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Abstract: Running a numerical model for a cracked arch dam that takes into account all the particu-
larities of the materials and dam with a high level of detail has a great computational cost involved.
For this reason, it is usual to simplify such a model in search of a simpler solution while preserving
the characteristic of being representative, with all the particularities that the model of an arch dam
has. A common simplification lies in not considering open transverse joints in the construction phase
of a cracked dam. An aim of this study is to propose a methodology that combines open joints
and cracking, something on which, to the authors’ knowledge, no studies have been published. An
additional goal is a study of the need and adequacy of different approaches on performance (compu-
tational time) and its consequences for model accuracy. For this purpose, an accurate methodology
for a stationary finite element method numerical simulation of deformations in cracked arch dams
is presented. Using a tetrahedron mesh of a real dam, different simplifications commonly used in
numerical models are compared. It is concluded that some of the standard simplifications produce a
significant effect on the computation time and accuracy of the results.

Keywords: arch dam; FEM; cracks; transversal joints

1. Introduction

Dams are essential infrastructure in the management of water resources, as they are
fundamental to harnessing, regulating, and allocating water for various human needs.
These engineered structures serve as the backbone for the provision of essential services,
including flood control, water supply, agricultural irrigation, hydropower generation,
and recreational opportunities. The fundamental importance of dams goes beyond their
immediate functions and has significant economic, environmental, and social impacts.
However, the benefits derived from dams can sometimes be diminished by the inherent
risks they pose to downstream populations and property [1]. According to the International
Commission on Large Dams (ICOLD), the number of large dams built worldwide exceeds
57,000 [2] (a large dam is defined by the ICOLD as a dam with a height of 15 m or greater
from lowest foundation to crest or a dam between 5 m and 15 m impounding more than
3 million cubic meters [3]).

The technical complexities inherent in the life cycles of dams pose a number of
formidable challenges covering their design, construction, operation, and eventual de-
commissioning. Engineers responsible for managing dams, with dams being massive
structures designed to manage water resources, face a myriad of technical difficulties that
require meticulous consideration and resolution. Throughout their operational life, dams
face continuous challenges related to sedimentation, environmental impacts, seepage (the
process of water leaking out), and maintenance. All of these pose a continuous threat
to their functionality and safety, requiring constant monitoring, treatment, and adaptive
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management strategies. This means that, in some dams, aging is occurring faster than
expected, even reaching a critical degree of degradation [4].

Therefore, it is necessary to pay close attention to the design, performance, and
maintenance of a dam to ensure its reliability, safety, and stability, and to minimize the
likelihood of major failures [5]. The American Society of Civil Engineers report classifies
the risks of dams as (i) high (potentially causing human losses), (ii) significant (economic
losses), (iii) low, and (iv) undetermined. Approximately 17% and 12% of dams fall into
each of the first two categories [6], making structural condition monitoring essential to
protect dam structures.

As is recognized, dam engineering problems are among the most complex in civil
engineering [7], not only because of their particular geometry, but also because of the
interaction of different material phases (e.g., solid–fluid); the fact that the construction
material changes continuously over time (concrete, asphalt membranes, permeability of
earth dams, etc.); being surrounded by a large amount of material, which causes a higher
degree of heterogeneity; and, finally, because of the diverse nature of the applied loads
(self-weight, water pressure, thermal, seepage, ice, wind, seismic. . .).

Several studies exist on cracked arch dam calculations using nonlinear finite elements
in which, generally, each element can move to a cracked state (indicating the location of the
crack) as a result of deformations and some formulation [8–12]. There are also many studies
on arch dam calculations considering transverse joints between cantilevers, where each
dam cantilever behaves in a linear elastic way, although the dam as a whole is nonlinear
since it includes transverse construction joints that can be opened freely under friction, for
which a nonlinear element is designed as a joint between the faces of the cantilevers in
contact [13,14]. Some other studies compare the latter approach against a monolithic dam,
where joints can never open [15,16]. Reviews of the simulations of arch dams have already
been conducted, pointing out if the construction joints are taken into account [17].

But it is not common practice to combine both (open joints in the construction phase
and cracks) in the same analysis. Running a numerical model that takes into account all
the particularities of the materials, joints, cracking, etc., with a high level of detail is not
feasible due to the computational cost involved. For this reason, it is common to propose
simplifications in the models in search of a simpler solution but preserving the characteristic
of being representative. Furthermore, it must be taken into account that different simulation
packages, commercial or not, provide different options for modeling structures, which are
not always equivalent (for example, different FEM—finite element method—programs
implement different mathematical models for materials).

This study pursues two goals, the first is to develop a realistic FEM methodology that
combines self-weight computation, taking into account open transverse joints with a crack
appearing after joint sealing, something about which, to the authors’ knowledge, no study
has been published. The second objective is to study different approaches to simplifications
in numerical models in terms of computational cost and model accuracy.

