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Abstract: The railway industry is seeking high-performance and sustainable solutions for sub-
ballast materials, particularly in light of increasing cargo transport demands and climate events.
The meticulous design and construction of track bed geomaterials play a crucial role in ensuring an
extended track service life. The global push for sustainability has prompted the evaluation of recycling
ballast waste within the railway sector, aiming to mitigate environmental contamination, reduce the
consumption of natural resources, and lower costs. This study explores materials for application and
compaction using a formation rehabilitation machine equipped with an integrated ballast recycling
system designed for heavy haul railways. Two recycled ballast-stabilised soil materials underwent
investigation, meeting the necessary grain size distribution for the proper compaction and structural
conditions. One utilised a low-bearing-capacity silty sand soil stabilised with recycled ballast fouled
waste (RFBW) with iron ore at a 3:7 weight ratio, while the second was stabilised with 3% cement.
Laboratory tests were conducted to assess their physical, chemical, and mechanical properties, and a
non-linear elastic finite element numerical model was developed to evaluate the potential of these
alternative solutions for railway sub-ballast. The findings indicate the significant potential of using
soils stabilised with recycled fouled ballast as sub-ballast for heavy haul tracks, underscoring the
advantages of adopting sustainable sub-ballast solutions through the reuse of crushed deteriorated
ballast material.

Keywords: recycled ballast; ballast waste; numerical modelling

1. Introduction

Railway track efficiency can be improved mainly by increasing the track’s service life,
allowing it to resist additional loads over time and reducing maintenance cycles, track
interruptions, and greenhouse gas emissions [1].

The sub-ballast layer plays a crucial role in a railway track’s life cycle. As outlined
in [2], it serves to protect the subgrade from traffic loads and prevent mud from pumping
into the ballast layer by providing separation and drainage for rainwater or groundwater.
Numerous studies by researchers [3–17] have explored sustainable solutions related to
geotechnical layers in railway tracks, such as ballast and sub-ballast, with their objectives
including (i) enhancing the load-bearing capacity of the railway track, (ii) reducing strains
from traffic loads, (iii) repurposing waste materials, (iv) proposing alternative materials,
and (v) minimising ballast breakage.
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Regarding the ballast layer, Indraratna and Salim [8] and Indraratna et al. [9] exam-
ined the stress–strain behaviour and the degradation of recycled ballast with geosynthetics,
comparing it with clean ballast. Their aim was to reduce the amount of discarded ballast,
maintenance costs, and environmental impact. The studies revealed that reinforced re-
cycled ballast with geosynthetics showed promising potential to improve railway track
resilience and reduce maintenance costs. Indraratna et al. [4] investigated the potential of
using geogrids and recycled rubber in the ballast layer to enhance the track performance.
Giunta [10] evaluated different recycled waste materials as potential solutions to improve
the ballast behaviour.

Concerning the sub-ballast layer, Ebrahimi and Keene [5] investigated the possibility
of rehabilitating the substructure and replacing the sub-ballast with alternative materials
derived from a mixture of recycled ballast with recycled pavement materials (RPM), with
or without industrial by-products (fly ash), to improve its mechanical behaviour (stabilised
fouled ballast). They found that the use of fly ash mixed with RPM resulted in lower
values in terms of permanent deformations, while the application of RPM alone provided
behaviour similar that of conventional granular sub-ballast. Saborido Amate [11] assessed a
novel alternative of recycled aggregates derived from blast furnace slag, known as SFS-Rail,
for use in sub-ballast layers. The authors concluded that this type of recycled aggregate
exhibits high quality in terms of durability, hardness, and resistance to abrasion, while
also contributing to a reduction in environmental impacts. Giunta [10] also discussed
various modern railway engineering sub-ballast sustainable solutions, including the use
of alternative materials like cement-reinforced soils and asphalt binder for sub-ballast
applications. Indraratna et al. [8] investigated the use of recycled rubber tires mixed with
gravel as a sub-ballast layer. The authors found that this solution has the potential to reduce
ballast degradation due to its damping characteristics, decrease the track’s modulus in
the case of rigid substructures, and enhance lateral confinement and the track’s structural
behaviour. Qi et al. [12] introduced two methods for stabilising railway substructure
materials by blending waste materials such as blast furnace slag, washed coal, and rubber
crumbs for use as sub-ballast materials. The authors showed that the proposed solutions can
increase particle interlocking to provide proper shear strength as well as higher absorbing
characteristics than traditional materials. In summary, the mentioned research focused
mainly on improving the strength, load-bearing capacity, and durability of the sub-ballast
layer by reusing recycled materials in a sustainable way.

