Optimization of the Number of Accelerometer Placements for Dynamic Identification of a Historical Masonry Bridge
Abstract
1. Introduction
2. Framework and Novelty
3. Experimental Setup of the STb
Instrumentation and Sensor Assembly
4. Experimental Results from Environmental Tests
4.1. Methodology and Reference Configuration
4.2. Identification of the Vibration Modes in the Optimized Scenarios
4.3. Identification of the Frequencies in the Optimized Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borlenghi, P.; Gentile, C.; D’Angelo, M.; Ballio, F. Long-Term Monitoring of a Masonry Arch Bridge to Evaluate Scour Effects. Constr. Build. Mater. 2024, 411, 134580. [Google Scholar] [CrossRef]
- La Scala, A. Ancient Solutions for Modern Challenges: Structural Analysis of Roman Ventilated Facade Systems. Buildings 2025, 15, 3229. [Google Scholar] [CrossRef]
- Rizzo, F.; Barbato, M.; Sepe, V. Shape Dependence of Wind Pressure Peak Factor Statistics in Hyperbolic Paraboloid Roofs. J. Build. Eng. 2021, 44, 103203. [Google Scholar] [CrossRef]
- Rizzo, P.; Enshaeian, A. Challenges in Bridge Health Monitoring: A Review. Sensors 2021, 21, 4336. [Google Scholar] [CrossRef]
- Riasat Azim, M.; Gül, M. Damage Detection of Steel-Truss Railway Bridges Using Operational Vibration Data. J. Struct. Eng. 2020, 146, 04020008. [Google Scholar] [CrossRef]
- Foti, D.; Giannoccaro, N.I.; Rizzo, F.; Sabbà, M.F.; La Scala, A.; Mansour, S. Dynamic Characterization of a Squat Historical Bridge by Considering Vehicle-Bridge Interaction. In Proceedings of the International Operational Modal Analysis Conference; Naples, Italy, 22–24 May 2024, Springer: Cham, Switzerland, 2024; pp. 493–504. [Google Scholar]
- Bel-Hadj, Y.; Weil, M.; Weijtjens, W.; Devriendt, C. Experimental Validation of Automated OMA and Mode Tracking for Structural Health Monitoring of Transmission Towers. Struct. Health Monit. 2025, 24, 1272–1291. [Google Scholar] [CrossRef]
- Foti, D.; Giannoccaro, N.I.; Diaferio, M.; Ivorra, S. Structural Identification and Numerical Models for Slender Historical Structures. In Handbook of Research on Seismic Assessment and Rehabilitation of Historic Structures; IGI Global: Hershey, PA, USA, 2015; pp. 674–703. ISBN 9781466682870. [Google Scholar]
- Diaferio, M.; Foti, D.; Gentile, C.; Ivan Giannoccaro, N.; Saisi, A.E. Dynamic Testing of a Historical Slender Building Using Accelerometers and Radar. In Proceedings of the 6th International Operational Modal Analysis Conference; Gijon, Spain, 12–14 May 2015, EDICIONES UNIV OVIEDO, SERV PUBLICACIONES UNIV OVIEDO, CAMPUS HUMANIDADES: Oviedo, España, 2015; pp. 1–10. [Google Scholar]
- Hassani, S.; Dackermann, U. A Systematic Review of Optimization Algorithms for Structural Health Monitoring and Optimal Sensor Placement. Sensors 2023, 23, 3293. [Google Scholar] [CrossRef]
- Ferrara, M.; Bertagnoli, G.; Giordano, L. Model Updating of Different Bridge Types Using Ambient Vibration and OMA Identification. Procedia Struct. Integr. 2024, 62, 773–780. [Google Scholar] [CrossRef]
