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Abstract: A research and development project has been conducted aiming to design and produce
ultra-thin concrete shells. In this paper, the first part of the project is described, consisting of an
innovative method for shape generation and the consequent production of reduced-scale models
of the selected geometries. First, the shape generation is explained, consisting of a geometrically
nonlinear analysis based on the Finite Element Method (FEM) to define the antifunicular of the shell’s
deadweight. Next, the scale model production is described, consisting of 3D printing, specifically
developed to evaluate the aesthetics and visual impact, as well as to study the aerodynamic behaviour
of the concrete shells in a wind tunnel. The goals and constraints of the method are identified and
a step-by-step guidelines presented, aiming to be used as a reference in future studies. The printed
geometry is validated by high-resolution assessment achieved by photogrammetry. The results are
compared with the geometry computed through geometric nonlinear finite-element-based analysis,
and no significant differences are recorded. The method is revealed to be an important tool for
automatic shape generation and building scale models of shells. The latter enables the performing
of wind tunnel tests to obtain pressure coefficients, essential for structural analysis of this type
of structures.

Keywords: free-form shells concrete; shape generation; 3D printing; scale models;
wind tunnel; photogrammetry

1. Introduction

The expression ‘shell structures with free shapes’ refers to curved structures of reduced thickness
that do not result from any mathematical expression, although exhibiting optimized structural
efficiency. The name has its origin in the procedure adopted to generate the shape of these shells,
which is based on the antifunicular of their deadweight, being therefore independent of geometric
concepts [1].

In these structures, with reduced thickness compared to the other dimensions, the best shape
leads only to internal forces of compression [2]. In this scope, the ‘free shape’ can be seen as a ‘natural
shape’ in the sense that it results from the deformation of a membrane (with tension stiffness only),
with the same geometry in plan view as the shell, loaded with the reverse deadweight of the latter.
Thus, the shape results only from the application of that action, without any direct human intervention.

The importance of ‘free shape’ projects and their potential applications results clearly from the
creation of the task-group ‘Free-Form Design’ of the International Association for Shell and Spatial
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Structures (IASS) [3]. However, free-form shells can imply a highly complex construction procedure
and thus require sophisticated form work, which represent a considerable share of the building
costs [4].

On the other hand, the interest in 3D printing technology applied to buildings and construction
has considerably increased in the last 20 years. As stressed by Tay et al. [5], for conventional
design/construction processes, 2D drawings and simple scale models seems to be enough.
However, free-form structures are much more demanding either in their design evaluation or in
the cumbersome formwork and skilled labour required to build them. Three-dimensional printing
technology has the capacity to satisfy such requirements, allowing the creation of highly customized
building components and enhancing complex and sophisticated design. The survey conducted by
Tay et al. [5], from 1997 to 2016, based on conference papers and journal articles with a direct relation to
3D printing in building construction applications, showed the development trends of research in this
area. After ‘printing techniques analysis’ and ‘material analysis’, ‘architectural design’ was the third
development trend, which highlights the potential of the 3D printing in the exploration of complex
structures. The direct relationship between the improvement of the printing technique and material
characteristics, and the ability to create unexpected structures is evidenced by this analysis. Still, it is
worthy to note that the keyword ‘concrete‘ only recently started appearing frequently in publications
due to this material’s increase in use for 3D printing. Probably, for that reason, printed concrete lacks
the presence of reinforcement and certified standards [6]. Sustainability concerns also guide material
research in 3D printing. The effect of adding short glass fibre (GF) to the geopolymer matrix for large
scale concrete printing applications [6] and the evaluation of the potential of fly-ash-based geopolymer
cement for large scale additive manufacturing of construction elements [7] are examples of the most
recent research in that trend.

Framed by these issues, a research project entitled ‘Design and Performance of Ultra-Thin Concrete
Shells‘ is in progress aiming to develop an innovative method to build and erect, without formwork,
this type of structure.

Herein, the first part of the above mentioned project is described, namely the shape generation
and the 3D-printing of a reduced-scale model. The latter is relevant since the study of the aerodynamic
behaviour of these structures has been identified as fundamental [8]. Therefore, a scale model is
required to measure all relevant parameters in the wind tunnel. This allows us to calibrate and validate
the numerical model, built using the commercial software ANSYS [9]—based on the Finite Element
Method (FEM), for further analysis.

