mass; H—Height; AS—Arm span; HSA_R—Right-hand surface area; HSA_L—Left-hand surface area;
YBT_R—Score for the right arm in the UQ-YBT; YBT_L—Score for the left arm in the UQ-YBT; v—Swimming
speed; dv—intra-cyclic speed fluctuation.
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Table 2. Spearman correlation coefficient between swimming speed and all other variables in study.

Speed [m·s−1]

rs p Value

BM [kg] −0.063 0.823
H [cm] 0.437 0.103
AS [cm] 0.362 0.185
HSA_R [cm2] 0.146 0.603
HSA_L [cm2] 0.496 0.060
YBT_R [%] 0.568 0.027
YBT_L [%] 0.539 0.038
LSI [%] −0.124 0.520
AbsDif_medial −0.007 0.980
AbsDif_inferolateral 0.168 0.551
AbsDif_superolateral −0.031 0.914
RelDif_medial −0.046 0.869
RelDif_inferolateral 0.032 0.909
RelDif_superolateral −0.236 0.398
dv [%] −0.804 <0.001

BM—Body mass; H—Height; AS—Arm span; HSA_R—Right-hand surface area; HSA_L—Left-hand sur-
face area; YBT_R—Score for the right arm in the UQ-YBT; YBT_L—Score for the left arm in the UQ-YBT;
dv—speed fluctuation.

4. Discussion

The aim of the present study was to assess the association between anthropometric
features and UQ-YBT with swimming performance. The main findings point out that
swimming speed in young adult recreational swimmers was positively and significantly
correlated with UQ-YBT and negatively and significantly associated with dv (i.e., less dv
led to fastest swimming speeds).

The dynamic balance scores have been used to screen deficits in neuromuscular control
due to pathologies [41–44], injury prediction [45–47], the effect of a certain treatment [44,48–50],
or rehabilitation/physical activity program [42,51–54] in patients with various diseases and
return to sport readiness [55,56]. Furthermore, the performance delivered in these tests has
also been positively related to physical fitness [57,58] and sports performance [22,23,59].
The present results are in tandem with the literature, as higher scores in the UQ-YBT
(better upper quarter dynamic balance) were correlated to faster swimming speeds (bet-
ter performance). Butler et al. [23] found that professional players scored better in dy-
namic balance than their collegiate or high school counterparts. Moreover, both González-
Hernanez et al. [59] and Brumitt et al. [22] reported better scores amongst athletes in higher
competitive levels and differences in dynamic balance across field positions in soccer and
volleyball players, respectively. The authors put forward that those differences in scores
can be explained by the training programs implemented in the teams rather than the par-
ticipants´ competitive level. Thus, one could speculate whether swimming specialization
would affect the association between speed and dynamic balance. This topic needs further
investigation. On the other hand, this shows the need for upper-quarter dynamic balance
training even for low-tier swimmers, such as recreational-level swimmers. Despite the posi-
tive correlation, one could only wonder if the results from the UQ-YBT of these recreational
swimmers are within the expected values for their expertise level. This topic also requires
further investigation, as Brumit et al. [22] stated the need to make available normative
data for different levels of expertise. This information would help coaches to have a better
insight into the swimmers´ dynamic balance, where there is room for improvement, and if
there is the need to prescribe more drills to improve dynamic balance on land or in water.

Sports performance is a multifactorial phenomenon. Numerous factors from different
scientific domains interplay in a web-like structure where one factor affects another in a
cascade fashion, ultimately affecting the main outcome (the performance). Examples of
parameters found in this complex and dynamic system of interactions are the swimmer´s
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height and arm span [1]. However, being taller or having a wider arm span is not a
guarantee of delivering a better swimming performance. Instead, these influence other
parameters such as body volume, body mass, stroke length, and propelling efficiency [1]
that, in turn, determine other variables. The same line of reasoning could be applied in
the present study, as none of the anthropometric variables measured had a significant
association with swimming speed. Swimming is a sport that requires a unique motor
control refinement to enhance performance. Marginal improvements in the technique lead
to better performances [60], and athletes’ movement strategies may be different depending
on their competitive level. Recreational swimmers may not have yet acquired the finest
technique, which would enable them to unlock the potential from unique anthropometric
parameters and, thus, possibly, the non-significant correlation.