2. Methods
2.1. General Approach

In the course of this paper, a numerical experimentation campaign on a case study
is performed in order to determine the influence of simplifications on the deformation
results of a cracked dam. This campaign is divided into five stages (Figure 1): (i) develop
a numerical simulation methodology with sufficient accuracy for the requirements of
the study, (ii) perform the necessary tests for the starting parameters, (iii) calibrate the
material parameters, (iv) compare the results of the simplifications with the first crack, and
(v) compare the results of the simplifications with the second crack.
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2.2. Numerical Approach

In the first place, to solve the simulations of the dam-foundation environment required
in this study, advanced numerical methods of the FEM type are used, ruling out the
following factors:

• Models involving nonlinear materials;
• Transient models;
• Thermal effect;
• Analysis of the separation between the dam and the ground.

The above factors are not included in this work due to the fact that they do not di-
rectly affect the main scope of this study (i.e., deformations of dams after cracking) and
because their inclusion would greatly complicate the numerical calculations, increasing the
time required for calculation and the range of different options available, thus making a
comparison unfeasible. Furthermore, it should be mentioned that the results of circumfer-
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ential displacements and radial stresses are not analyzed in the study because they are not
relevant factors in the behavior of a cracked arch dam.

In the same way, it is considered as one of the possible simplifications not to consider
the transverse joints between cantilevers in the simulations, i.e., to consider the dam as a
monolithic structure before applying any load. However, as will be shown in Section 4.1.2,
the effect of omitting transverse joints is not negligible.

The boundary conditions applied to the simulated models consist of constraining
any type of movement at the lower base of the bedrock as well as constraining horizontal
movements at the sides of the bedrock. The volume of soil modeled is considered sufficient
so that the applied constraints do not affect the results obtained.

The Ansys Mechanical Finite Element Analysis Software (Version R2) for Structural
Engineering 2022 R2 [18] and 3D designs are used to perform all these numerical simula-
tions. All simulations are performed with the Mechanical APDL solver. For the simulations
with friction surfaces, the iterative solver Preconditioned Conjugate Gradient is used with
a tolerance value of 10−8, maximum number of substeps equal to 4, and maximum number
of iterations equal to the number of nodes times the degrees of freedom of each node.

2.3. Calibration

In order to be able to compare the results of the simulations with the actual monitoring
measurements, it is important to take into account that the properties of the concrete and
the soil may have changed since the construction work was completed.

The aim of this research is to study the numerical modeling and, as already mentioned,
the thermal effect is not taken into account to avoid unnecessarily increasing the complexity
of the problem. Therefore, to facilitate the elimination of the thermal effect, a dam was
chosen (as will be seen later) with a north–south orientation, which greatly favors this
approach by causing thermal symmetry [19]. Under this premise, it is possible to obtain
real data to use as a basis for the calibration, eliminating the influence of the thermal effect
on the movements. With the purpose of discarding the thermal effect from the data used,
the increase in deformations of the dam is determined between two dates with equivalent
thermal load. Assuming, in this way, that all the deformation variation between these
dates is due to the change in hydrostatic pressure, it is possible to compare the monitoring
records of the dam with the numerical simulation results.

Then, to select the dates with the same thermal load, the air temperature records at the
dam weather station were consulted by comparing the average temperature for the same
pair of months as those of the original transverse-joint sealing (March and April) over the
years. This comparison resulted in the two possible pairs of dates shown in Table 1. It was
decided to use the first pair to calibrate since the reservoir level variation is higher in that
pair of dates.

Table 1. Average air temperature in ◦C.

1990 1991 2006 2007

March 8.97 8.90 7.99 7.88
April 8.94 8.68 11.70 12.08

Lastly, a calibration process is performed by the centroid method [20], involving the
following steps:

• A range of values of the studied properties is set, with some exploration values for
each one. Initially, the design values are used, with the addition of several higher
values. The exploration points are the pairs that result from the combination of
these values.

• The error is calculated in each case by comparing simulations with the auscultation
records of the devices that record the greatest movements (the three upper three
of the central cantilevers). The following is used as an error calculation formula:
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∑6
i=1

(
−1 + ui

ui.obj

)2
. With i the points where the auscultation devices have been in-

stalled, ui the radial movements of the simulation at point i, and ui.obj the real radial
movements recorded at point i.

• A maximum allowable error is set that will serve to delimit the solution domain. Using
linear interpolation of the obtained errors, the coordinates of points on the solution
domain contour are calculated.

• The centroid of the solution domain is found from these contour points and the error
is verified by solving a numerical simulation based on such values.

2.4. Study Case

In this study, a concrete arch dam for which real data are available is used as a model.
The La Baells dam on the Llobregat river is located in the province of Barcelona (Spain)
and closes a reservoir with a total capacity of 109.5 hm3. This dam was built in 1976 with a
height of 102.3 m and a crest length of 302.4 m. Its foundation elevation is 530 m and the
volume of the dam body is 400,000 m3.