The paper is organized into six sections. After this introductory section, the shape generation
method is described. Secondly, the requirements of the scale model for the aerodynamic studying wind
tunnel are listed. Associated advantages and constraints of the approach adopted are also identified.
Then, guidelines of the main procedures, concerning the different steps for shape generation and for the
production of the scale model, are presented. This starts from the geometry of the shell, follows to the
3D digital modelling and to the production of the final object, using different technologies, including
its instrumentation for the wind tunnel test. In Section 5, the validation of the printed geometry is
performed by photogrammetry. Finally, the main conclusions are reported and commented in the
last section.

2. Shape Generation Method and Project Assumptions

The stages of the project ‘Design and Performance of Ultra-Thin Concrete Shells’ go from the
shape generation to the erection of the shell, including the production of the scale model and prototype
needed at different stages. In this scope, shape generation follows a path completely different from
traditional design, according to which the shape is fully defined and controlled by the designer. On the
contrary, in the case of ultra-thin concrete shells, the shape results from a membrane deformation,
being indirectly determined through options assumed on key parameters, such as area, fixed points
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or supports, maximum height, and height of free edges [10,11]. These apply the action of their dead
weight to reveal the final shape of the shell.

The origin of the shell design was conditioned by assumptions in order to adapt their formal
complexity to the goal of the project. Free-form shell structures allow the covering of large spans
without intermediate supports. Spread over the void, these structures can define wide and continuous
spaces. In its basic essence, a shell is just a roof protecting a space. This capacity creates a high functional
flexibility, including the criteria of (i) extensibility, i.e., the possibility of expansion; (ii) convertibility,
i.e., the capacity of changing the internal organization; and (iii) versatility, i.e., the adaptability of the
space [12], which can accommodate a wide set of programs. This option benefits from a minimum
number of supports, releasing the shell as much as possible from the ground, and determining its
triangular shape.

The computational numerical model applied to generate free-form shell structures was developed
by Vizotto [10] for both the architectural and structural design of domes. The numerical methods
used are based on membrane theory, applying mathematical programming combined with FEM
to design roof structures. In the computational simulation, a flexible membrane is adopted, lying
from a horizontal plane in its initial configuration. The geometry is defined by both the contour and
location of the structure’s supports. By performing a geometrically nonlinear structural analysis,
assuming linear elastic material behaviour, the antifunicular of the shell’s deadweight is computed.
More specifically, the deadweight of the shell is applied in an inverted manner, i.e., bottom-up, and
the elastic membrane deforms, experiencing large displacements and large deformations through
a steady equilibrium configuration. Since the membrane can only be submitted to tensile stresses
(null bending stiffness is assumed), generated shapes can only be submitted to compression stresses
once the deadweight is applied. This enables the adoption of the same support conditions for the
shells. The method’s formulation, including the adopted constitutive relationship, finite element
definition, interpolation equations, strain components, potential strain energy, and loading and
boundary conditions, is described in detail by Vizotto [10].

For the current study, the weighting of the shell dimensions took into account the compatibility
of the following conditions: (i) its division into a minimum number of elements transportable on
a semi-trail; (ii) coverage of a large span, thus justifying the choice of this type of structures; and
(iii) assurance of the largest spatial extensibility. A membrane with a diameter of 25.0 m, in plan view,
and maximum height of 8.0 m satisfies those conditions and, compared to other options (e.g., height
of 5.0, 7.0, or 7.5 m), is the one that best meets the required spatial extensibility. In fact, this value
allows a vertical division of the span into two floors, simultaneously ensuring the largest area with
a minimum of 3.0 m height at the upper floor, as an administrative zone. The width of the supports was
also considered. Initially, three alternatives were tested: 0.8 m, 1.6 m and 2.5 m. The thinner support
option prevailed, with a width adjusted to 1.0 m, since it provides the shell with its lightest expression.
Figure 1 evidences some of the several iterations considered before the final shape was settled.
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The goal of the prefabrication and division of the shell into parts, and the absence of a predefined
occupation program, led the authors to consider the shell as a modular element. The ‘shell module’
concept allows expanding the covered area (circa 270 m2) using different combinations aiming at
reaching the diversity of uses. Thus, prefabrication of the shell and space-functional flexibility converge
in the genesis of the pilot-shell. Its configuration (an equilateral triangle in plan view) motivated the
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combinations shown in Figure 2. The shape of the shell, named H800N3, was conditioned by the
design options previously mentioned.
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3. Scale Model: Requirements, Constraints and Technologies