However, limited research exists on recycled ballast fouled with iron ore, despite on-
going investigations into alternative and sustainable materials. Railways transporting iron
ore often generate significant ballast waste, requiring extensive cleaning [18,19]. Ebrahimi
and Keene [5] advocate for the cost-effective and sustainable practice of reusing materials
obtained from ballast cleaning to construct a new sub-ballast layer, as opposed to disposal,
which incurs additional expenses. The inclusion of iron ore as a fouling material may
enhance the hydro-mechanical behaviour by improving interparticle contact, filling voids,
and increasing stiffness, as observed in [19,20].

Schilder and Piereder [21], Auer et al. [22], and Mundrey [23] stated that the Rail-
mounted Formation Rehabilitation Machine (RMFRM) can improve railway tracks’ struc-
tural behaviour by constructing and rehabilitating a new sub-ballast layer in recycling,
reusing, and mixing the used ballast waste with different alternative materials, such as the
subgrade soil itself. This process has higher productivity, less track disruption, and lower
carbon emissions compared to conventional earthwork methods.

Nonetheless, the material originated from the integrated recycling process should
satisfy the design specifications to be applied as sub-ballast to contribute to the proper
mechanical behaviour. In recent decades, the analysis and design of railway components
have been performed using various numerical modelling methods, notably the Finite
Element Method (FEM). Many authors have studied complex railway problems through
the development of 2D plane strain numerical models, applying the FEM due to its low
computational effort requirements and computation times and greater simplicity in terms



Infrastructures 2024, 9, 54 3 of 18

of the number of required parameters. Punetha et al. [24] developed a 2D numerical model
to investigate the structural behaviour in bridge–track and track–bridge transition zones
by considering the influence of a moving train, applying dynamic loads. The authors
studied techniques that can increase the track stiffness and reduce track displacements at
these critical zones. Indraratna and Nimbalkar [25] developed a 2D FEM numerical model
to evaluate different scenarios and configurations of a cyclic triaxial chamber developed
in the laboratory to simulate a railway multi-layer system stabilised using geosynthetics.
The authors obtained important results regarding the stresses and deformations at the
sleeper–ballast and ballast–sub-ballast interfaces. Jiang and Nimbalkar [26] developed a
2D FEM railway track model to predict the structural behaviour of the track’s substructure
by simulating a geogrid reinforced ballast layer. The authors obtained relevant insights
regarding vertical strains and tensile forces in geogrid and ballast settlement and justified
that the method is convenient and economical for this purpose. Ramadan et al. [27]
evaluated the influence of subgrade settlement on stresses for different loads and boundary
condition scenarios. All of these mentioned works could reproduce different railway
structural problems through the simplification of 2D plane strain FEM numerical models,
as well as achieving important and accurate results.

The main objective of this paper is to evaluate the structural performance of alternative
material solutions composed of recycled material from a ballast cleaning process and
subgrade soil stabilised, or not, with cement for application as a sub-ballast layer using a
RMFRM. This investigation aimed to analyse the structural conditions of the materials and
their influence on the track performance in terms of displacements, strains, and stresses.

2. Formation Rehabilitation
2.1. The Sub-Ballast Layer

The sub-ballast is located underneath the ballast layer and has as its main function
providing a better load distribution from the ballast to the subgrade, protecting it against
possible high stress magnitudes and strains, being an essential part of the track for heavy
haul operational conditions [2,28,29].

Li et al. [30] emphasise that the grain size distribution of sub-ballast material is a
critical parameter, as it significantly influences separation, filtration, drainage, and strength.
It should ideally contain a specific percentage of fine material passing through a 0.075 mm
sieve to prevent mud pumping from the subgrade soil [31,32]. However, this percentage
should be balanced to avoid increasing the water susceptibility and plastic deformation
and hindering drainage [2,33,34]. As a result, many researchers and technical specifications
recommend a well-graded material for the sub-ballast layer to meet these criteria, including
Mundrey [23] and AREMA [34].