From the existing test campaign, it is considered that the foundation materials are
homogeneous and, therefore, there are no different soil strata. The bedrock is composed of
a multitude of narrow and almost vertical strata, which can be simplified to mean values of
the bedrock properties.

In the first stage, the physical characteristics of the materials (foundation and concrete)
are determined in accordance with the values recorded in previous studies conducted at La
Baells (Table 2) [21]. In addition, a concrete–concrete friction coefficient for dry conditions
of 0.8 is used, following the reports of the Concrete Masonry Handbook [22] and PCI Design
Handbook [23].

Table 2. Initial properties of materials.

Material Foundation Concrete

Density (kg/m3) 3000 2400
Modulus of elasticity (N/m2) 1.962 × 1010 2.452 × 1010

Poisson’s ratio 0.25 0.22

Geometry

The 3D design is based on the topography records (Figure 2) and the different defini-
tion sections of the dam (Figure 3 represents the highest section). The 3D geometry includes
the 17 transverse joints, allowing the cantilevers to move independently of each other.
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Figure 3. Cross-section of La Baells dam.

However, soil not immediately adjacent to the dam is simplified, while soil in contact
with the dam is included by adapting to the contour lines every five meters in the cartog-
raphy. In depth, a land area equal to 150% of the height of the dam is included and the
lateral extension is equal to 50% of the length of the dam (Figure 4). The characteristics of
the mesh are described in Section 4.1.1.
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Additionally, the reference reservoir level is set at 620 m above sea level (12.29 m
below the crest elevation), reaching 88% of the total height of the dam. In cases where this
level is not sufficient, a reservoir level with an overtopping of 5 m above crest elevation
is imposed. For simulations where the 5 m overtopping is insufficient, an overtopping of
20 m is applied.

For the study of the effect of cracking, the upstream occurrence of one major crack in
the dam is assumed. Lengths and depths of a certain importance are considered to ensure
a clearly visible effect on the structure. It was decided to simulate the cracks independently
(i.e., they never coexist in the same modeling) since it is not common for several major
cracks to coexist in the same dam and the results obtained for such a scenario would be
mixed and less understandable.

Only two cracks [24] were simulated since each crack requires considerable computa-
tional cost, thus simulating more cracks would require significant increase in computational
time with no expected improvement in the accuracy of the results. Upstream cracks of the
most common shape and location for arch dams are proposed [24] at those locations since
they correspond to the typical locations of cracks in real dams [25]. These are:

- Horizontal, near the base (Figure 5). This crack has a length of 91.5 m, a depth of 50%
of the dam thickness, and is located 9.5 m above the base of the dam.

- On one side, parallel to bedrock contact (Figure 6). This crack has a length of 60.7 m, a
depth of 50% of the thickness of the dam, and begins at 9.5 m above the base elevation
of the dam, ending at 38.5 m.
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The cracks are treated as fully formed without considering the forming process. The
mesh is designed to align the faces of the elements with the faces of the crack. Initially,
in the detailed model, the sides of the crack behave according to their real behavior: they
can transmit compression and friction and can move independently as long as they do not
cross each other. Other alternatives to the interaction of the crack sides are considered in
Section 3.2.
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3. Proposed Methodology for Numerical Modeling
3.1. Base Methodology

As explained in Section 2.2, the only acting forces are due to the self-weight of the dam
and the hydrostatic pressure of the reservoir on the upstream face of the dam. The first task
of this study is to elaborate a methodology that is as accurate as possible that can be used as
a reference to calculate the error of other simpler methodologies. With advanced calculation
software, the linear deformations of several solids joined together and subjected to gravity
and pressure on one face can be simulated without difficulty. But, to properly consider the
real processes that occur in arch dams, including transverse joints, it is necessary to take
into account that the dam configuration changes before the hydrostatic pressures occur
(but when the self-weight is already acting), with the sealing of transverse joints that turns
the different cantilevers into a monolithic solid. And this dam configuration will change
again when a crack opens.

In this work, different approaches are tested with different simulation software. The
direct approach to this problem is to perform transient simulations, but this involves over-
complicating the calculations (both in complexity and duration). Therefore, an alternative
methodology is proposed which, although it is still complex and very precise, is feasible
for application. The appropriate simplifications will be made to this methodology, which
will be described later, to analyze their effect and determine whether or not they are valid
and under what circumstances they can be applied. For the non-transient methodology, an
approach based on a succession of stationary calculations combining two very different
states was considered:

• Initial calculation with open joints, without any crack and with self-weight being the
only load;

• Final calculation on the monolithic dam and with a crack and subjected to hydro-
static pressure.