Dimensional analysis is a powerful tool for multiple domains of knowledge. In the study of
wind effects on scale models of structures, important aspects of dimensional analysis and scale factors
applicable to similar physically systems are presented by Pankhurst [13] for fluid dynamic problems.
The geometrically similar systems constitute the basis of the whole field of scale model testing in
physically similar systems. The scale model represents a geometrically similar shape to the prototype
by using concepts as geometrical scale factor, velocity scale factor, time scale factor, among others,
in physically similar systems [13].

According to Barlow et al. [14], the type and the corresponding construction of the model are
dictated by the purposes of the experiment, and the wind tunnel in which the experiment will
be conducted with suitable accuracy, accessibility and maintenance. The choice of construction
methods and materials to be used is very important and depends on the scale model experiments.
The construction methods can vary from manual to Computer-Aided Design and Computer-Aided
Manufacturing systems (CAD/CAM). Several factors can be taking into account such as dimensions,
materials, roughness of the surfaces, accuracy required, dimensional tolerances, and possible
interferences on the experiments. The selection of materials can be in accordance with the speed
criteria (wind velocity), rigidity of the model, costs of the experiment, and time of execution. In general,
models are made with wood laminates, metal (steel, aluminum), plastics, epoxy resins, fibreglass,
carbon filter or Styrofoam.

In the present case, the planned aerodynamic analysis in a wind tunnel imposes clear and simple
requirements: (1) rigorous reproduction of the geometry of the shape; (2) smoothing surface(s) to be
tested; and (3) positioning of the pressure sensors on the surface of the model. The analysis includes
testing both (internal and external) surfaces of the shell. The optimization of recourses, short deadlines
and the formal complexity of the model led to adopting pressure sensors that could be easily adapted
to the surfaces. The specificity of shape generation is directly related to the production procedures of
the model for aerodynamic tests, mainly if the scale of the model is subjected to problems associated
with the ability to reproduce the curves of the shape in both the soffit and the extrados of the model.
The restraints for the production are related to the scale definition, namely, the appropriate thickness
and, particularly, the control of the shape in the transition from the virtual to the physical object.

3.1. Scale

The adopted scale was defined according to the model’s objective. Lower reduction scales are
obviously favourable to more detailed analyses, but it was decided to take other variables into account,
allowing to reach a balanced solution in terms of scale, deadlines, and production costs, and aiming
at ensuring conclusive and accurate results. The 1:50 scale allows the reproduction of a distinctness
geometry of the curves of the shape, that is compatible with the size of the wind tunnel where tests
were planned to be performed, i.e., a closed circuit aerodynamic tunnel with a testing chamber of
1.2 m × 1.0 m × 3.0 m.
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3.2. Thickness

The thickness of the shell in the scale model can be considered a less demanding requirement
for the wind tunnel tests, since it does not interfere with the pressure measurements at the model’s
surface. In fact, it is the geometry of both the inner and outer surfaces that plays an important role
in this scope. It should also be mentioned that, in the real structure, the thickness is supposed to be
circa 100 mm, leading to 2 mm thickness for a 1:50 scale model. However, if this value was adopted,
the production of the scale model would show several difficulties due to its fragility—a vast but thin
surface—having at the same time to exhibit robustness in order to stand the wind tests and all the
manipulation typical of laboratorial environments. Therefore, to avoid the drawbacks referred to and
without compromising the geometry, it was decided to increase the thickness of the scale model to
4 mm, corresponding to 200 mm in real scale.