Swimming speed is the net balance between the thrust produced and the drag acting
against the body. Such balance between these external forces varies within and between
each stroke cycle leading to instant changes in swimming speed. Better motor control,
i.e., greater regularity in the arms and legs’ actions during propulsion and better body
alignment (better hydrodynamics), are related to a decrease in this intracyclic variation of
the horizontal speed of the swimmer (i.e., speed fluctuation). Thus, less speed fluctuation
(dv) is correlated to better performances [5,61]. In the present study, speed was negatively
related to dv, which is in line with the literature. Bartolomeu et al. [61] reported an
inverse correlation of dv with swimming speed for all four competitive swimming strokes.
Barbosa et al. [5] reported a decrease in dv with increasing expertise. The values observed
for the recreational swimmers in the present study are in tandem with the literature,
as dv was higher than that observed for all regional competitors, national competitors,
and national record holders in a study by Barbosa et al. [5]. Despite the fact that better
motor control is needed to improve dv, in the present study, the UQ-YBT scores were
not correlated to swimming speed. Once more, the swimmers’ level could be the cause.
Perhaps all swimmers had small hydrodynamic balance expertise in water, leading to a
higher, nonlinear, and thus non-significant correlation.

Some concerns have been raised in the past couple of years regarding the methodology
of dv calculation based on the coefficient of variation (CV), as performed in the present
study [62,63]. Indeed, mixed findings can be found in the literature regarding the relation-
ship between dv based on CV and swimming speed [64,65]. CV is dependent on the mean
velocity and its standard deviation. Some authors have pointed out that both variables
might not vary the same way throughout the swimming bout. Gonjo et al. [63] stated that
there is evidence for maintenance in the difference between the intra-cycle maximum and
minimum velocity (standard deviation) despite an observable decrease in the mean velocity.
In such a case, CV would be biased by the mean velocity. However, to keep the standard
deviation of the mean speed stable, swimmers need to have a stable inter-limb coordination
pattern, a condition that is more prone to be observable in highly experienced swimmers,
which can, to a certain extent, maintain the technique despite fatigue. In learning to swim
and recreational programs, one of the main focuses is to reduce the large intracyclic speed
fluctuations due to poor technique (namely interlimb coordination). Several studies have
reported larger dv in less skilled swimmers [5,65,66]. The present results are in tandem,
as those with the higher dv were indeed the slowest, thus, less skilled swimmers. As an
example, in a study comparing performance among levels of expertise, Barbosa et al. [66]
reported values of dv of 18.40 ± 6.00 for non-expert swimmers (the higher value among all
groups), being these subjects described as those who practice the sport at a non-competitive
level on a regular basis, thus, just like the recreational swimmers in the present group.
Possibly the swimmers from our study have less experience in swimming (the years of
experience in the aforementioned study are not reported), explaining the larger values
obtained in the present study (29.71 ± 13.37). Whichever path dv-related research takes, its
calculation, as performed in the present study, appears to continue as a good proxy of the
speed fluctuation, at least for the non-elite swimmers.
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The body of knowledge in motor control points out consistent interlimb differences.
Interlimb differences have been reported in soccer [67,68], volleyball [69], basketball [69,70],
and running [71] for several parameters such as force production [72], power output [72],
range of motion [73], jump height or length [74,75], and dynamic balance [45]. In swimmers,
interlimb differences have been observed in dry-land strength [28], power output [29,30],
hand and feet force [31], and arm kinematics [32]. The literature reports a cut-off value
of 10–15% when assessing interlimb differences. Differences over cut-off values denote a
larger likelihood of musculoskeletal injuries and poorer sports performances. Although
having a reference value can serve as a guide to coaches and physiotherapists, swimming
researchers have reported asymmetries above 10–15% in swimming-specific tasks in elite
swimmers [32,76]. Seifert et al. [77] concluded that asymmetries in arm coordination
might be due to different roles between limbs (propulsion and rhythm for the dominant
upper arm vs. propulsion and compensation for breathing laterality for the non-dominant
upper arm). Bartolomeu et al. [78] have hypothesized that swimming is probably a task
that benefits up to a certain extent, from some asymmetry, possibly above 10%. In the
present study, the mean LSI was about 96%. The fact that lower symmetry values are
often found in parameters measured during actual swimming (power output or hand/feet
force production) when compared to those of land-based measurements, such as the
dynamic balance of the present study and others [71,72,79], confirms such a hypothesis.
Notwithstanding, more research is needed studying land- and water-based asymmetries in
the same subjects.

