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Abstract: Most recent tunnel designs rely on more thorough analyses of the intricate rock interactions.
The three principal techniques for excavating rock tunneling are drill-and-blast for complete or
partial cross-sections, TBM only for circular cross-sections with full faces, and road header for small
portions. Tunnel-boring machines (TBM) are being utilized to excavate an increasing number of
tunnels. Newer studies have demonstrated that subterranean structures such as tunnels produce
a variety of consequences during and after ground shaking, challenging the long-held belief that
they are among the most earthquake-resistant structures. Consequently, engineering assessment has
become crucial for these unique structures from both the geotechnical and structural engineering
standpoints. The designer should evaluate the underground structure’s safety to ensure it can
sustain various applied loads, considering both seismic loads and temporary and permanent static
loads. This paper investigates how adding elastic, soft material between a circular tunnel and the
surrounding rock affects seismic response. To conduct the study, Midas/GTS-NX was used to model
the TBM tunnel and the nearby rock using the finite element (F.E.) method to simulate the soil–tunnel
interactions. A time–history analysis of the El Centro (1940) earthquake was used to calculated the
stresses accumulated in the tunnels during seismic episodes. Peak ground accelerations of 0.10–0.30 g,
relative to the tunnel axis, were used for excitation. The analysis utilized a time step of 0.02 s, and
the duration of the seismic event was set at 10 s. Numerical models were developed to represent
tunnels passing through rock, with the traditional grout pea gravel vs. isolation layer. A parametric
study determined how isolation material characteristics like shear modulus, Poisson’s ratio, and
unit weight affect tunnel-induced stresses. In the meantime, this paper details the effects of various
seismic isolation materials, such as geofoam, foam concrete, and silicon-based isolation material, to
improve protection against seismic shaking. The analysis’s findings are discussed, and how seismic
isolation affects these important structures’ performance and safety requirements is explained.

Keywords: seismic performance; rock; soil–structure interaction; pea gravel; isolation materials

1. Introduction

Tunnel construction is an essential part of urban infrastructure. Recent seismic data
show that tunnels are vulnerable to long-term seismic damage [1–9]. Tunnel damage
is determined by the surrounding soil, the tunnel’s submerged depth, the earthquake
magnitude, and the groundwater table (G.W.T.) conditions. Tunnels often behave differently
during seismic activity depending on the kind of soil in which they are constructed. While
tunnels constructed in solid rock are far less likely to sustain substantial damage, tunnels
constructed in soft soil are significantly more likely to sustain damage.

Shallower tunnels are more likely to undergo deformation when subjected to seismic
waves than deeper tunnels [10–20]. Scholars have carried out numerical and experimental
investigations into the seismic activity of various components of underground structures.
Utilizing a Cambridge University centrifuge facility, the influence of circular cross-section
tunnels on the nearby ground’s acceleration response was researched by Lanzano et al. [21].
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In their trials, they looked at the impacts of tunnel depth and soil density. Tunnel seismic
response was defined by Owen and Scholl [22] via tunnel deformation modes, including
ovaling, racking, curvature, and axial deformation. Wang [23,24] and Penzien [25] intro-
duced closed-form analytical techniques to determine different straining actions produced
in the lining layer as well as to evaluate the effects of ovalization and racking. Through
a series of centrifuge model experiments, Cilingir and Madabhushi [26–28] investigated
tunnels’ seismic behavior in dry sand in order to ascertain the effects of entry soil depth
and motion. Several analytical [1,27,28], numerical [29–33], and experimental [34–37] stud-
ies have shed light on tunnel seismic behavior. According to this study, tunnel damage
resulting from earthquakes is expensive and challenging to repair; therefore, adequate
disaster-avoidance strategies must be incorporated into the seismic analyses of tunnels.

Foam concrete has the capability to conduct seismic isolation for tunnels due to its
critical energy-absorption capacity, as investigated by Ma et al. [38]. This research aimed to
investigate the thermal insulation effects of the foamed concrete layer within the rock tunnel
and its mechanical properties. The effects of density, confining stress, and strain rate on
the mechanical characteristics of foamed concrete were investigated through experiments.
Triaxial and uniaxial compression tests were conducted. The effects of concrete density
and normal stress on the non-linear behavior of the foamed concrete layer–lining interface
were studied using a direct shear test. The results of the tests indicated that the concrete’s
density substantially influences the foamed concrete’s mechanical properties. Furthermore,
the volumetric compressibility and dependency on the strain rate of foamed concrete are
noteworthy characteristics.