Different materials can be employed as sub-ballasts, such as well-graded crushed
rock [2,35], hot mix asphalt underlayment [36,37], and lateritic tropical soils from quar-
ries [20,38]. Regarding the latter, Castro et al. [20] and Guimarães et al. [38] explain that
these types of soils contribute to better railway track behaviour as sub-ballasts because
their clay fraction contains minerals from the kaolinite group and hydrated iron and alu-
minium oxides, which are considered stable in the presence of water and can bind their
particles. Studies on stabilising local soils with recycled ballast fouled with iron ore or
binder, such as cement, to improve their strength and deformability characteristics are still
scarce, so further exploration may be interesting from an environmental and economical
point of view.

2.2. Ballast Recycling Using a Formation Rehabilitation Machine

According to Esveld [39] and Klotzinger [40], ballast cleaners are employed when
ballast particles with dimensions smaller than 22 mm constitute more than 30% of the total
ballast volume. Profillidis [41] also states that the equipment removes all ballast particles
smaller than 35 mm to a depth of 0.25 m in a layer next to the sleeper.
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A RMFRM has been developed to rehabilitate railway infrastructure by integrating
different processes performed into a single machine, including ballast cleaning and sub-
grade rehabilitation through the construction of sub-ballast using different materials, such
as the ballast waste from the cleaning process.

Some railways have employed the RMFRM in their rehabilitation processes, as re-
ported by Schilder and Piereder [21], Auer et al. [22], Mundrey [23], and Fu et al. [42].
According to Schilder and Piereder [20] and Auer et al. [21], the RMFRM can save up to
50% of the amount of new material required. However, the excavated materials should
meet the specifications, as previously mentioned.

Schilder and Piereder [21] and Auer et al. [22] stated that the compaction energy
applied in studies conducted in Austria, regarding the RMFRM for passenger railway
tracks, was the Standard Proctor, followed the European specification BS EN 13286-2 [43].
However, Brazilian specifications use a reference minimum compaction energy for sub-
ballast layers of heavy haul tracks between the Standard and the Modified Proctor, named
the Intermediate Proctor. Hence, chemical stabilisation materials may be necessary if
material compaction in the field is ineffective or inefficient. However, the compaction
efficiency of the RMFRM is not the focus of this work and will not be addressed.

3. Materials and Methods
3.1. Site Characteristics and Material Sampling

The methodology employed in this study aimed to investigate and propose different
materials for compaction using a RMFRM by mixing recycled ballast with a low-bearing-
capacity subgrade soil stabilised, or not, with cement for heavy haul tracks. The railway
under investigation was the Carajás railway (EFC), located in Northern Brazil, which
primarily transports iron ore using trains consisting of 330 wagons with 32.5 t/axle. The
railway features the following main characteristics: (i) TR-68 (RE 136) rail; (ii) stiff rail pads;
(iii) concrete sleepers averaging 2.80 m in length, 0.27 m in thickness, and 0.23 m in depth;
(iv) a ballast layer with a depth of 0.30 m; (v) a sub-ballast layer initially 0.25 m thick, with
plans to increase it to 0.30 m; (vi) a track gauge of 1.60 m; (vii) Pandrol fastenings; and
(viii) sleepers spaced 0.61 m apart.

Firstly, the studied materials were collected from quarries and in the vicinity of the
railway, where maintenance and rehabilitation works were being carried out: (i) Itapeti soil
identified as a soft silty sand soil from Mogi das Cruzes city; (ii) São Pedro da Água Branca
(SPAB) soil from km 650 + 560, characterised as a stiff subgrade soil; (iii) recycled fouled ballast
waste 1 (RFBW 1) from km 554 + 000; and (iv) recycled fouled ballast waste 2 (RFBW 2) from
km 15 + 000, in Bacabeira city. Some of the characteristics of these materials were obtained
from the study conducted by Saico et al. [44]. Figure 1 depicts the piles of RFBW.
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3.2. Laboratory Tests
3.2.1. Physical–Chemical Characterisation and Dosage

Initially, the studied materials underwent investigation to determine their grain size
distribution and classification, assessing their suitability as sub-ballast materials according
to ASTM D6913 [45]. The particle size distribution and characterisation of the fouled ballast
waste material followed ASTM C136–06 [46] and ASTM C702 [47]. In addition, it was
assumed that the particle size distribution curve of the sub-ballast material should meet
the specifications of a well-graded material, satisfying the criteria for filtering, separation,
drainage, compaction, and stiffness, outlined by AREMA [34], Mundrey [23], Selig and
Waters [2], and Auer et al. [22].