3.3. Shape Control

In a free shape there is no geometrical or mathematical rule allowing its reconstitution.
This was the principal challenge of the model’s production, namely the control of its shape. In this
sense, the CAD/CAM [15] technologies allow us to ensure a ‘natural’ migration of data from the
computational generation of the shape, including model analysis in a virtual environment, to scale
model production using digital means. The flowchart in Figure 3 aims at synthesizing the main
stages and corresponding outputs of the global process, which evolved from the shell conception to
the production of the corresponding scale model. This sequence ensures that the geometry initially
defined (in the shape generation process) is present in the physical model. Instant 1 in Figure 3
illustrates the transition from conceptual to virtual: through successive iterations—depending on the
project’s options—the shape was continuously modelled. The most sensitive moment is precisely the
transition from the virtual to the physical environment, Instant 2 in Figure 3, since the integrity of
the free shape geometry has to be faithfully ensured in the physical object. Normally, this transition
is guaranteed by conversion of the CAD file (of the 3D model) into a standard triangulation or
stereolithography language (STL) file, performed from the CAD environment itself [16]. The STL
file defines, by triangulation, the coordinates of the object surfaces whose edges must be perfectly
coincident. The software of the machines used in digital production generally processes this file type.
Although this type of conversion process has possible error associated (a slight deviation between
edges is enough to compromise the printing), it is generally adopted since it presents some advantages,
such as being a user-friendly method to represent 3D data and, for certain shapes, it allows obtaining
small files, thus simplifying the data transfer [17]. The use of traditional or manual methods to build
a shell 3D model would imply a bigger effort, in time and resources (including human ones), to ensure
the surface’s shape control. The gap between the free-form shell generation phase and the reduced
model phase would not be so ‘naturally’ transposed.Infrastructures 2018, 3, x FOR PEER REVIEW  6 of 16 
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3.4. 3D Printing

In digital production methods, the mechanical devices are computationally controlled, which is
the case for 3D printing [18]. The 3D printing allows obtaining a facsimile of the virtual model [19],
independently of the complexity of the shape. For this reason, this was the production technology
selected to execute the scale model. It is an adding-based production process: after the software of the
printer translates the STL model into 2D layers, the head of the latter starts printing these, one after the
other, by dropping the material, e.g., Acrylonitrile Butadiene Styrene (ABS), PolyLactic Acid (PLA),
polyamide, epoxy resin, silver, or steel, on a tray, until the object is complete. A clear flowchart of the
process by Buswell et al. can be found in [19]. The technology of 3D printing is relevant for different
domains, e.g., medicine, aeronautics, and chemistry, among others. In the context of civil engineering
and architecture it has been used to explore the formal freedom it allows, including the production of
objects in real scale [20–24].

3.5. Costs

The 3D printers for domestic use (or desktop) have generalized the access to this technology.
Several researchers and computer programmers have developed 3D open-source printers with high
socio-economic impact [25], making it possible to easily print daily use objects. The project 3D
Hubs [26] refers to a 3D printers network that connects users of these printers worldwide. The Hubs
community offers 3D printing services, being the budget function of the STL file. Currently, costs
are approximately one Euro per gram of material. In the case of reduced models of complex forms
such as shells, 3D printing allows obtaining geometrically accurate models with a low cost. The only
disadvantage is the possible constraint actually still imposed by the printing working volume of the
3D printers. Depending on the scale of the models, its printing in several parts could be necessary.
In this case, the time and costs of the assembly of the parts must be considered.

4. Scale Models: Guidelines

The production process of the scale model was organized according to eight consecutive steps.
The transition between shape generation and the execution of the scale model of the shell, using the
3D printing technology, implies the previous production of the three-dimensional model. The selection
of the most adequate CAD environment in this context is conditioned by the nature of the curved
geometry, continuous and smooth, of the object.

Among the graphic computation software available, the one with the commercial name
Rhinoceros® produced by Robert McNeel & Associates [27] was selected. This software is based
on the non-uniform rational basis spline (NURBS) geometry, a mathematical model currently used
in graphic computation software to represent both curves and surfaces with accuracy and flexibility.
It allows the description of any type of shape, from the most simple (2D curves) to the most organic
and complex, such as three-dimensional free shapes [28].