The isolation layer used against seismic effects is one method that alleviates soil
restrictions and decreases structural distortions resulting from seismic loadings. However,
this unique technology is not well acknowledged in subterranean structures in soft ground.
When investigating the effects of foamed concrete on the lining of a tunnel in rocky ground
as a seismic isolation layer, Li and Chen [39] applied an F.E. technique to determine the
results of their investigation. In addition, investigations were conducted into the layer’s
density and thickness and the interface’s shear stiffness and residual friction coefficient.
It was found that a foamed concrete layer characterized by a reduced shear stiffness or
residual friction coefficient, coupled with a high thickness and low density, effectively
enhanced seismic isolation.

Many scholars [40–47] have examined the seismic isolation effect of a layer of foamed
concrete on rocky soil using a 3D F.E. model. Their findings have been published in the
journal Earthquake Engineering. The tunnel lining’s behavior relative to the rock deformation
was found to be lessened due to the shear deformation of the layer of foamed concrete,
which took up the shear force that moved from the surrounding rock to the tunnel’s body.
EPS geofoam is a lightweight yet durable material made of expanded polystyrene via a
process known as polymerization. Its closed-cell structure makes it resistant to water and
decomposition, with virtually no need for maintenance.

Utilizing geofoam as a layer of isolation between the tunnel liner and the rock [48–51]
constructed an experimental structure. Dynamic ground pressure was lowered by 70% to
90% in the seismic isolation layer compared to a structure without one. Tunnels constructed
in compacted rock endured less damage than those constructed in malleable soil [13,52–55].
In contrast to surface structures, tunnel dynamics are predominantly governed by defor-
mations of the adjacent soil as opposed to inherent vibration properties. Consequently, a
comprehensive investigation is required to determine the impact of a soft soil isolation
layer on a tunnel’s seismic response.

Many researchers [56–59] have tried to evaluate the possibility of using asphalt and
cement (A-C) materials as a seismic isolation layer while backfilling grouting shield tunnels.
In this research, experimental procedures that were both standardized and comparative
were carried out in order to evaluate the grouting characteristics of A-C materials. The
trials’ conclusions indicated that the fluidity and consistency of A-C materials, i.e., the
changes in cement content brought about by increasing cement content, are significant. As
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the concentration of cement increased, so did the ultimate compressive strength; therefore,
it was advised to use a mass ratio of 50% cement to 50% asphalt for the seismic isolation
layer. The study focused on a planned shield tunnel to cross a hard–soft stratum. The
tunnel lining’s seismic response was evaluated using numerical simulations at different
points along the reinforced A-C seismic isolation layer. According to the computation
findings, the tunnel lining was hard–soft. In close proximity to the stratum junction, the
A-C seismic isolation layer was found to considerably reduce the maximum main stress
of the lining. Despite this, the strata intersection remained vulnerable to seismic damage.
For the shield tunnel under consideration, the A-C isolation layer’s realistic reinforced
length was three times the tunnel diameter measured from the intersection of the strata on
all sides.

2. Rock Tunneling

The three principal excavation techniques used in rock tunneling are drill-and-blast
for any cross-section, TBM for only circular cross-sections, and road header for partial
face progress, any cross-section, or full-face for small sections. The cost of TBM is more
than that of drill-and-blast and road header by an approximate range between 20% and
35% per kilometer, inclusive of all design, construction, and material costs associated with
tunneling according to the geology, the tunnel diameter, and regions [60]. These approaches
are often employed separately but can be used in tandem. The deformability or stiffness
of the support materials, the degree of bonding between the support and the rock mass,
and the installation time all influence the support materials’ structural behavior. Rock
reinforcement uses rock bolts, spiling or foreboding, pre-injection, steel ring beams with
or without lagging, inverted segments, shotcrete, precast concrete segmental liner, and
other ground-support elements used in rock tunneling. Significant breakthroughs in TBM
technology and related sectors for rock tunneling have occurred in recent years. As a result,
TBM technology can start and finish projects on time, even under challenging conditions.
The shielded hard rock TBM’s fundamental idea is taken from its use in soil. The excavation
rate by D and B is 3–9 m/day, but by TBM, it is 15–50 m/day [61].