The particle size distribution of the resulting coarse-grained material was evalu-
ated based on the Brazilian specifications DERSA ET-DE-P006 [48] and DERSA ET-DE-
P00/008 [49], which are applied to well-graded road pavement base materials and aggre-
gate. Table 1 shows the characteristics and properties of the investigated soil materials.

Table 1. Characteristics and properties of the investigated soil materials.

Characteristics and Properties
Soil Materials

Itapeti (Soft Soil) SPAB (Stiff Soil)

Sand fraction (%) 57.2 56.3
Silt and clay fraction (%) 38.3 39.4

Gs 2.790 2.720
LL (%) 41 34
PL (%) 29 19
PI (%) 12 15

γd
max (kg/m3) 1730 1950
wopt (%) 16.9 12.2

HRB soil classification A-7-5 A-6
MCT tropical soil classification NS′-NG′ LA′-LG′

The soils were further assessed in terms of their physical characteristics and properties.
As the soft subgrade soil (Itapeti) did not meet the design requirements individually and
faced the possibility of ineffective compaction using a RMFRM, the material was stabilised
with RFBW and 3% cement. Previous studies have highlighted the positive potential of a
low percentage of cement to improve the hydro-mechanical properties, compaction, and
stabilisation of pavement materials [50–54]. On the other hand, the stiff subgrade soil SPAB,
while suitable for subgrade applications, did not require stabilization.

Thus, the chosen soil–aggregate mixtures were (i) 30% soil and 70% RFBW 1, assuming
a proportion that leads to higher load-bearing capacity values, in accordance with ABNT
NBR 12053 [55], and (ii) a combination of 15% soil, 65% RFBW 2 passing through the 19 mm
sieve, and 20% crushed ballast material (C–RFBW). The details about the RFBW 2 mixture
have been well described by Saico et al. [44]. The chosen mixture dosages followed the
maximum and minimum limits of Range C from DNIT 141 [56]. Figure 2 shows the grain
size distribution and the mineralogical composition of the studied materials.

It was noticed that Itapeti soil requires granulometric stabilisation to increase its
strength and resilient modulus (RM) and to meet sub-ballast specifications. In addition,
the mineralogical composition data showed that it was not possible to determine the true
quantity of clay minerals present in the Itapeti soil, which is why Itapeti data do not appear
in Figure 2b. The XRD technique depends on the crystallinity of its compounds. Clays,
in general, have low crystallinity, and when stabilised with highly crystalline minerals,
the quantification method becomes less precise, potentially leading to significant errors
in quantification.
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Regarding the SPAB soil, it contains almost 30% kaolinite and 2% hematite, which
can contribute to better mechanical behaviour compared to Itapeti soil. Furthermore, 40%
hematite or iron ore and presence of kaolinite clay mineral could be observed in the fouled
ballast waste materials, possibly originating from material falling off the wagon during
transport and/or from existing sub-ballast/subgrade materials.

3.2.2. Mechanical Characterisation

For the mechanical behaviour assessment of the materials for the subgrade and sub-
ballast layers, their resilient modulus (RM) values were determined following AASHTO
T 307-99 [57]. The specimens were compacted in their optimal moisture content and
maximum density conditions.

The RM of the ballast material was determined using a large-scale triaxial test, in ac-
cordance with the methodology outlined in detail by Costa et al. [58] and Merheb et al. [59]
to prepare the specimen and to perform the test, which can be summarised as (i) fixing a
latex membrane in a steel base; (ii) separating and inserting different homogenised portions
of the material into the membrane; (iii) compacting the resulting material with a vibratory
plate at a frequency of 20 Hz; and (iv) applying a pre-determined confining pressure with a
deviatoric stress.

The laboratory test results underwent nonlinear regression analysis using nonlin-
ear constitutive models for the different geotechnical materials (Equations (1) and (2)),
in accordance with their prevailing response to confining and deviatoric stresses. This
analysis, following the methodologies of Liu [60] and Delgado et al. [13], yielded regression
parameters used as input in the numerical model. Tables 2 and 3 present the regression
coefficients and compaction conditions of the tested specimens, respectively.