4.1. Step 1: Input of the Point Cloud to the CAD Environment

The software for shape generation provides an output list of the coordinates of an adequate
number of points to describe the shell with the required detail for realistic modelling. The .txt file
imported to the Rhinoceros® environment allows the visualization of the point cloud that represents
the object (Figure 4(1)). Using the plug-in Resurf (function ‘PointCloudToMesh’), a regular mesh is
generated, i.e., a surface discretized in triangular faces, creating a surface of curves, which is smoother
the higher the number of points (Figure 4(2)). The solid is generated from this mesh. The Rhinoceros®

software operates with mesh objects. A solid is interpreted as a closed volume, made of meshes, and is
called a ‘solid mesh’. The mesh is generated starting from the mid-plan mesh by adding 2 mm layers
each time (Figure 4(3)).
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4.2. Step 2: Preparation of the Three-Dimensional Model for Printing

ANSYS [9], or other commercial software for structural analysis, allows checking that a free-form
shell only exhibits compression stresses when submitted to its deadweight. Moreover, the directions of
the principal stresses are either parallel or normal to the symmetry axes. Taking this into account, the
shell model was divided into the lowest number of modules, using symmetry axes whenever possible,
and bearing in mind the 3D printer capacity.

When the dimensions of the scale model (e.g., 1:50) do not make it possible to print it as a single
piece, it has to be subdivided into modules and only then can each of these be printed (Figure 5(1,2)).
Usually the 3D printers, both industrial and domestic, have a limited printing volume. In the study
conducted, and therefore in the present guidelines, a desktop printer (Replicator 2X, by MakerBot
Industries) is considered with a printing volume of 240 mm × 150 mm × 150 mm (Figure 5(3)).
The virtual model is subdivided into the smallest number of modules possible, nine in the example
(Figure 5(1,2)), which have to be positioned for printing, as illustrated in Figure 5(3,4).
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volume of Replicator 2X (MakerBot Industries) for validation.

The following possibilities are highlighted: (i) printing more than one piece simultaneously;
and (ii) positioning the pieces inside the printing volume with a certain degree of freedom, e.g.,
printing the pieces almost vertically (Figure 5(3,4)). When the slope is lower, e.g., 45◦, the piece can be
sustained through a small vertical support that can be added to the model to be printed and easily
removed afterwards.

4.3. Step 3: Model Printing

The vertical positioning of the pieces to be printed presents the advantage, compared to horizontal
or near-horizontal positioning, of saving the support filament. Figure 6(1) presents, as an example,
the printing of the largest piece of the scale model used (see Figure 5(2,3) for part 1). The support
filaments used are the minimum and necessary to avoid the collapse of the model parts during the
printing process.

This criterion of positioning the pieces to be printed was compared with a different printing
process. The 1:50 scale model was produced using an industrial printer (Dimension SST760,
Stratasys) with a higher printing volume: 203 mm × 203 mm × 305 mm (Figure 6(2,3)). In this
alternative procedure, the model was divided only into three pieces, printed with a thickness of 2 mm
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(corresponding to 0.10 m in real scale). The pieces were print reversed, relative to their normal position,
ensuring this way the higher stability of the shape during printing. The supports (brown colour
thread) are automatically determined by the printers’ software. Both printers use the fused deposition
modelling (FDM) [16] printing technique, and use ABS threads for model printing. The thermal
isolation of the industrial printer ensures the stability of the shape avoiding warp phenomena, which
are particularly relevant in the case of long and thin pieces, as in the case of this second model printing
(Figure 6(2,3)).

Infrastructures 2018, 3, x FOR PEER REVIEW  8 of 16 

4.3. Step 3: Model Printing 

The vertical positioning of the pieces to be printed presents the advantage, compared to 
horizontal or near-horizontal positioning, of saving the support filament. Figure 6(1) presents, as an 
example, the printing of the largest piece of the scale model used (see Figure 5(2,3) for part 1). The 
support filaments used are the minimum and necessary to avoid the collapse of the model parts 
during the printing process. 

This criterion of positioning the pieces to be printed was compared with a different printing 
process. The 1:50 scale model was produced using an industrial printer (Dimension SST760, 
Stratasys) with a higher printing volume: 203 mm × 203 mm × 305 mm (Figure 6(2,3)). In this 
alternative procedure, the model was divided only into three pieces, printed with a thickness of 2 
mm (corresponding to 0.10 m in real scale). The pieces were print reversed, relative to their normal 
position, ensuring this way the higher stability of the shape during printing. The supports (brown 
colour thread) are automatically determined by the printers’ software. Both printers use the fused 
deposition modelling (FDM) [16] printing technique, and use ABS threads for model printing. The 
thermal isolation of the industrial printer ensures the stability of the shape avoiding warp 
phenomena, which are particularly relevant in the case of long and thin pieces, as in the case of this 
second model printing (Figure 6(2,3)). 