This approach was not viable due to the impossibility of applying the results of the
initial calculation to the final one, since the geometry of the dam differs. A solution was
sought by integrating the two calculations into a single process and inserting between them
the effect of transforming the cantilevers into a single solid, sealing transverse joints by
creating slip-free connections between the cantilevers in their deformed position at the end
of the initial calculation.

Lastly, the challenge of allowing gravity to influence the crack faces (which only
exist in the final calculation) without duplicating the effect of gravity on the rest of the
dam (which is already affected by gravity in the initial calculation) was addressed. To
compensate for the effect of gravity affecting the model twice, an intermediate calculation
is performed to obtain the deformations and stresses due to gravity in the entire dam
excluding the sides of the crack and then they are subtracted from the final calculation
(Figure 7). In models with a crack that can open, the deformations that are subtracted in the
3rd calculation are not the same as those caused by gravity in the 3rd calculation (apart from
the case of simplification C in Section 3.2). The difference between these two deformations
corresponds precisely to the effect of gravity on the crack.

Finally, it should be clarified that this three-step methodology is only necessary because
of the inclusion of a crack that is affected by gravity after the joint sealing (while the rest of
the dam is affected before the joint sealing). In a case that does not include cracking, this
intermediate calculation would not be necessary.

3.2. Methodology Simplifications

After establishing the most accurate resolution methodology, different simulations are
proposed to check the error they produce by studying how the results vary when these
simplifications are introduced in the model.
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• Simplification A: the transverse joints are closed before self-weight is applied. In this
way the cantilevers can never deform independently of each other. The methodology
still consists of a first phase before starting operations where only self-weight is applied
and a second phase beginning with the deformed geometry of the previous phase
where hydrostatic pressure and a crack are applied.

• Simplification B: the crack already exists at the beginning of the simulation. In this
case the self-weight is applied on an already-cracked dam.

• Simplification C: the crack faces are disconnected, allowing the upper side of the
crack to pass through the lower side in its movement. Therefore, the crack faces can
either separate (open crack) or ride over each other (with a non-existent penetration,
which in reality corresponds to a closed crack). In these simplifications, if the final
result indicates that the sides of the crack cross each other, it is necessary to repeat
the simulation, establishing that the joint cannot open, as shown in the scheme of
Figure 8. As already discussed in Section 3.1, the deformations that are subtracted
in the 3rd calculation are not equal to those caused by gravity in the 3rd calculation.
There is an exception when the crack can close on itself in the first calculation and
another exception when the crack is not free to open in any of the calculations (this
happens in simplification C where the calculation is repeated, i.e., when the hydrostatic
pressure is not sufficient to open the crack).

In the next step, the three simplifications discussed above are combined in the cases
indicated in Figure 9.

Simplification 2, although a conceptually simpler approach, does not reduce the calcu-
lations with the software being used. This software performs two simulations: one with
open joints and then another with sealed joints in the final position of the first simulation.
By solving two separate simulations there is no numerical advantage of considering the
crack in the same state in both parts of the calculation. However, it has been proposed
because with other FEM packages it can be an advantageous simplification.
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On the other hand, it can be noted that applying the proposed methodology to simpli-
fication 5 results in an incorrect physical approach since the joints would be sealed when
the crack is crossing itself due to its own weight, but in the final stage of the calculation, the
hydrostatic pressure has no freedom of movement to compensate for these deformations in
the joint plane.

Since simplification 5 is not feasible with this methodology, we propose an alternative
methodology which we call simplification 5.1 (explained in Figure 10). This consists of calcu-
lating separately the stresses for self-weight and then applying them to another simulation
with hydrostatic pressure. In the self-weight design, the joints are open and the cantilevers
can penetrate each other, while in the hydrostatic pressure design the joints are closed.
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Additionally, two alternative methodologies, called simplifications 4.1 and 7.1
(explained in Figures 11 and 12), are also included. In these simplifications, the hydrostatic
pressure calculation is performed on the base geometry and not on the deformed geometry
resulting from self-weight. These alternatives are studied because it is common practice to
perform all calculations on the original geometry. These alternative versions only apply
to simplifications 4 and 7, because only in these simplifications do both the joints and
the crack function in the same way before and after sealing the joints. Thereafter all the
simplifications of the study are summarized in Figure 13.
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4. Results and Discussion
4.1. Preliminary Tests
4.1.1. Mesh Analysis

In this part of the study, a procedure is performed for the selection of the most suitable
mesh size through simulations with different mesh sizes, comparing the variation in the
results. The meshes used are formed by tetrahedrons with a quadratic element order
and a growth ratio of 1.1. The rest of the parameters have been established to maintain a
compromise between the calculation time and quality of the result. The characteristics of
each mesh are described in Tables 3 and 4; some examples are shown in Figure 14.