MR = k1×σd
k2 (1)

MR = k1×σ3
k2 × σd

k3 (2)

k′1 = k1 × 10[α(1−k2)] (3)

where k1, k2, and k3 are the material-specific nonlinear regression coefficients obtained in
the RM test, and α = 6 was used to convert the regression parameter k1 unit obtained in
MPa into Pa.
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Table 2. RM constitutive model and regression coefficients of the materials.

Material
RM Non-Linear

Constitutive Model
k1′ k2 k3 R2
Pa

Ballast MR = k1σd
k2 6,096,877 60.1 - 0.94

Itapeti soil

MR = k1σ3
k2 σd

k3

8,727,494 0.48241 −0.29736 0.84
SPAB soil 33,728,634 0.3969 −0.2814 0.74

RFBW 1 + ITA + CEM 76,445,929 0.27569 −0.00503 0.97
RFBW 2 + ITA + CEM 224,523,318 0.21365 −0.08193 0.91

RFBW 1 + ITA 2,229,317 0.43700 −0.04401 0.94
RFBW 2 + ITA 52,787,363 0.06871 0.02779 0.20

Table 3. Compacted conditions of the studied materials.

Material
γdmax γd wopt w Degree of Compaction (DPr)

(kg/m3) (%) (%)

ITAPETI soil 1730 1720 16.2 16.9 99
SPAB soil 1950 1973 12.0 12.2 101

RBFW 1 + ITA + CEM 2110 2143 9.4 9.1 102
RBFW 2 + ITA + CEM 2293 2293 6.5 6.7 100

RBFW 1 + ITA 2110 2181 9.4 8.0 103
RBFW 2 + ITA 2240 2218 8.7 8.1 99

3.3. Numerical Modelling of the Railway Track
3.3.1. Geometry, Meshing, Boundary Conditions, Load, and Materials

The mechanical response of the proposed materials was evaluated using the
ABAQUS/CAE software using a 2D FEM numerical model developed for railway applica-
tions. A Fortran UMAT subroutine code, developed by Vargas [61] for road application,
was employed in this research. In summary, the constitutive model is represented as a
stress–strain relationship or Jacobian Matrix, in which the elastic modulus, or RM mag-
nitude, depends on the stress state of the structure. More details regarding the UMAT
processes and programming implementation can be found in Vargas [61].

To determine the most cost-efficient mesh that could provide accurate results while
maintaining computational feasibility, a mesh convergence analysis was conducted. This
involved varying the mesh settings to increase the number of elements and comparing
the stress and displacement results for different configurations. The resulting mesh and
geometry characteristics are depicted in Figure 3 and summarised in Table 4.

The boundary conditions were set with restrained vertical and free horizontal degrees
of freedom (DOF) at the bottom of the model, while restrained horizontal and free vertical
DOF were applied at the lateral edges. The operational conditions of the track under study,
in terms of speed and rolling stock geometry, were simulated using a dynamic impact factor
of 1.4558, corresponding to a wagon with a static load of 32.5 t/axle, a maximum allowable
speed of 22.2 m/s, and a wheel diameter of 0.9144 m, resulting in an equivalent dynamic
load of 23.6 t/wheel. The equation for calculating the impact factor was obtained from
AREMA [34]. The interfaces between the track components were assumed to be completely
bonded for simplification. The material characteristics of the geotechnical layers were
assumed to be the RM constitutive models outlined in Table 5.
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Figure 3. Mesh configuration and geometric characteristics of the developed 2D model.

Table 4. Meshing characteristics of the developed numerical model.

Railway Track Component Number of Elements Element Type Element Shape Technique

Rail 4

CPE8R Quad-dominated Structured

Rail pad 2
Concrete sleeper 16

Ballast 41
Sub-ballast 51
Subgrade 119

Table 5. Constitutive model and input parameters of the materials applied in the numerical model.