 
(1) (2) (3) 

Figure 6. 3D printing: (1) printing on a Replicator 2X (MakerBot Industries); (2) piece printed on a 
Dimension SST760 (Stratasys); (3) final piece corresponding to one third of the shell with 2 mm 
thickness. 

The resolution is an important printing definition. Basically, the resolution concept in 3D 
printing refers to the thickness and density of the extruded filament layers. Buswel et al. [19] have 
explored the meaning of the term ‘resolution’ applied to 3D printing, as well as the relation between 
the representation of the virtual model and the resolution of the physical object. Likewise, for 2D 
printing the resolution and printing time are directly related: the higher the resolution, the higher 
the printing time. For the Replicator 2X, the standard resolution (0.2 mm by layer) was selected in 
the study described and the same is proposed in these guidelines. For this example, the printing 
times range between 9 and 12 h, depending on the dimensions of the piece. The total printing time 
was estimated in 73 h. In the case of the Dimension SST760, each piece, printed in the highest 
resolution mode (0.254 mm by layer), consumed 15 h. The total printing time of the model was 
approximately 45 h. 

4.4. Step 4: Preparation of Moulds 

The subdivision of the model implies the definition of procedures for the reconstitution of the 
global shape. This goal is reachable by conceiving moulds with the purpose of enabling the 
connection of all the pieces in the right position. The moulds (mould and sub-mould) correspond to 
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on a Dimension SST760 (Stratasys); (3) final piece corresponding to one third of the shell with
2 mm thickness.

The resolution is an important printing definition. Basically, the resolution concept in 3D printing
refers to the thickness and density of the extruded filament layers. Buswel et al. [19] have explored
the meaning of the term ‘resolution’ applied to 3D printing, as well as the relation between the
representation of the virtual model and the resolution of the physical object. Likewise, for 2D printing
the resolution and printing time are directly related: the higher the resolution, the higher the printing
time. For the Replicator 2X, the standard resolution (0.2 mm by layer) was selected in the study
described and the same is proposed in these guidelines. For this example, the printing times range
between 9 and 12 h, depending on the dimensions of the piece. The total printing time was estimated
in 73 h. In the case of the Dimension SST760, each piece, printed in the highest resolution mode
(0.254 mm by layer), consumed 15 h. The total printing time of the model was approximately 45 h.

4.4. Step 4: Preparation of Moulds

The subdivision of the model implies the definition of procedures for the reconstitution of the
global shape. This goal is reachable by conceiving moulds with the purpose of enabling the connection
of all the pieces in the right position. The moulds (mould and sub-mould) correspond to the extrados
of the object, the easiest way of positioning the pieces and rebuilding the profiles of the subdivision
lines (Figure 7).

In the study, the profiles for the moulds were designed based on the 3D model. A previous
mould had been produced for validation, using corrugated cardboard and foam board (Figure 7(1)).
The final moulds were produced in Medium-Density Fiberboard (MDF) plates with a 3 mm, laser
cut (Figure 7(2)) to ensure the maximum precision in the resulting profiles. The option for lower
thicknesses has the advantage of reducing the cutting time. In the study conducted, the average time
estimated based on the power of the adopted equipment (1100 W) was circa of 15 min per plate. In the
joint zones, where it is advisable to increase the support area of the pieces, 3 mm profiles were added.
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Cutting several profiles also allowed a better adjustment of the mould to the curvilinear shape of the
pieces. The profiles were assembled and the connections were further consolidated through screwing
and gluing.
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Figure 7. Preparation of moulds: (1) cardboard mould to serve as test; (2) MDF laser cut pieces with
3 mm; (3) sub-mould in MDF with 3 mm to help building one third of the shell; and (4) complete mould
in MDF with 3 mm.