The primary distinction lies in the cutting instruments employed and fixed to the
cutter head, even with the secondary requirement for facial support. The cutter head is
fitted with disc cutters that roll in concentric tracks and are pressed against the face of the
hard rock. They release chips from the tunnel face as the cutter head rotates, achieving a
steady advance rate throughout the “boring” process (Figure 1).
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Grouted pea gravel is used in shielded tunnel-boring machine (TBM) tunnel construc-
tion to fill spaces between segment rings and surrounding rock. As a connecting layer, this
filler layer significantly impairs the segment ring’s self-sustenance. The backfilling layer
facilitates the load transfer between the lining and the rock mass; the model analyzes and
represents the subsequent interaction. Dry mortar is utilized to fill the space at the invert of
a tunnel dug in “hard rock” to support the ring. Following the injection of cement grout,
pea gravel is applied along the remaining surface. In the context of spalling, it is of the
utmost importance to adequately fill this void, which may become even more substantial
due to the notches caused by stress. It is postulated that the mortar-injected pea gravel has
an elastic modulus of 1.00 GPa. Through the shield tail, a grout annulus is injected using a
mortar that hardens incredibly quickly, while the shield advances concurrently (Figure 2).
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2.1. Seismic Response of Rock

Rock is affected by seismic waves as they pass through it. Primary waves oscillate
parallel to the direction of motion of the wave. They are sometimes referred to as compres-
sion waves or longitudinal waves. Primary waves frequently arrive first because they go
through the crust faster, which is how they received their name. They do not cause much
damage because they arrive from below and make structures move vertically.

The secondary waves, also known as S-waves, emerge after some time, usually a few
seconds, although this can change. These waves are transverse, meaning their displacement
is perpendicular to the wave’s direction of motion, which causes the ground to tremble.
Since structures are significantly weaker during this oscillation, these waves are primarily
responsible for most damage and the fatalities and injuries brought on by structure collapse.
Figure 3 shows the direction of the body waves produced by earthquakes.
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Research on the relationship between shaking and distance has revealed that waves
lose energy as they travel. Depending on the kind of rock they are passing through, they
can lose energy at different rates. For example, extremely solid granites are better at
transmitting energy than the broken-up rocks found in fault zones. It almost seems the
waves are losing more energy—at exceptionally high frequency—as they pass through the
broken rocks because they move further.

Hard rocks allow seismic waves to propagate faster than weaker sediments and rocks.
As the energy builds up, the waves flow from deeper, harder rocks to shallower, softer
rocks, slowing down and increasing amplitude. The wave size increases with the softer
rock or soil beneath a site. Ground motion is amplified on softer soils. Elastic rebound is
when the rock returns to its original shape. The asperities stop rocks from slipping on each
side of an active fault. The rock is distorted by stress until the asperities fracture, releasing
the tension and allowing it to return to its natural form. Three stages of deformation occur
in a rock when it is subjected to increasing stress, as shown in Figures 4 and 5.
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2.2. Seismic Isolation of Rock Tunneling

Numerous strategies exist to lower the stresses that ground deformation causes in
tunnels. One method is adding an isolating substance between the tunnel and the sur-
rounding rock. Because of their high energy-absorption capacity, certain materials can be
used to isolate rock tunnels from seismic activity. The surrounding earth’s stiffness must
be taken seriously compared to the tunnel lining to decrease stress concentrations in the
tunnel. Added tunnel isolation materials and adjusted liner stiffness make it stronger and
more ductile.

A flexible seismic isolation grout protects a tunnel from surrounding ground defor-
mations. It reduces internal stresses by an approximate range of 40%to 60% and more
when applied to the outer border of the tunnel [61]. The same construction methods used
to backfill grout into the tail vacuum also apply with shield-driving tunnels or injecting
material from within the tunnel, as seen in Figure 6. Materials for seismic isolation suitable
for underground construction must serve as backfill materials.
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As shown in the following expressions, the stiffness of the isolation layer, which
is proportional to the shear modulus (G) and Poisson’s ratio (v) in the longitudinal and
transverse axes of the tunnel, determines the seismic isolation mechanism. This is the
mechanism that determines seismic isolation.