Track
Component Material Type Constitutive Model Model

Type

Young’s
Modulus

(MPa)

Poisson’s
Ratio (
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) k1′ k2 k3

Rail Steel
MR = E Linear

elastic

210,000 0.30

Table 2

Rail pad Elastomer 135.5 0.01
Sleeper Reinforced concrete 32,000 0.20
Ballast Crushed rock MR = k1σd

k2

Non-linear
elastic

-

Sub-ballast

RFBW 1/ITA/CEM

MR = k1σ3
k2 σd

k3

- 0.30
RFBW 2/ITA/CEM - 0.30

RFBW 1 + ITA - 0.30
RFBW 2 + ITA - 0.30

Subgrade Itapeti soil - 0.35
SPAB soil - 0.35

Considering a plane strain numerical model of this study, it was assumed that only
40% of the wheel load would be transferred to the single main sleeper, in accordance
with Profillidis [41]. Additionally, a linear elastic 3D FEM numerical model developed by
Castro et al. [62] was employed to validate this assumption, considering the same railway
track characteristics. Therefore, the material properties outlined in Table 5 were applied in
the analysis, including the rail, rail pad, and concrete sleeper mechanical characteristics.
Figure 4 illustrates the stress distribution through the sleepers under a single wheel load of
23.5 t, as calculated in this study.
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3.3.2. Validation and Calibration

In terms of the model calibration, the track structure was simulated using the linear
elastic configuration within ABAQUS and compared to other simulations using the UMAT
subroutine with the equivalent elastic properties. ABAQUS software requires the input of
the elastic or Young’s modulus, density, and Poisson’s ratio, while the UMAT subroutine
requires the constitutive equation, regression coefficients obtained through laboratory tests,
and Poisson’s ratio. The displacement values obtained from both analyses were consistent.
Table 6 presents a comparison of the different model scenarios for calibration.

Furthermore, additional numerical simulations were conducted using the data from
Table 6 as the input parameters, employing the UMAT subroutine. These simulations were
carried out to compare the results with field instrumentation and monitoring data obtained
from various studies in the literature.
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Table 6. Model scenarios for the UMAT subroutine calibration and application to railway tracks.

Model Scenario
Railway Track

Component

ABAQUS Built-In
Linear Model UMAT Subroutine

Poisson’s
RatioYoung’s Modulus Constitutive

Model
k1 k2 k3

(MPa) (Mpa)

ABAQUS built-in
linear model

Rail 210,000
MR = E

- - - 0.20
Rail pad 135.5 - - - 0.25

Concrete sleeper 32,000 - - - 0.01
Ballast - MR = k1σd

k2 208 0 - 0.20
Sub-ballast -

MR = k1σ3
k2 σd

k3
300 0 0 0.30

Subgrade - 70 0 0 0.35

UMAT
subroutine

Rail 210,000 - - - 0.20
Rail pad 135.5 - - - 0.25

Concrete sleeper 32,000 - - - 0.01
Ballast 208 - - - 0.20

Sub-ballast 300 - - - 0.30
Subgrade 70 - - - 0.35

4. Results and Discussions

Figures 5–8 show the results of the 2D model calibration and validation analyses.
Different analyses were performed to evaluate the structural potential of the sub-ballast

solutions in protecting the subgrade soil foundation from the traffic loads. Figures 9–11,
along with Table 7, present the results on the displacements, strains, and stresses in the
subgrade and rails when different sub-ballast alternative solutions with RFBW were applied
over soft subgrade soil.
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In terms of the results on the stresses and displacements obtained during the second
calibration analysis, reasonable values were observed. Studies by Indraratna et al. [9]
and Costa et al. [58] reported similar values, with vertical stresses around 280, 75, and
60 kPa at the sleeper–ballast, ballast–sub-ballast, and sub-ballast–subgrade interfaces, along
with track vertical displacements of approximately 3 mm. The material characteristics
and load conditions applied in the numerical model were also comparable with the field
investigations and monitoring studies of Indraratna and Nimbalkar [25] and Wang and
Markine [63]. The results on the stresses at the sleeper–ballast, ballast-sub–ballast and
sub-ballast–subgrade interfaces and track displacements showed that the developed 2D
modelling was effectively calibrated.
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Table 7. Summary of the vertical displacements (U2), strains (ε22), and stresses (S22) for the Itapeti
subgrade scenario.