The maximum displacement results are considered to be stabilized when the variation
upon mesh refinement is equal to or less than the measurement error of the monitoring
devices (0.1 mm). As can be appreciated in Figure 15, this is achieved with a mesh size of
1.15 m (1,180,000 elements).
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Table 3. Characteristics of fine meshes (* bedrock elements are 10 times larger than indicated).

Element Size * (m) 1.00 1.02 1.04 1.05 1.07 1.10 1.12 1.15 1.20 1.235 1.319

Number of nodes × 10−5 25.0 23.7 22.7 22.2 21.3 20.0 19.2 18.0 16.5 15.4 13.3
Number of elements × 10−5 16.4 15.6 14.9 14.5 14.0 13.1 12.5 11.8 10.7 10.0 8.7

Table 4. Characteristics of large meshes (* bedrock elements are 10 times larger than indicated).

Element Size * (m) 1.35 1.40 1.55 1.60 1.65 1.80 2.40 3.00 3.60 4.20 4.80

Number of nodes × 10−5 12.6 11.7 9.4 8.8 8.2 6.9 3.8 2.6 1.9 1.4 1.1
Number of elements × 10−5 8.2 7.6 6.1 5.7 5.3 4.4 2.5 1.7 1.2 0.9 0.7
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In the next step, comparisons of computation time according to mesh size are con-
ducted, using as reference the one-million-element mesh in Table 3. It can be observed in
Figure 16a that the computation time oscillates widely, although by tracing a trend line
(dashed line) it is possible to estimate the increase in computation time with respect to the
mesh size. The reference time used is for a one-million-element model.

The oscillation of the calculation time Is due to the fact that the calculation of the
phase with open transverse joints (which corresponds to most of the calculation time) is
iterative and the number of iterations is not proportional to the mesh size, as can be seen in
Figure 16b.
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Figure 18 shows the situation of the transverse joints. Initially, in the self-weight 
phase of the detailed model, the sides of the joints behave according to their real behavior: 
they can transmit compression and friction and can move independently as long as they 
do not cross over each other. While in the hydraulic loading phase they behave monolith-
ically: the sides of the same joint deform jointly, always maintaining the same relative 
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The following phase studies the calculation time per iteration taking into account only
the part of the calculation with open joints (Figure 17) so that the increase in calculation
time when changing the mesh size can be seen more clearly.
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Figure 18 shows the situation of the transverse joints. Initially, in the self-weight phase
of the detailed model, the sides of the joints behave according to their real behavior: they
can transmit compression and friction and can move independently as long as they do not
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cross over each other. While in the hydraulic loading phase they behave monolithically:
the sides of the same joint deform jointly, always maintaining the same relative position
they had at the end of the self-weight phase. Other alternatives to the interaction of the
crack sides are considered in Section 3.2.
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4.1.2. Importance of Considering Open Joints

To study the relevance of discarding the effect of the transverse joints, a simulation of
deformations due to self-weight was carried out with open joints and another with closed
joints. Figures 19 and 20 show the differences between the displacements obtained with
these two solutions. It can be seen in the images how the maximum radial movements
drop from 20 mm to 5 mm and the vertical movements from 11 mm to 8 mm.
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Furthermore, on analysis of the variation in circumferential stresses in the upstream
face, it is noted that in most of the dam the error is below 0.2 MPa, increasing at the base to
values greater than 1 MPa. On the other hand, in the vertical stresses, the error is generally
lower than 1 MPa, increasing at the base up to values higher than 5 MPa. It should be
mentioned here that the stress values obtained by FEM models in the contact zones between
materials with different stiffnesses (dam–bedrock) usually present high gradients, due to
the mathematical formulation itself, so the difference in the results in this zone between
different approximations was to be expected.

Due to the values of these differences and those of the displacements, it was decided
to include transverse joints as part of this study.

4.1.3. Validation of the Proposed Methodology

In order to validate that the intermediate-step approach provides consistent results, a
simulation with a zero reservoir level was performed. It was expected that in this simulation
the increase in the deformation after starting operations (injection of joints) would be zero.
Figures 21 and 22 show the differences in radial and vertical displacements. The results
obtained are not completely zero due to the intrinsic inaccuracy of the numerical calculation,
but the variation can be considered negligible, with maxima of 0.13 mm in radial movement,
0.08 mm in circumferential, and 0.18 mm in vertical.

The next step involves a comparative analysis of the final stresses, for which it is
convenient to divide the dam into two zones: one zone comprises the area around the
upstream dam–bedrock contact while the other zone contains all the remaining areas of
the dam.
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• In the remaining areas of the dam, it was found that, assuming an empty reservoir
level, the resulting total stresses are equivalent to those obtained in the first calculation.
Again, the variation is not zero due to the inherent inaccuracy of the numerical
calculation.