Kx =
2πG

lnR/r
(1)
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Ky =
8πG(3 − 4ν)(1 − ν)

(3 − 4ν)2ln
(

R
r

)
−

[(
R
r

)2
− 1/

(
R
r

)2
+ 1

] (2)

where Kx—stiffness coefficient of the isolation layer along the tunnel’s longitudinal axis;
Ky—stiffness coefficient of the isolation layer in the tunnel’s transverse direction; R—isolation
layer outer diameter; r—isolation layer inner diameter; G—shear modulus of the isolation
layer; ν—Poisson’s ratio of the isolation layer.

3. Numerical Modeling

It is critical to realize that not all tunnels can be evaluated similarly. Furthermore,
the precision of the analytical techniques currently in use is significantly greater than the
accuracy and reliability of site-inspection data [63,64]. As a result, designers must undertake
many diverse tests to understand the ground–support interaction model’s sensitivity to
input parameters. During this step, designers should employ various design techniques to
identify the design parameters, upper and lower boundaries, and the design’s sensitivity
to diverse aspects.

The accessible techniques are empirical, “closed-form” methods of analysis and nu-
merical methods. Numerous intricate aspects of tunnels can be explicitly simulated by
numerical techniques such as those that use the discrete element (D.E.), boundary element
(B.E.), finite difference (F.D.), and F.E. methods.

The main objective of this study is to demonstrate that the commercial 3D F.E. method
tool Midas/GTS-NX ver. 1.1 may be utilized to perform 3D numerical modeling to predict
the behavior of soil–tunnel interactions. The current study attempted to optimize the design
by lowering the strains imposed on tunnels by seismic waves using isolation material to
absorb their dissipation energy.

Model Establishment

The present investigation examines a rock-encased, deep-bored tunnel of 9.30 m in
diameter and 450 mm in lining thickness, as seen in Figure 7. The tunnel is 25 m below
the surface of the ground (H) and has a section width of 1.5 m. As illustrated in Figure 8,
The dimensions of the overall model are 150 m × 90 m × 60 m in the x, y, and z axes.
Solid components were selected for the isolation coating: pea gravel grout, tunnel, and
rock. A thickness of 200 mm of the grout or isolation coating was utilized to occupy the
shield machine’s tail void. The ground was postulated to comprise a single rock stratum,
as illustrated in Figure 8. The behavior of the soil is characterized by the non-associated
Mohr–Coulomb (MC) standards. A list of the soil’s material properties may be found in
Table 1.
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Table 1. Numerical model properties of rock.

Material Modulus of Elasticity (E)
(MPa) Poisson’s Ratio (ν)

Unit Weight
(γ)

(kN/m3)

Cohesion
(cu)

(kN/m2)

Friction Angle
(ϕ)
(◦)

Rock #1
(medium strong) 6.0 0.30 23.00 700 39◦

Rock #2
(medium weak) 1.0 0.30 23.00 200 30◦
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Table 2 presents the elastic characteristics of the tunnel as well as the typical grout
materials that were utilized in the model.

Table 2. Characteristics of the materials used for grout and concrete lining.

Material
Modulus of Elasticity

(E)
(MPa)

Poisson’s Ratio
(ν)

Unit Weight
(γ)

(kN/m3)

Concrete for segment 30.0 0.20 25.00

Grout for the tunnel
(pea gravel) 1.0 0.30 23.00

Midas/GTSNX ver. 1.1. [65] is a fully integrated F.E. analysis software for geotechnical
engineering applications. This F.E.-based program was developed to evaluate soil–structure
interaction. Midas/GTS-NX helps engineers perform step-by-step analyses of excavation,
banking, structure placement, loading, and other factors directly affecting design and
construction. The program supports various conditions (soil characteristics, water level,
etc.) and analytical methodologies to simulate natural phenomena. Settings for all field
conditions can be simulated using non-linear analysis methods such as linear and non-
linear static analysis, linear and non-linear dynamic analysis, seepage and consolidation
analysis, slope safety analysis, and various coupled analyses.