Subgrade
Scenario Sub-Ballast Solution

Top of the Subgrade
(Depth = 0 m) Rail

U2 ε22 S22 U2

mm % kPa mm

Itapeti soil

Itapeti soil without sub-ballast 5.9 0.199 72.2 6.5
RFBW 1 + ITA 5.1 0.168 66.1 6.1
RFBW 2 + ITA 4.9 0.155 62.6 5.7

RFBW 1/ITA/CEM 4.5 0.118 57.8 5.1
RFBW 2/ITA/CEM 4.6 0.124 59.1 5.2
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Regarding the peak subgrade vertical displacements, it was noticed that the scenar-
ios without stabilisation with RFBW and/or cement resulted in approximately 5.9 mm.
However, these values decreased to 5.1 and 4.9 mm when stabilised solely with RFBW1 or
RFBW2, respectively. This difference may be attributed to the higher amount of hematite
and quartz in the RFBW2 material. The incorporation of 3% cement further reduced the
displacements to 4.5 mm and 4.6 mm for RFBW1 and RFBW2, respectively. This reduction
may be attributed to the more homogeneous mixture achieved with cement stabilisation.

These values align with the peak rail displacements, which corresponded to 6.5, 6.1, 5.7,
5.1 and 5.2 mm, for the same scenarios, respectively. The high displacement values observed
can be attributed to the heavy haul operational conditions simulated, characterised by
heavy axle loads. These conditions differ from the typical conditions found in Western
Europe, where the axle loads are generally lower. Additionally, the relatively high dynamic
amplification factor assumed, under the assumption of well-maintained track and trains,
further contributed to these elevated displacement values.

In terms of strains, it can be noted that the vertical strain at the top of the subgrade
decreased from 0.199% to 0.155% with the application of the sub-ballast layer stabilised
with RFBW and to 0.118% with chemical stabilisation using 3% cement. Stabilisation with
the RFBWs also contributed to a decrease in the vertical stresses at the top of the subgrade
from 72.2 kPa to 66.1 and 62.6 kPa for RFBW1 and RFBW2, respectively. Further stress
reduction is achieved with 3% cement stabilisation, resulting in stresses of 57.8 and 59.1 kPa
for RFBW1 and RFBW2, respectively. These values align with the findings from Trevizo [64],
Li [65], and Xu et al. [66].

It Is important to note that the scenario under evaluation assumed soft (highly de-
formable) subgrade soil. The significant influence of the subgrade on track displacements
is widely acknowledged. To verify this assertion, further numerical simulations were
conducted, substituting the soft Itapeti subgrade soil with a stiff SPAB subgrade soil.
Figures 12–14, along with Table 8, illustrate the outcomes of the displacement, strain, and
stress in the subgrade and rails when various sub-ballast alternative solutions with RFBW
are applied over stiff subgrade soil.

The observed trends in the latter scenarios indicate lower track and subgrade displace-
ments for all the investigated scenarios, as anticipated. The rail displacements reduced
from 3.3 mm without a sub-ballast layer to 2.9 mm, with a sub-ballast stabilised using
RFBWs and 3% cement. The difference between the values obtained for each material
solution was also lower than in the last case. In other words, a higher load-bearing-capacity
subgrade soil provides a stiffer foundation, which contributes to a better track mechanical
performance, with or without sub-ballast gradation or chemical stabilisation. Consequently,
the contribution of RFBW sub-ballast stabilisation proves more effective for soft track
subgrade soils. In addition, the alternative RFBW solutions could decrease the strain values
at the top of the subgrade from 0.074% to 0.070%.
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Table 8. Summary of the vertical displacements (U2), strains (ε22), and stresses (S22) for the SPAB
subgrade scenario.

Subgrade
Scenario Sub-Ballast Solution

Top of the Subgrade Rail

U2 ε22 S22 U2

mm % kPa mm

SPAB soil

SPAB soil without sub-ballast 2.7 0.074 75.0 3.3
RFBW 1 + ITA 2.5 0.079 70.5 3.4
RFBW 2 + ITA 2.4 0.080 67.6 3.2

RFBW 1/ITA/CEM 2.3 0.067 63.8 2.9
RFBW 2/ITA/CEM 2.3 0.070 64.8 3.0

The resulting mixture demonstrated potential for use as sub-ballast, especially when
stabilised with a low percentage of cement (3%). The use of cement can be advantageous
mainly when there are not local materials meeting the specifications for the construction
of a new sub-ballast layer and when the maintenance is being performed with a RMFRM
which may not compact the sub-ballast layer efficiently.