4.5. Step 5: Assembly of Pieces

The phased connection of the pieces allows the easy correction of eventual faults. First, using the
sub-mould, all parts of the same third of the object are connected (Figure 8(1,2)); next, using the mould,
the connection of the three thirds allows building the complete object (Figure 8(3)). The adopted
bonding agent is fundamental in this process. It must allow the reversibility of the linking process
if needed. In the study herein presented a transparent, acrylic-urethane-based liquid glue was used.
The thin end of the glue container made it possible to control the liquid dosage and apply glue points
to the pieces’ joints. With the help of an Ultra-Violet (UV) Light-Emitting Diode (LED), the glue is
dried easily (Figure 8(2)). The joints obtained are robust enough to immediately check the achieved
shape (Figure 8(4)). If the result is unsatisfactory, it is possible to easily break the glue points, remove
the waste, and reinitiate the procedure.
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4.6. Step 6: Model Strengthening, Connections and Pre-Finishing

After checking the shape correction, it is necessary to strengthen the model. The contact area
of the joints, due to their reduced thickness, was insufficient to ensure the needed strength. Thus,
a fibreglass fabric was applied to its soffit (300 gr/m2) providing the object with the required robustness
(Figure 9(1)). The pre-accelerated polyester resin, used to apply the fibreglass fabric, also filled in and
definitely consolidated the joints. The average drying time was circa half an hour with an average
ambient temperature of approximately 22 ◦C.

The points where the pressure sensors are applied need to be located in the pre-finishing of the
object, requiring both mechanical and manual sanding of the surfaces, and also pre-painting with
acrylic coating. The support of the pressure sensors, being only one third of the instrumented shell, was
bonded and thus stayed free of obstruction. The interfaces for fastening were executed in aluminum
flat bar of 2 mm (Figure 9(3)). The final object was adequately resistant for the desired end (Figure 9(4)).
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data-logger only demands a free end of 5 mm. Drilling was performed (Figure 11(1,2)), making it 
possible to fix the PVC pipes by pressing (Figure 11(3)) and adjusting them easily to each of the 
(internal or external) surfaces (Figure 11(4)). The painting with the coating resulted in a polished 
final finishing of the surfaces (Figure 11(2)) required for the wind tunnel tests. In Figure 12, aspects 
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4.7. Step 7: Identification of Coordinates of Pressure Sensors

The position of the pressure sensors was manually marked (119 points) in the aerodynamic
sector of the National Laboratory of Civil Engineering (LNEC). Tests in a wind tunnel demand
the identification of the points’ coordinates. This procedure involves: (i) photographing the scale
model according to a plan view (Figure 10(1)); (ii) importing this image to Rhinoceros®; and
(iii) superimposing it on the virtual point cloud, also in plan view (Figure 10(2,3)). The coincident
points were identified and marked on the virtual point cloud. The sub-cloud of points is shown
in Figure 10(4) (red points isolated in a single layer). The script RhinoToExcel.rvb, available online,
and imported to the Rhinoceros® environment, allowed the obtaining of the list of their coordinates.
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Figure 10. Points for location of pressure sensors: (1) marking points on the scale model; (2) image
superimposed to the virtual points cloud; (3) marking points on the virtual model; (4) sub-cloud of
points—red points.

4.8. Step 8: Drilling, (Model) Painting, Installation of Pressure Sensors

For the pressure sensors, Poly Vinyl Chloride (PVC) pipes with a 2 mm exterior diameter were
adopted. A length of 10 mm was enough since the assembly to the silicone pipes that connect to
the data-logger only demands a free end of 5 mm. Drilling was performed (Figure 11(1,2)), making
it possible to fix the PVC pipes by pressing (Figure 11(3)) and adjusting them easily to each of the
(internal or external) surfaces (Figure 11(4)). The painting with the coating resulted in a polished final
finishing of the surfaces (Figure 11(2)) required for the wind tunnel tests. In Figure 12, aspects of the
concluded scale model are documented. The pressure sensors were manually numbered at the outer
surface of the model (Figure 12(2)). In Figure 12(4) an instant during the preliminary tests in the closed
circuit aerodynamic tunnel at LNEC is illustrated.Infrastructures 2018, 3, x FOR PEER REVIEW  11 of 16 
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Besides the characteristics associated with their structural behaviour, free-form shells hold
potential values of a plastic nature arising from their ‘natural’ geometry. The second model referred to
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In the next step, 3D printing technology was applied to build a scale model of the shell from
its numerically generated free shape. The accuracy of the process was evaluated using terrestrial
photogrammetry. A multi-station approach [29], aiming at the full reconstruction of the scale model,
was applied. The adopted procedure required high precision circular targets to be glued to the upper
surface of the scale model (Figure 15(1)). This enabled referencing the 384 high precision targets in all
images processed (Figure 15(2)). According to the acquisition protocol, multiple convergent shots of
eight images around the object were sequentially obtained.