Midas/GTS-NX program can automatically constrain the model. The nodal degrees of
freedom (D.O.Fs) are restricted in the x-direction along the model’s vertical sides. The front
and back sections of the model are confined in the y-direction. This means that the degrees
of freedom (D.O.Fs) along the z-axis are restricted in the y and x axes for the lowest nodes.
There is no restriction on the degrees of freedom along the ground’s surface. An application
of linear dynamic time history analysis uses the direct integrating method. These are the El
Centro 1940 data utilized as dynamic excitation sources that were not parallel to the tunnel
axis and were obtained from the Midas/GTS-NX library (Figure 9). The acceleration at
ground maximum is 0.30 g. In this investigation, the excitation period is 10 s, and each
time step is 0.02 s or 500 steps.
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The El-Centro-affected areas were in the United States and Mexico. The El Centro
earthquake is significant in seismic design because it was one of the first to record compre-
hensive, robust motion data, which is one of the main reasons it is regarded as a reference
earthquake. Linear dynamic time–history analysis using a direct integrating method was
applied. The direct integration method analyzed all time stages, and the number of time
stages is proportional to the analysis time.

Seventeen F.E. numerical models were considered to check the tunnel’s stability under
seismic loading, as shown in Figure 10. Experts have studied the effect of changes in
isolation materials properties, changing the unit weight of isolation to rock, the Poisson
ratio of isolation, and the shear modulus of isolation to rock ratios.
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Separated into two parts is the parametric analysis that was conducted for the isolation
material that was utilized in the model: The first section examines the effects of changes
in the isolation material’s mechanical properties, such as shear modulus, poison’s ratio,
and unit weight assumed concerning the mechanical properties of the rock, on the stresses
conferred upon the tunnel, as shown in Table 3. The second section examines common-
based materials such as silicon, asphalt, geofoam, and foamed concrete with low and high
elastic modulus values on the tunnel’s stresses, as shown in Table 4.

Table 3. Isolation material properties.

Material
Modulus of Elasticity

(E)
(kN/m2)

Poisson’s Ratio
(ν)

Unit Weight
(γ)

(kN/m3)

Giso/Grock = 0.4% 25,000 0.35 11.50

Giso/Grock = 0.2% 12,500 0.35 11.50

Giso/Grock = 0.1% 6250 0.35 11.50
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Table 3. Cont.

Material
Modulus of Elasticity

(E)
(kN/m2)

Poisson’s Ratio
(ν)

Unit Weight
(γ)

(kN/m3)

νiso = 0.45 12,500 0.45 11.50

νiso = 0.35 12,500 0.35 11.50

νiso = 0.20 12,500 0.20 11.50

γiso/γrock = 25% 12,500 0.35 5.75

γiso/γrock = 50% 12,500 0.35 11.50

γiso/γrock = 75% 12,500 0.35 17.50

Table 4. Property characteristics of materials commonly used for isolation.

Material
Modulus of Elasticity

(E)
(kN/m2)

Poisson’s Ratio
(ν)

Unit Weight
(γ)

(kN/m3)

Silicon 500 0.48 12.00

Geofoam 4800 0.10 0.16

Foamed concrete (low E) 44,720 0.35 3.00

Foamed concrete
(high E) 760,000 0.22 7.30

Asphalt 101,400 0.30 9.60

4. Results

In this study, the main focus is on the stresses generated in the transverse direction.
The tunnels are constructions designed to withstand movements in a transversal approach.
In order to arrive at correct findings for actual design work, the earthquake time history
utilized in this study is believed to create the most significant reaction since it produces the
highest response in terms of absolute stresses. Table 5 presents a comparison of the stresses
on the tunnel by using typical grout and by isolating the tunnel.

Table 5. Impact of using isolation as an alternative to conventional grout.