- Diaferio, M.; Foti, D.; La Scala, A.; Sabbà, M.F. Selection Criteria of Experimental Setup for Historical Structures. In Proceedings of the 2021 AEIT International Annual Conference (AEIT), Milan, Italy, 4–8 October 2021; pp. 1–6. [Google Scholar]
- Bru, D.; Ivorra, S.; Baeza, F.J.; Reynau, R.; Foti, D. OMA Dynamic Identification of a Masonry Chimney with Severe Cracking Condition, IOMAC’15. In Proceedings of the 6th International Operational Modal Analysis Conference, Gijón, Spain, 12–14 May 2015; pp. 1–8. [Google Scholar]
- Borlenghi, P.; Saisi, A.; Gentile, C. Determining Structural Models of a Masonry Tower from Architectural Research and Operational Modal Analysis. J. Build. Eng. 2025, 111, 113347. [Google Scholar] [CrossRef]
- Rizzo, F.; Caracoglia, L.; Piccardo, G. Examining Wind-Induced Floor Accelerations in an Unconventionally Shaped, High-Rise Building for the Design of “Smart” Screen Walls. J. Build. Eng. 2021, 43, 103115. [Google Scholar] [CrossRef]
- Sun, Z.; Mahmoodian, M.; Sidiq, A.; Jayasinghe, S.; Shahrivar, F.; Setunge, S. Optimal Sensor Placement for Structural Health Monitoring: A Comprehensive Review. J. Sens. Actuator Netw. 2025, 14, 22. [Google Scholar] [CrossRef]
- Chang, M.; Pakzad, S.N. Optimal Sensor Placement for Modal Identification of Bridge Systems Considering Number of Sensing Nodes. J. Bridge Eng. 2014, 19, 04014019. [Google Scholar] [CrossRef]
- Nasr, D.; Dahr, R.E.; Assaad, J.; Khatib, J. Comparative Analysis between Genetic Algorithm and Simulated Annealing-Based Frameworks for Optimal Sensor Placement and Structural Health Monitoring Purposes. Buildings 2022, 12, 1383. [Google Scholar] [CrossRef]
- Yang, C. An Adaptive Sensor Placement Algorithm for Structural Health Monitoring Based on Multi-Objective Iterative Optimization Using Weight Factor Updating. Mech. Syst. Signal Process 2021, 151, 107363. [Google Scholar] [CrossRef]
- Diaferio, M.; Foti, D.; La Scala, A.; Sabbà, M.F. Design of the Set-up for Ambient Vibration and Dynamic Forced Tests on a Cable-Stayed Bridge. In Proceedings of the 2021 AEIT International Annual Conference (AEIT), Milan, Italy, 4–8 October; pp. 1–5.
- Guo, H.Y.; Zhang, L.; Zhang, L.L.; Zhou, J.X. Optimal Placement of Sensors for Structural Health Monitoring Using Improved Geneticalgorithms. Smart Mater. Struct. 2004, 13, 528. [Google Scholar] [CrossRef]
- Foti, D.; Giannoccaro, N.I.; Sabbà, M.F.; La Scala, A. Dynamic Identification of a Strategic Building of the Sixties with a Mixed Structure. Procedia Struct. Integr. 2023, 44, 782–789. [Google Scholar] [CrossRef]
- Coviello, C.G.; La Scala, A.; Sabbà, M.F.; Carnimeo, L. On the Cementitious Mixtures Reinforced with Waste Polyethylene Terephthalate. Materials 2024, 17, 5351. [Google Scholar] [CrossRef]
- Xiao, F.; Mao, Y.; Sun, H.; Chen, G.S.; Tian, G. Stiffness Separation Method for Reducing Calculation Time of Truss Structure Damage Identification. Struct. Control Health Monit. 2024, 2024, 5171542. [Google Scholar] [CrossRef]
- Barros, B.; Conde, B.; Cabaleiro, M.; Solla, M.; Riveiro, B. Multi-Objective Optimization-Based Model Calibration of Masonry Bridges. Case Stud. Constr. Mater. 2023, 19, e02306. [Google Scholar] [CrossRef]