• In the area around the upstream dam–bedrock contact, the discrepancies between the
results of the methodology and one-step numerical calculation are not negligible. This
zone corresponds to an area of high stresses and a geometry with a large number of
corners. As a result, this leads to fictitious stress increases due to the resolution of
numerical models (which applies to any FEM technique), even though in reality there
would be a smoother stress distribution in this area. In the absence of reference values,
it becomes unclear whether the error made by the proposed methodology would
be significantly greater than the error made by the direct numerical computation. It
should be noted that this particularity of the results applies to stresses and not to
movements (due to the mathematical formulation of the FEM).

Therefore, the variation in the body of the dam can be considered negligible since
the differences in vertical stresses are less than 0.1 MPa. From the above tests, it can be
safely accepted that the numerical simulation methodology proposed in this study will be
suitable for the calculation of displacements in the whole dam and for the calculation of
stresses in the parts of the dam that are not close to the bedrock.
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4.2. Calibration Tests

In order to assess the influence that the variation in material property values, due
to their uncertainty, can have on the displacements of the model, it was measured the
differences resulting from the application of low and high extreme values of the material
properties. These values are defined according to Hariri-Ardebili [26], i.e., distanced from
the initial value twice the standard deviation with a coefficient of variation of 0.15 and
using the design data as the mean value (Table 5) with a correction to the density values by
adjusting them to the limits for the concrete of a dam.

Table 5. Variability in material properties.

Parameter Low Design High Units

Density (Concrete) 2100 2400 2600 kg/m3

Poisson’s Ratio (Concrete) 0.154 0.22 0.286 -
Poisson’s Ratio (Soil) 0.175 0.25 0.325 -

Young’s Modulus (Concrete) 17,164 24,520 31,876 MPa
Young’s Modulus (Soil) 13,734 19,620 25,506 MPa

In Table 6, it is seen that even when implementing extreme variations, the only
parameter that causes a variation greater than 2.1% is the Young’s modulus (this conclusion
agrees with the results of other studies [20]). According to these results, it is decided to
calibrate the model for Young’s modulus, using the mean design values for the rest of
the parameters.

Table 6. Error in maximum displacement results.

Max. Radial Displacement Max. Vertical Displacement

Parameter Low High Low High

Density (Concrete) −0.2% 0.2% −0.1% 0.3%
Poisson’s Ratio (Concrete) 0.8% −0.9% 1.4% −2.1%

Poisson’s Ratio (Soil) 0.3% −0.2% −0.5% 0.8%
Young’s Modulus (Concrete) −34.6% 18.6% −32.3% 17.7%

Young’s Modulus (Soil) −8.4% 4.4% −9.9% 5.7%

The centroid method is used for calibration by means of the movements in the cen-
tral cantilevers [27]. Starting from the design values several higher levels are included,
following the same ranges as in Table 5. The 18 pairs of Young’s moduli that result from
combining these values constitute the exploration points.

Afterwards, simulations corresponding to the 18 cases are performed and their errors
for each case are determined (Table 7).

Table 7. Global relative error in radial displacement results.

Concrete (MPa)

24,520 31,876 39,232

Soil (MPa)

19,620 0.96454459 0.09823328 0.02290233
25,506 0.75630712 0.04730953 0.06258044
31,392 0.63728901 0.02915880 0.10764353
37,278 0.56073436 0.02344675 0.14367899
43,164 0.50762649 0.02283556 0.17308593
49,050 0.46889552 0.02448376 0.19845217

In the next step, a maximum permissible error is stipulated (set in 0.023) which serves
to delimit the solution domain. The coordinates of points on the solution domain contour
are calculated by linear interpolation of the errors previously obtained (Table 8).
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Table 8. Coordinates of the solution domain contour.

Concrete (MPa)

31,873.5 31,876.0 31,884.1

Soil (MPa)
41,580.4 0.0230
43,164.0 0.0230 0.02283556 0.0230
43,751.2 0.0230

Finally, the centroid of the solution domain is found from these contour points, obtain-
ing the values concrete: 31,877.02 MPa; and soil: 42,831.87 MPa.

The error is tested by solving a numerical simulation with these values (Table 9)
proving that it corresponds to an allowable value.

Table 9. Errors for each radial displacement obtained with calibrated Young’s moduli.

Cantilever 2-I Cantilever 1-D

P0 measurement −0.60 mm 4.93% −0.94 mm 8.0%
P1 measurement 0.04 mm −0.4% −0.52 mm 5.6%
P2 measurement 0.69 mm −10.5% 0.08 mm −1.3%

Once the updated value of the modulus of elasticity is obtained, the method is val-
idated by measuring the error (Table 10 and Figure 23) with the other pair of dates in
Table 1.

Table 10. Validation based on the errors in each radial displacement result.