Grout/Isolation Descriptions Absolute Stresses

Giso/Grock = 0.40% 58–64%

Giso/Grock = 0.20% 34–41%

Giso/Grock = 0.10% 18–24%

υiso = 0.45 67–73%

υiso = 0.35 34–41%

υiso = 0.20 23–31%

γiso/γrock = 25% 34–41%

γiso/γrock = 50% 34–41%

γiso/γrock = 75% 35–41%

Silicon 2–9%

Geofoam 1–10%

Foamed concrete (low E) 62–70%

Foamed concrete (high E) 91–92%

Asphalt 27–101%
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Using traditional grout and isolation with a shear modulus ratio of 0.1% to 0.4% or
Poisson’s ratio of 0.2% to 0.45%, a comparison of the stresses under the El Centro earthquake
time history revealed that when this ratio decreases, the stresses decrease, as shown in
Figures 11 and 12. These results are demonstrated by the fact that the ratio decreases. On
the other hand, the change in unit weight does not affect stresses, as shown in Figure 13.
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Figure 13. Unit weight of isolation effect on transversal stresses in the rock tunnel.

A comparison of the stresses when using traditional grout and isolation with a shear
modulus ratio of 0.2% and Poisson’s ratio of 0.2 for tunnel passing through two different
rock layers is shown in Figures 14 and 15. The stress magnitude was thereby reduced by
approximately 21% to 23% at the crown in the rock#2 layer and 34% to 46% at the inverted
tunnel in the rock#1 layer.
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5. Discussion

When comparing the stresses under the El Centro earthquake time history between
conventional grout and common isolation, the foam concrete with a high elastic modulus
and asphalt base material do not significantly differ. Even if the silicon base material
and geofoam reduce compression stresses, they may become tensile when combined with
construction load. Conversely, low-elastic-modulus foam concrete reduces stresses to a
reasonable level, as shown in Figure 16.
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The transverse stresses of a tunnel in rock were compared regarding the effects of
parametric assumption isolation and common isolation. The results showed that isolation
with a Poisson’s ratio of 0.2 to 0.45 or a shear modulus ratio of 0.1% to 0.4 reduces stresses
to a manageable level, as shown in Figure 17.

Infrastructures 2024, 9, x FOR PEER REVIEW 16 of 19 
 

with a Poisson’s ratio of 0.2 to 0.45 or a shear modulus ratio of 0.1% to 0.4 reduces stresses 
to a manageable level, as shown in Figure 17. 

 
Figure 17. Effect of common isolation vs. user isolation on transverse stresses of a tunnel in rock. 

The seismic isolation method effectively improves the seismic safety of bored tunnels. 
The above results show that the significance ratio between the shear modulus of isolation 
and the surrounding soil should be between 1/500 and 1/1000. However, the maximum 
values of tunnel displacement increase in the direction of seismic motion, and the dynamic 
behavior of the tunnel with isolation is be er than with traditional grout. 

When using isolation grout with a shear modulus ratio of 0.2% and Poisson’s ratio of 
0.2 for a tunnel passing through two different rock layers, the vertical displacement of the 
tunnel overall redistributes stresses (Figures 18 and 19). 

 
Figure 18. Vertical displacement of the tunnel with traditional grout. 

Figure 17. Effect of common isolation vs. user isolation on transverse stresses of a tunnel in rock.

The seismic isolation method effectively improves the seismic safety of bored tunnels.
The above results show that the significance ratio between the shear modulus of isolation
and the surrounding soil should be between 1/500 and 1/1000. However, the maximum
values of tunnel displacement increase in the direction of seismic motion, and the dynamic
behavior of the tunnel with isolation is better than with traditional grout.

When using isolation grout with a shear modulus ratio of 0.2% and Poisson’s ratio of
0.2 for a tunnel passing through two different rock layers, the vertical displacement of the
tunnel overall redistributes stresses (Figures 18 and 19).
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6. Conclusions

According to seismic research conducted on a rock tunnel, isolation positively affects
both kinds of stresses in the transverse directions of tunnels. There is an improvement in
both the produced stresses and the overall dynamic behavior of the tunnel when isolation
is employed rather than the conventional grout treatment. It is of the utmost importance to
investigate the drop in displacement that occurs due to a reduction in the shear modulus of
the isolation material. Construction analysis should be combined with dynamic analysis
in the design process. The designers may use this approach to help them create safe and
cost-effective designs. It is possible to determine whether isolation materials can withstand
applied pressures without liquefying by testing them with tiny shear modules or small
unit weights.
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