Infrastructures 2018, 3, x FOR PEER REVIEW  12 of 16 

 
Figure 14. Free-form shell generated using a geometrically nonlinear analysis [10]. 

In the next step, 3D printing technology was applied to build a scale model of the shell from its 
numerically generated free shape. The accuracy of the process was evaluated using terrestrial 
photogrammetry. A multi-station approach [29], aiming at the full reconstruction of the scale model, 
was applied. The adopted procedure required high precision circular targets to be glued to the 
upper surface of the scale model (Figure 15(1)). This enabled referencing the 384 high precision 
targets in all images processed (Figure 15(2)). According to the acquisition protocol, multiple 
convergent shots of eight images around the object were sequentially obtained. 

(1) (2)

Figure 15. Photogrammetric procedure: (1) scale model; (2) computed 3D coordinates. 

The comparison between the numerical (Figure 14) and the physical (Figure 15) models was 
performed at the vertical symmetry planes that cross the diagonals of the shell. This ensured that 
exactly the same cross sections of the shell were considered in each model. Nonetheless, the 3D 
coordinates computed by both methods refer to different points. For this reason, it was not possible 
to carry out direct point-to-point checking. Instead, three cross-sections of the models, defined by the 
diagonal planes MGH, JGL, and IGK (Figure 16), were considered to perform the comparison. The 
geometry of each cross-section was defined through interpolation curves surveyed by Mathematica 
software [30]. For that propose, the nodes in the mesh for the numerical model, and the high 
precision targets for the photogrammetric model, were considered. 

Figure 15. Photogrammetric procedure: (1) scale model; (2) computed 3D coordinates.

The comparison between the numerical (Figure 14) and the physical (Figure 15) models was
performed at the vertical symmetry planes that cross the diagonals of the shell. This ensured that
exactly the same cross sections of the shell were considered in each model. Nonetheless, the 3D
coordinates computed by both methods refer to different points. For this reason, it was not possible
to carry out direct point-to-point checking. Instead, three cross-sections of the models, defined by
the diagonal planes MGH, JGL, and IGK (Figure 16), were considered to perform the comparison.
The geometry of each cross-section was defined through interpolation curves surveyed by Mathematica
software [30]. For that propose, the nodes in the mesh for the numerical model, and the high precision
targets for the photogrammetric model, were considered.Infrastructures 2018, 3, x FOR PEER REVIEW  13 of 16 
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The geometric configuration obtained for each of the three diagonal cross sections of the shell are
presented in Figures 17–19. It can be seen that the geometrycorresponding to the numerical model and
to the scale model do not present significant differences.
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The almost perfect geometric coincidence demonstrates the viability and reliability of the method
herein proposed for generating a 3D scale model of free shape shells numerically generated according
to the procedure described in [10]. It represents an important tool for studying the aerodynamic
behaviour of shells in the wind tunnel, namely to obtain pressure coefficients, aiming at adequately
performing the calibration and validation of the numerical models.

6. Conclusions

An innovative method for the automatic shape generation and production of reduced-scale
models of ultra-thin concrete shells, built with a geometrically nonlinear finite-element-based software
and 3D-printing, was presented herein. Guidelines for the method have been defined, aiming to serve
as reference in future research studies.

The means of digital production ensured reliable data transfer from the virtual to the physical
environment, respecting the formal integrity of this type of non-conventional object. In this scope, it can
be stated that the 3D printing technology constitutes the adequate production process since it allows
the faithful reproduction of the model. Nevertheless, the volumetric limitation of the operational
capacity of such equipment makes the subdivision of the model inevitable. The use of complementary
technologies and workmanship means allowing rigorous rebuilding of the shape of the shell.

As a final conclusion, it can be stated that the innovative method herein presented, developed
to generate the shape of shells and produce scale models for wind tunnel testing, is a powerful tool,
having as limitation only the current constraints of the 3D printing technology. In addition, with the
envisaged developments of this technology, the method is expected to become in the near future the
most adequate for the production of scale models as well as for other applications.

The data collected from this experiment (and the development of more models) will support
a systematic method of production of reduced models of free-form shells for wind tunnel tests.
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