- Mahjoubi, S.; Barhemat, R.; Bao, Y. Optimal Placement of Triaxial Accelerometers Using Hypotrochoid Spiral Optimization Algorithm for Automated Monitoring of High-Rise Buildings. Autom. Constr. 2020, 118, 103273. [Google Scholar] [CrossRef]
- Faridi, M.A.; Kuncham, E.; Roy, K.; Singhal, V. Using Limited Roving Sensors to Monitor Bridge Subjected to Random Traffic Load. J. Civ. Struct. Health Monit. 2024, 14, 693–710. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Yao, Y.; Ou, J. Advancements in Optimal Sensor Placement for Enhanced Structural Health Monitoring: Current Insights and Future Prospects. Buildings 2023, 13, 3129. [Google Scholar] [CrossRef]
- Foti, D.; Diaferio, M.; Vacca, V.; Sabbà, M.F.; La Scala, A. Parameterization and Mechanical Behavior of Multi-Block Columns. In Architecture and Design for Industry 4.0: Theory and Practice; Springer: Cham, Switzerland, 2023; pp. 963–978. [Google Scholar]
- La Scala, A.; Rizzo, F.; Carnimeo, L.; Chorro, S.I.; Foti, D. A Proposal of a Neural Predictor of Residual Compressive Strength in an SCC Exposed to High Temperatures for Resilient Housing. In Proceedings of the 2024 IEEE International Humanitarian Technologies Conference (IHTC), Bari, Italy, 27–30 November 2024; pp. 1–6. [Google Scholar]
- Śliwa-Wieczorek, K.; La Scala, A.; Derkowski, W.; Binder, E. Longitudinal Shear in Timber–Concrete Composites with Flexible Adhesive Connections—Experimental and Numerical Investigations. Materials 2024, 17, 6055. [Google Scholar] [CrossRef] [PubMed]
- La Scala, A.; Śliwa-Wieczorek, K.; Rizzo, F.; Sabbà, M.F.; Zając, B. Flexible Polyurethane Adhesives: Predictive Numerical Model Calibration through Experimental Testing at Elevated Temperature. Appl. Sci. 2024, 14, 1943. [Google Scholar] [CrossRef]
- La Scala, A.; Carnimeo, L. Effective Comparison of Thermo-Mechanical Characteristics of Self-Compacting Concretes Through Machine Learning-Based Predictions. Fire 2025, 8, 289. [Google Scholar] [CrossRef]
- Sofi, A.; Regita, J.J.; Rane, B.; Lau, H.H. Structural Health Monitoring Using Wireless Smart Sensor Network–An Overview. Mech. Syst. Signal Process 2022, 163, 108113. [Google Scholar] [CrossRef]
- Di Nuzzo, F.; Brunelli, D.; Polonelli, T.; Benini, L. Structural Health Monitoring System with Narrowband IoT and MEMS Sensors. IEEE Sens. J. 2021, 21, 16371–16380. [Google Scholar] [CrossRef]
- Armijo, A.; Zamora-Sánchez, D. Integration of Railway Bridge Structural Health Monitoring into the Internet of Things with a Digital Twin: A Case Study. Sensors 2024, 24, 2115. [Google Scholar] [CrossRef]
- Komarizadehasl, S.; Mobaraki, B.; Ma, H.; Lozano-Galant, J.-A.; Turmo, J. Development of a Low-Cost System for the Accurate Measurement of Structural Vibrations. Sensors 2021, 21, 6191. [Google Scholar] [CrossRef]
- Komarizadehasl, S.; Huguenet, P.; Lozano, F.; Lozano-Galant, J.A.; Turmo, J. Operational and Analytical Modal Analysis of a Bridge Using Low-Cost Wireless Arduino-Based Accelerometers. Sensors 2022, 22, 9808. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, S.; Yan, Z. BSHM-WSN: A Wireless Sensor Network for Bridge Structure Health Monitoring. In Proceedings of the 2012 Proceedings of International Conference on Modelling, Identification and Control, Wuhan, China, 24–26 June 2012; pp. 708–712. [Google Scholar]