Cantilever 2-I Cantilever 1-D

P0 measurement 0.04 mm 0.4% 1.00 mm 13.9%
P1 measurement −0.66 mm −10.1% 0.12 mm 2.1%
P2 measurement −1.21 mm −27.5% −0.80 mm −20.1%
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Therefore, the calculations show that this methodology provides deformations in an
order of magnitude equivalent to those measured by the apparatus. Thus, it allows a study
to be performed on the effects of a synthetic crack on the displacements of an arch dam.
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4.3. Accuracy for Different Simplifications: Crack 1
4.3.1. Absolute and Relative Displacement Errors

Figure 24 shows the errors in relation to the maximum values of displacements mea-
sured on a logarithmic vertical scale.

Infrastructures 2024, 9, x FOR PEER REVIEW 21 of 28 
 

Figure 23. Validation based on the errors in each radial displacement result. 

Therefore, the calculations show that this methodology provides deformations in an 
order of magnitude equivalent to those measured by the apparatus. Thus, it allows a study 
to be performed on the effects of a synthetic crack on the displacements of an arch dam. 

4.3. Accuracy for Different Simplifications: Crack 1 
4.3.1. Absolute and Relative Displacement Errors 

Figure 24 shows the errors in relation to the maximum values of displacements meas-
ured on a logarithmic vertical scale.  

Noteworthy in these figures are the values before starting operations for simplifica-
tion 5.1 because they exhibit values on a significantly larger scale than the rest of the meas-
ured simplifications. These large errors are due to the fact that the cantilevers can pene-
trate through each other.  

Simplifications 1, 4, 4.1, 6, 7, and 7.1 also show distinctly deviating results before 
starting operations (gray triangle and green circle) due to the fact that the joints are sealed. 
Considering the coordinates of the point where these displacements occur, it can be seen 
that these simplifications also obtain a very different location in the calculation prior to 
starting operations.  

At first sight, it can be seen in the results of displacements after application of the 
hydraulic pressure (red cross and blue X) that simplifications 3, 6, 5.1, 7, and 7.1 produce 
results with larger errors; this is assumed to be because there is no friction between the 
crack faces and no stresses are transmitted. 

 

Figure 24. Maximum displacement errors (logarithmic vertical scale). (Top): as a percentage.
(Bottom): absolute value.

Noteworthy in these figures are the values before starting operations for simplification
5.1 because they exhibit values on a significantly larger scale than the rest of the measured
simplifications. These large errors are due to the fact that the cantilevers can penetrate
through each other.

Simplifications 1, 4, 4.1, 6, 7, and 7.1 also show distinctly deviating results before
starting operations (gray triangle and green circle) due to the fact that the joints are sealed.
Considering the coordinates of the point where these displacements occur, it can be seen
that these simplifications also obtain a very different location in the calculation prior to
starting operations.

At first sight, it can be seen in the results of displacements after application of the
hydraulic pressure (red cross and blue X) that simplifications 3, 6, 5.1, 7, and 7.1 produce
results with larger errors; this is assumed to be because there is no friction between the
crack faces and no stresses are transmitted.

The results show that the crack opening with the chosen reservoir level is only 0.1 mm.
For a better verification of the effect of the simplifications regarding the crack opening, the
calculations are repeated, but this time applying a fictitious overtopping of 5 m above the
crest elevation. Figure 25 shows the errors in relation to the maximum displacement values.
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In the same way as with the previous reservoir level, simplifications 1, 4, 4.1, 6, 7, and 7.1
produce very different results, including coordinates, before starting operations (gray
triangle and green circle) as the joints are sealed. Simplifications 3, 5.1, 6, 7, and 7.1 also
produce results with larger errors in the displacement results after applying the hydraulic
pressure (red cross and blue X) because there is no friction between the crack faces and no
stresses are transmitted.

In this figure, the values before starting operations for simplification 5.1 stand out
because they are outside the range of the rest of the values. These significant errors are
due to the fact that the crack closes on itself, which is then compensated by the hydraulic
pressures for the final results.

4.3.2. Crack Opening

Additionally, in this second set of comparisons, the maximum crack opening at the end
of the simulation is included (Figure 26). It can be seen that the simulations where there is no
transmission of forces between the sides of the crack (simplifications 3, 6, 5.1, 7, and 7.1) tend
to overestimate the crack opening.

4.3.3. Calculation Time

Figure 27 compares the calculation times of the different simplifications, both those
that result in an open crack and those that do not. Two phases are compared, first the
time of a complete simulation with a given reservoir level, and subsequently the time to
recalculate the same simulation modifying only the reservoir level.
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At first sight, it can be observed that all simplifications reduce the computation time,
and this reduction is greater when two simplifications are combined. It can be seen
how in the cases where the sides of the crack cannot penetrate each other (accurate and
simplifications 1, 2, 4, and 4.1), it takes the same calculation time when the crack is opened
as when it is not.