In other words, utilising a small amount of cement can still offer greater sustainability
compared to transporting suitable soils over long distances from quarries or deposits to the
construction site. Additionally, alternative binders like lime, bio-binders, or bio-asphalts,
as well as binders from reclaimed asphalt mixtures, present lower carbon CO2 emissions
during manufacturing and offer enhanced performance when applied in road and railway
infrastructure [3,5,14,67].

The mixture potential is also attributed to the presence of stable minerals such as
hematite, kaolinite, and goethite, which are relevant to sub-ballast layer applications, as
reported by Castro et al. [20] and Guimarães et al. [38]. Additionally, the coarse grains
contribute to a higher stability and stiffness and better interlocking within the material.
The RFBW materials also demonstrated a potential to mitigate peak rail displacement,
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ensuring the limits of 6.35 mm set by AREMA [34] were not exceeded. The grain size
distribution prescribed for the use of RMFR machinery ensured a better behaviour of the
track structure as recommended and in agreement with the studies conducted by Schilder
and Piereder [19], Auer et al. [22], Mundrey [23], and Fu et al. [42].

According to Mundrey [23], it is common to encounter poor subgrade conditions
along railway tracks requiring extensive maintenance, such as replacing the sub-ballast
material or constructing a new sub-ballast layer. However, soil deposits, aggregate stone
crushing, or asphalt mixture plants are not always readily available to meet the demand in
the field.

The results in this paper highlight the characteristics of alternative materials and the
possibility of recycling and reusing degraded ballast from tracks mixed with local soils for
subgrade rehabilitation. This can be accomplished using traditional earthwork machinery
or advanced RMFRMs, thereby reducing environmental impacts and the costs for the
railway operator. This alternative solution holds particular interest for heavy haul tracks
transporting iron ore, as it has the potential to increase the load-bearing capacity of the
track structure and influence the track modulus, thereby mitigating rail displacements.
The developed modelling approach effectively captures the observed trends and results
concerning stress, displacements, and strains, aligning with some studies found in the
literature presenting track field monitoring, instrumentation data, and numerical modelling
results, particularly on the stresses at the top of the subgrade and rail displacements [50].

Thus, despite the analysis being conducted in a plane strain state (2D), which neglected
the stress and strain contributions from the components along the z-axis (the direction of
the track), such as adjacent sleepers and the rail, the developed numerical model provided
accurate insights into the mechanical behaviour of the railway track when applying a
sub-ballast layer with RFBW alternative materials. These findings can assist in the design,
construction, and maintenance of the track.

5. Conclusions

Mixtures incorporating RFBW material demonstrate significant potential for use as
sub-ballast due to their mineralogical composition, including iron ore, kaolinite, and
quartz. However, chemical stabilisation with 3% cement can further enhance the structural
conditions of the track. However, the solutions proved to be more efficient for soft subgrade
soil than on a stiffer soil foundation.

Despite the fact that the use of cement is not commonly sustainable, it may become
more sustainable when there are no available materials near the construction site, which
would otherwise demand higher carbon emissions from the dump trucks used to transport
materials over long distances. In addition, cement may be replaced with different binders
such as lime, bio-binders, bio-asphalts, or binders from reclaimed asphalt mixtures, consid-
ering the well-known lower carbon CO2 emissions in their manufacture and reuse and the
acceptable behaviour they provide when applied in pavements and railways.

The physical and chemical analyses of the RFBW material revealed its pre-dominant
composition of quartz, albite, and hematite. This not only signifies the presence of iron ore
but also indicates the presence of fine material resulting from the breakdown and wear of
ballast particles.

The developed 2D numerical model effectively assesses the non-linear behaviour of
these materials by applying parameters derived from laboratory cyclic triaxial tests for the
ballast, sub-ballast, and subgrade with a lower computational cost than a 3D numerical
model. The stress, strain, and displacement trends aligned well with the characteristics of
the materials evaluated. The magnitudes of the stresses and displacements were considered
realistic, despite not considering the rail longitudinally and adjacent sleepers using this
numerical approach.

This study contributes to proposing alternative sub-ballast materials through the
recycling and reuse of fouled ballast waste, focusing on more productive and efficient
rehabilitation methods such as the use of RMFRM equipment. It could be concluded that
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the combined application of both solutions has a high potential to enhance the sustainability
of railway transportation.
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