- Sforza, G.; Gentile, C.; Mannella, P. Monitoring System with a High Number of Accelerometers: Optimization of Installation and OMA. In Proceedings of the International Operational Modal Analysis Conference; Springer: Cham, Switzerland, 2024; pp. 334–341. [Google Scholar]
- Yi, T.; Li, H.; Song, G.; Zhang, X. Optimal Sensor Placement for Health Monitoring of High-rise Structure Using Adaptive Monkey Algorithm. Struct. Control Health Monit. 2015, 22, 667–681. [Google Scholar] [CrossRef]
- Kishida, K.; Aung, T.L.; Lin, R. Monitoring a Railway Bridge with Distributed Fiber Optic Sensing Using Specially Installed Fibers. Sensors 2024, 25, 98. [Google Scholar] [CrossRef]
- Papadimitriou, C.; Beck, J.L.; Au, S.-K. Entropy-Based Optimal Sensor Location for Structural Model Updating. J. Vib. Control. 2000, 6, 781–800. [Google Scholar] [CrossRef]
- Singh, S.; Shanker, R. Wireless Sensor Networks for Bridge Structural Health Monitoring: A Novel Approach. Asian J. Civ. Eng. 2023, 24, 1425–1439. [Google Scholar] [CrossRef]
- Waqas, M.; Jan, L.; Zafar, M.H.; Hassan, S.R.; Asif, R. A Sensor Placement Approach Using Multi-Objective Hypergraph Particle Swarm Optimization to Improve Effectiveness of Structural Health Monitoring Systems. Sensors 2024, 24, 1423. [Google Scholar] [CrossRef] [PubMed]
- Kammer, D.C. Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures. J. Guid. Control. Dyn. 1991, 14, 251–259. [Google Scholar] [CrossRef]
- Civera, M.; Mugnaini, V.; Zanotti Fragonara, L. Machine Learning-based Automatic Operational Modal Analysis: A Structural Health Monitoring Application to Masonry Arch Bridges. Struct. Control Health Monit. 2022, 29, e3028. [Google Scholar] [CrossRef]
- Zinno, R.; Haghshenas, S.S.; Guido, G.; VItale, A. Artificial Intelligence and Structural Health Monitoring of Bridges: A Review of the State-of-the-Art. IEEE Access 2022, 10, 88058–88078. [Google Scholar] [CrossRef]
- An, H.; Youn, B.D.; Kim, H.S. A Methodology for Sensor Number and Placement Optimization for Vibration-Based Damage Detection of Composite Structures under Model Uncertainty. Compos. Struct. 2022, 279, 114863. [Google Scholar] [CrossRef]
- Foti, D.; Sabbà, M.F.; Pavone, R.; Cucumazzo, F. A Dynamically Validated Model Verified by Drone Photos of the Masonry Bridge of the XIX Century. Procedia Struct. Integr. 2023, 44, 1506–1513. [Google Scholar] [CrossRef]
- Mansour, S.; Rizzo, F.; Giannoccaro, N.I.; La Scala, A.; Sabbà, M.F.; Foti, D. Essential Dynamic Characterization of a Historical Bridge: Integrated Experimental and Numerical Investigations. J. Civ. Struct. Health Monit. 2024, 14, 85–102. [Google Scholar] [CrossRef]











| Number of Identified Frequency | Test 1 | Test 2 | Test 3 | Mean Values | Mode Shape | Interested Arch |
|---|---|---|---|---|---|---|
| 1 | 9.5 | 9.1 | 9 | 9.2 | Translational | All |
| 2 | 12.1 | 13.3 | 12.6 | 12.7 | Vertical | All |
| 3 | - | 14.7 | 14.5 | 14.6 | Vertical | Central |