From the results shown, it can be concluded that simplification 2 is the only one that
gives results equivalent to the most accurate approach in all cases. Analyzing the results
before applying the hydraulic pressure, simplification 3 also offers results without error,
this is due to the fact that it is the only one that does not apply any change prior to the
hydraulic load.

Considering only displacements occurring after the first filling of the dam, simplifica-
tions 1, 2, and 4 (the hydraulic pressure is applied on the deformed geometry and the crack
cannot close on itself) produce the best results. The errors are 2% or less.

Based on these results, simplifications 5.1 and 7.1 are discarded because their results
lead to errors greater than 28% in both the pre- and post-starting operations calculations
and at both the overtopped and the initial reservoir level. Simplification 7 is also discarded
for the same reason because, although it only obtains errors of 6% in the calculations after
commissioning with the initial reservoir level, this is only because when the crack closed on
itself the corrective procedure of methodology 7 was applied, eliminating the crack. This
means that methodology 7 only works acceptably when it is not applied as a whole.
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Finally, simplification 3 is discarded because it does not involve changes regarding the
calculation prior to the hydrostatic pressure, it does not offer good results in the posterior
calculations and its calculation time is the same as for the first calculation.

4.4. Accuracy for Different Simplifications: Crack 2

Subsequently, in the next phase of the study, only the most relevant simplifications
(1, 2, 4, 4.1, and 6) are compared using the second crack. It is decided to solve only the case
involving an overtop because it is more informative. The results reveal that the 5 m overtop
is insufficient to open the crack, so a 20 m overtop is simulated (Figures 28 and 29).
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Similar to the first crack, simplifications 1, 4, 4.1, and 6 produce significantly different
results before starting operations (gray triangle and green circle) because the joints are
sealed. Considering the coordinates of the point where these displacements occur, it can
be seen that these simplifications also obtain a very different location in the calculation
prior to starting operations. In case 4.1, a substantial error also appears in the values of the
largest displacements after starting operations.

It can be noted that simplification 6 (where the crack faces do not transmit stresses or
friction) overestimates the crack opening.

In addition, Figure 30 compares the calculation times of the different simplifications.
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Lastly, Figure 31 summarizes the final results obtained. For each simplification, the
decrease in calculation time for each of the cases studied (average of crack 1 with overtop
and crack 2 with overtop) is indicated horizontally. The vertical axis shows, for each of
these calculations, the errors in the results after starting operations: the maximum vertical
displacement, the maximum horizontal displacement, and the crack opening.
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5. Conclusions

From the results shown, it can be concluded that simplification 2 is the one that gives
results more equivalent to the precise approach in all cases. This is due to the fact that the
only change in this simplification is that the crack already exists prior to the application
of hydraulic pressure, at which time there are only compressive forces, so there is no
appreciable variation in the results.

5.1. Before Hydraulic Pressure

Considering only displacements occurring before the hydraulic loading of the dam, all
simplifications show errors greater than 50% with the exception of simplifications 2 and 3.
However, simplification 3 was rejected since it does not involve changes regarding the
calculation prior to the hydrostatic pressure and does not offer good results afterwards.

5.2. After Hydraulic Pressure

Considering only displacements occurring after the first hydraulic loading of the dam
(Figure 31), simplifications 1, 2, and 4 (the joints are sealed before the self-weight is applied
and the crack cannot close on itself) produce the best results, showing errors of less than
1.3 mm.

Table 11 shows the two simplifications with the best results in terms of reduction in
computational time and errors in maximum displacements (vertical and radial). The errors
for crack 1 and crack 2 are shown separately. Finally, some general recommendations are
as follows:

• If a single calculation is to be performed, the recommendation is to use the complete
(accurate) approach. Since the difference in calculation time between the fastest and
slowest simulation is an acceptable time for a single simulation.

• If several calculations are to be performed by varying only the loads after the applica-
tion of the hydraulic pressure, it is also recommended to use the complete (accurate)
approach. The difference in calculation time between the fastest and the slowest
simulation remains an acceptable time for a study.

• If many calculations are to be made by changing the loads prior to starting operations
or the geometry (including cracks), it may be convenient to use simplification 1 or 2,
depending on the availability of calculation time and the required accuracy.
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Table 11. Conclusions after first hydraulic loading.

Description Average Reduction
in Calculation Time

Error in Maximum
Vertical Movements

Error in Maximum
Radial Movements

Recommendation
for Use

Complete approach The most accurate
approach - - - Single or low number

of calculations

Simplification 6

Transverse joints are
closed before

self-weight is applied
and crack sides can

pass through
themselves

−83% 4.0% 1/1.0% 2 6.5% 1/6.3% 2

Large number of
calculations with

changes in the geometry
or crack locations

Simplification 1
Transverse joints are

closed before
self-weight is applied

−72% 1.1% 1/8.3% 2 0.6% 1/2.3% 2

Low number of
calculations with

changes in the geometry
or crack locations

1 First crack. 2 Second crack.
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