In the present study, LSI was not correlated to any of the variables under study. In
tandem, neither the absolute difference nor the relative difference between the dominant
and non-dominant arm was related to any other variable in the three reaching directions.
The high symmetry in interlimb dynamic balance (mean ~96%) can possibly explain the
absence of a significant correlation between inter-limb symmetries and speed. Indeed,
literature has reported the same lack of meaningful correlation. Power output and hand
force symmetries were not correlated to performance in tethered swimming [30] and free
swimming [78], even when high asymmetries were present. The reason behind these
findings can, yet again, be underpinned by the different roles of both limbs. Under this
hypothesis, one might argue that having more or less symmetry would not matter (up to a
certain extent) as this would be a reflection of the individual technique and the individual
contribution of each limb to that technique.

Regarding dynamic balance, there are a few studies that correlated symmetry levels
(rather than asymmetry) with injury risk. Plisky et al. [45] reported that composite scores
of a dynamic balance test lower than 94% would indicate an increased injury risk in
basketball players. Butler et al. [80] indicated that football players who scored below
89.6% on the test were 3.5 times more likely to get injured. Recreational swimmers of
the present study scored an average of 87.10% and 88.42% for the YBT_R and YBT_L,
respectively, which supposedly means an increased injury risk. However, the subjects
recruited are not under intense training protocols and reported no injury history. Thus, the
low scores are due to a lack of core stability more than structural imbalances. This suggests
that the cut-off values proposed by the literature might be unsuitable for recreational
swimmers or for swimming parameters at all. The rationale that injury risk cut-off values
for interlimb asymmetries might be task-specific has been put forward before for land-
based activities [72,81–83]. Along the same line, the findings from the present study
suggest that the same phenomenon might occur for injury risk prediction from the dynamic
balance results in swimmers. However, further analysis should be carried out as the design
selected and analysis performed in the present study cannot confirm such an assumption.
Nevertheless, the amount of research on the influence of interlimb symmetries on injury
risk and performance showcases its importance. In swimming, given such between-subject
differences regarding symmetry [30,31], customized assessments and interventions may be
needed to address specific interlimb symmetries and injury risks. Asymmetries can occur
naturally or develop over time due to training, technique, or anatomical factors. Lower
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levels of symmetry in swimming can come from task-specific factors, for example, poor
technique, or from other non-specific factors, such as musculoskeletal imbalances. In a
study by Evershed et al. [28], it was reported that all swimmers who presented muscular
symmetry on dry-land tests presented a symmetry in force production while swimming.
From those who presented dry-land strength asymmetries, some used compensatory
movements and presented symmetry in force production, and others maintained the force
asymmetry. The fact that all participants were national-level swimmers supports the idea
of a high inter-individual difference. Thus, the need for individual assessment and the
exercise of special caution when using typical cut-off values for injury risk assessments.
Nevertheless, the present values might act as a reference for healthy recreational swimmers
for the dynamic balance scores and symmetry.

Despite the fact that the statistical tests used are robust for small samples, the number
of participants recruited can be addressed as a limitation in the present study; thus, results
should be interpreted with caution. Different swimming distances impose variations on
stroke frequency x stroke length combinations. Hence, other distances and other submaxi-
mal swimming velocities should be tested in the future. Further investigation should also
be conducted into the role of dynamic balance on performance among swimmers of other
competitive levels and on stroke-specialized swimmers. Furthermore, dynamic balance
normative data for different levels of expertise may need to be established. These values
could provide insight into the need for improvement to maintain performance and as the
benchmark to return to that competing level after a musculoskeletal injury.

In summary, speed fluctuation and upper quarter dynamic balance of recreational
swimmers were significantly associated with swimming speed. Swimming coaches are
advised to incorporate on-land dynamic balance exercises and/or pay more attention to
in-water dynamic balance drills in recreational swimmers. This improvement in dynamic
balance training could also improve swimming technique which may, in turn, unlock the
potential of other performance-related determinants such as anthropometrics.

5. Conclusions

In recreational swimmers, better upper quarter dynamic balance and lower dv were
associated with faster swimming speeds (YBT_R: rs = 0.568, YBT_L: rs = 0.539, and dv:
rs = −0.804). Recreational swimmers showed high upper quarter dynamic balance symme-
try (LSI: 96.03 ± 2.57%). Dynamic balance training, either specific or embedded in regular
training sessions, should not be disregarded, given the observed correlation between
upper-quarter dynamic balance and performance.
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