| 4 | 16.7 | 16.5 | 16.3 | 16.5 | Vertical | All |
| 5 | 19.7 | 18 | 20.9 | 19.5 | Vertical | Central |
| Number of Identified Frequency | Acquisition with 28 Accelerometers | Acquisition with 13 Accelerometers | Acquisition with 8 Accelerometers | Acquisition with 6 Accelerometers | Acquisition with 4 Accelerometers |
|---|---|---|---|---|---|
| 1 | 9.2 | 9.1 | 9 | 10.5 | 10.9 |
| 2 | 12.7 | 13.4 | 12.8 | 12.9 | 12.8 |
| 3 | 14.6 | 14.6 | 14.3 | 14.3 | 14.3 |
| 4 | 16.5 | 16.6 | 16.6 | 16.5 | 16.6 |
| 5 | 19.5 | 19.8 | 19.6 | 20.1 | 19.7 |
| Node | Y-28acc | Y-13acc | Y-8acc | Y-4acc |
|---|---|---|---|---|
| 2 | −0.692 | - | - | - |
| 6 | −3.206 | −4.274 | −0.679 | −0.832 |
| 10 | −2.261 | - | - | - |
| 15 | −2.843 | −4.156 | - | - |
| 17 | −3.013 | −4.161 | −0.418 | −0.563 |
| 19 | −2.452 | −3.246 | - | - |
| Node | Z-28acc | Z-13acc | Z-8acc | Z-6acc | Z-4acc |
|---|---|---|---|---|---|
| 1 | 1.448 | - | - | - | - |
| 2 | −0.452 | - | - | −0.134 | - |
| 3 | −0.514 | - | - | - | - |
| 4 | −0.414 | −0.296 | - | - | - |
| 5 | −0.902 | −1.638 | 0.113 | - | - |
| 6 | −1.175 | −2.154 | 0.553 | 0.460 | 0.410 |
| 7 | −0.577 | −1.065 | 0.114 | - | - |
| 8 | −0.403 | −0.689 | - | - | - |
| 9 | −0.113 | - | - | - | - |
| 10 | 0.440 | - | - | −3.319 | - |
| 11 | 0.134 | - | - | - | - |
| 12 | −0.272 | - | - | - | - |
| 13 | 0.160 | - | - | 0.191 | - |
| 14 | 0.573 | - | - | - | - |
| 15 | −0.876 | −7.630 | - | - | - |
| 16 | 0.699 | 0.727 | 0.565 | - | - |
| 17 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 18 | 0.887 | 0.885 | 0.463 | - | - |
| 19 | 0.741 | 0.713 | - | - | - |
| 20 | 0.970 | - | - | - | - |
| 21 | 0.830 | - | - | −2.460 | - |
| 22 | 0.312 | - | - | - | - |
| Node | Z-28acc | Z-13acc | Z-8acc | Z-6acc | Z-4acc |
|---|---|---|---|---|---|
| 1 | 0.434 | - | - | - | - |
| 2 | −0.006 | - | - | 0.008 | - |
| 3 | 0.103 | - | - | - | - |
| 4 | 0.127 | −0.139 | - | - | - |
| 5 | 0.394 | 0.294 | 0.424 | - | - |
| 6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 7 | 0.352 | 0.515 | 0.384 | - | - |
| 8 | −0.212 | 0.011 | - | - | - |
| 9 | −1.094 | - | - | - | - |
| 10 | −1.993 | - | - | −2.995 | - |
| 11 | −0.544 | - | - | - | - |
| 12 | 0.312 | - | - | - | - |
| 13 | 0.343 | - | - | 0.390 | - |
| 14 | 0.167 | - | - | - | - |
| 15 | 0.368 | 0.551 | - | - | - |
| 16 | 0.561 | 0.832 | 0.337 | - | - |
| 17 | 0.900 | 1.260 | 0.622 | 1.047 | 0.533 |
| 18 | 0.385 | 0.470 | 0.288 | - | - |
| 19 | −0.272 | −0.298 | - | - | - |
| 20 | −1.168 | - | - | - | - |
| 21 | −1.583 | - | - | −1.799 | - |
| 22 | −0.447 | - | - | - | - |
| Node | Z-28acc | Z-13acc | Z-8acc | Z-6acc | Z-4acc |
|---|---|---|---|---|---|
| 1 | 0.071 | - | - | - | - |
| 2 | −0.120 | - | - | −0.158 | - |
| 3 | 0.017 | - | - | - | - |
| 4 | −0.209 | −0.236 | - | - | - |
| 5 | 0.237 | 0.251 | 0.248 | - | - |
| 6 | 0.827 | 0.832 | 0.813 | 0.746 | 0.822 |
| 7 | 0.405 | 0.427 | 0.405 | - | - |
| 8 | −0.016 | 0.026 | - | - | - |
| 9 | −0.702 | - | - | - | - |
| 10 | −1.734 | - | - | −1.598 | - |
| 11 | −0.946 | - | - | - | - |
| 12 | −0.270 | - | - | - | - |
| 13 | −0.197 | - | - | −0.165 | - |
| 14 | 0.018 | - | - | - | - |
| 15 | 0.300 | 0.215 | - | - | - |
| 16 | 0.593 | 0.600 | 0.593 | - | - |
| 17 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 18 | 0.455 | 0.466 | 0.477 | - | - |
| 19 | −0.084 | −0.046 | - | - | - |
| 20 | −0.787 | - | - | - | - |
| 21 | −1.526 | - | - | −1.511 | - |
| 22 | −0.786 | - | - | - | - |
| Node | Z-28acc | Z-13acc | Z-8acc | Z-6acc | Z-4acc |
|---|---|---|---|---|---|
| 1 | 0.091 | - | - | - | - |
| 2 | −0.034 | - | - | −0.020 | - |
| 3 | 0.157 | - | - | - | - |
| 4 | −0.110 | −0.100 | - | - | - |
| 5 | 0.451 | 0.462 | 0.448 | - | - |
| 6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 7 | 0.491 | 0.489 | 0.511 | - | - |
| 8 | 0.121 | 0.138 | - | - | - |
| 9 | −0.293 | - | - | - | - |
| 10 | −0.528 | - | - | −0.301 | - |
| 11 | −0.154 | - | - | - | - |
| 12 | −0.108 | - | - | - | - |
| 13 | −0.109 | - | - | −0.105 | - |
| 14 | 0.056 | - | - | - | - |
| 15 | 0.240 | 0.263 | - | - | - |
| 16 | 0.605 | 0.590 | 0.596 | - | - |
| 17 | 0.844 | 0.803 | 0.842 | 0.788 | 0.803 |
| 18 | 0.408 | 0.394 | 0.415 | - | - |
| 19 | 0.041 | 0.068 | - | - | - |
| 20 | −0.247 | - | - | - | - |
| 21 | −0.386 | - | - | −0.162 | - |
| 22 | −0.142 | - | - | - | - |
| Node | Z-28acc | Z-13acc | Z-8acc | Z-6acc | Z-4acc |
|---|---|---|---|---|---|
| 1 | 0.093 | - | - | - | - |
| 2 | −0.217 | - | - | −0.229 | - |
| 3 | 0.176 | - | - | - | - |
| 4 | −0.055 | −0.088 | - | - | - |
| 5 | 0.618 | 0.418 | 0.382 | - | - |
| 6 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 |
| 7 | 0.999 | 0.616 | 0.612 | - | - |
| 8 | 1.362 | 0.493 | - | - | - |
| 9 | 2.016 | - | - | - | - |
| 10 | 3.539 | - | - | 3.358 | - |
| 11 | 1.952 | - | - | - | - |
| 12 | 0.129 | - | - | - | - |
| 13 | −0.146 | - | - | −0.188 | - |
| 14 | −0.059 | - | - | - | - |
| 15 | 0.093 | −0.068 | - | - | - |
| 16 | 0.349 | 0.393 | 0.408 | - | - |
| 17 | 0.058 | 0.445 | 0.476 | 0.128 | 0.470 |
| 18 | 0.288 | 0.318 | 0.328 | - | - |
| 19 | 0.774 | 0.336 | - | - | - |
| 20 | 1.638 | - | - | - | - |
| 21 | 2.677 | - | - | 2.501 | - |
| 22 | 1.484 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coviello, C.G.; Rizzo, F.; Sabbà, M.F. Optimization of the Number of Accelerometer Placements for Dynamic Identification of a Historical Masonry Bridge. Infrastructures 2025, 10, 281. https://doi.org/10.3390/infrastructures10110281
Coviello CG, Rizzo F, Sabbà MF. Optimization of the Number of Accelerometer Placements for Dynamic Identification of a Historical Masonry Bridge. Infrastructures. 2025; 10(11):281. https://doi.org/10.3390/infrastructures10110281
Chicago/Turabian StyleCoviello, Cristiano Giuseppe, Fabio Rizzo, and Maria Francesca Sabbà. 2025. "Optimization of the Number of Accelerometer Placements for Dynamic Identification of a Historical Masonry Bridge" Infrastructures 10, no. 11: 281. https://doi.org/10.3390/infrastructures10110281
APA StyleCoviello, C. G., Rizzo, F., & Sabbà, M. F. (2025). Optimization of the Number of Accelerometer Placements for Dynamic Identification of a Historical Masonry Bridge. Infrastructures, 10(11), 281. https://doi.org/10.3390/infrastructures10110281

