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Abstract: In the realm of transportation system management, various remote sensing techniques have
proven instrumental in enhancing safety, mobility, and overall resilience. Among these techniques,
Light Detection and Ranging (LiDAR) has emerged as a prevalent method for object detection,
facilitating the comprehensive monitoring of environmental and infrastructure assets in transportation
environments. Currently, the application of Artificial Intelligence (AI)-based methods, particularly
in the domain of semantic segmentation of 3D LiDAR point clouds by Deep Learning (DL) models,
is a powerful method for supporting the management of both infrastructure and vegetation in
road environments. In this context, there is a lack of open labeled datasets that are suitable for
training Deep Neural Networks (DNNs) in transportation scenarios, so, to fill this gap, we introduce
ROADSENSE (Road and Scenic Environment Simulation), an open-access 3D scene simulator that
generates synthetic datasets with labeled point clouds. We assess its functionality by adapting and
training a state-of-the-art DL-based semantic classifier, PointNet++, with synthetic data generated by
both ROADSENSE and the well-known HELIOS++ (HEildelberg LiDAR Operations Simulator). To
evaluate the resulting trained models, we apply both DNNs on real point clouds and demonstrate
their effectiveness in both roadway and forest environments. While the differences are minor, the best
mean intersection over union (MIoU) values for highway and national roads are over 77%, which are
obtained with the DNN trained on HELIOS++ point clouds, and the best classification performance
in forested areas is over 92%, which is obtained with the model trained on ROADSENSE point clouds.
This work contributes information on a valuable tool for advancing DL applications in transportation
scenarios, offering insights and solutions for improved road and roadside management.

Keywords: deep learning; forest roads; synthetic LiDAR; 3D scene simulator

1. Introduction

Light Detection and Ranging (LiDAR) technology has been successfully applied in
many fields in recent decades, including architecture and civil engineering [1]. By identi-
fying objects or regions in a point cloud, it is possible to extract their geometric features
and infer information about the real world [2]. Conducting a health analysis as well as
determining stability and other physical properties that can be inferred from LiDAR point
clouds are the main focus areas in many research works [3]. It is important to highlight
the applicability of LiDAR, especially for infrastructure inventory and management, based
on semantic segmentation [4–6], where it is crucial to overcome the current limitations
of technology related to the demanding costs and workforce linked to the huge datasets
obtained. A three-dimensional model analysis can also be used to detect road safety issues
related to sight distance on sharp vertical curves and horizontal curves. These visibility
limitations can create accident-prone areas and may require corrective measures, such as
reducing the permitted speed [7].

Although there are several works that have performed LiDAR point cloud segmenta-
tion in forest and transportation environments through heuristic and traditional Machine
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Learning (ML) methods, DL-based methods have been proven as ideal tools for these
specific types of works [8]. DL-based methods for segmenting LiDAR point clouds into
road assets have evolved into three main types: projection-based, discretization-based, and
point-based methods [9]. Projection-based approaches generate images from original point
clouds, apply Convolutional Neural Networks (CNNs) to segment pixels within these
images, and then transfer the results back to the original point cloud [10]. However, these
methods are limited by the perspective of the subtracted image, hindering a comprehensive
study of the complete shape of each object in the point cloud.

Discretization-based methods utilize algorithms, such as voxelization, to discretize the
original point cloud, creating image-like data from the grid information stored in each voxel.
These images are often classified using CNNs and extended to 3D CNNs [11]. Despite
their effectiveness, these methods face challenges in terms of memory and computational
resources, especially in larger scenarios where the cubic relationship between memory
needs and the size of the target point cloud can be impractical [12].

Point-based methods focus on the spatial coordinates of each point in the point
cloud. PointNet [13] is a pioneering DL model in this category, employing multiLayer
perceptron (MLP) for point feature extraction. Subsequent solutions based on PointNet
include point-wise MLP methods, like PointNet++ [14], which applies PointNet hierarchi-
cally in the spatial domain to learn features at different scale levels, and RandLA-Net [12],
which was designed for large-scale point clouds. Point convolution methods, such as
PCCN [15] and KPConv [16], propose convolution operations for 3D point sets. Addition-
ally, RNN-based methods, as exemplified by Fan et al. [17], and graph-based methods,
demonstrated by Shi et al. [18], employ Recurrent Neural Networks (RNNs) or graph net-
works, respectively. Point-wise methods have been applied to segment point clouds from
transport infrastructures, with examples in road segmentation and object detection [19–24].

Given the limited number of studies focused on the classification of real LiDAR point
clouds exclusively trained on synthetic data, the simulation of augmented datasets plays a
pivotal role in the training process of DL models. These studies typically adopt two distinct
perspectives: aerial, represented by ALS, and terrestrial, encompassing TLS-MLS LiDAR
point clouds.

To the best of our knowledge, state-of-the-art ALS simulators rely on the physical
characteristics of the laser beam, the reflectance properties of the target surface, and the
geometric shape of the trajectory through the 3D virtual world. In some works, the laser is
considered as an infinitesimal beam with zero divergence in order to minimize the complex-
ity of the ray-tracing procedure [25,26], and in other works, full-waveform laser scanners
are considered, and the full waveform of the backscattered signal is simulated [27,28].
Kukko et al. [29] developed a more sophisticated LiDAR simulator with different point of
view assumptions apart from ALS as TLS or MLS, and it considers more properties about
the physics concerning the laser behavior in the forestry domain. Kim et al. [30] developed
a similar model but with radiometric simulations and clear 3D object representations.

TLS simulations are mainly focused on studies with different and specific needs. One
case is seen in the work presented by Wang et al. [31], where a simple model with no beam
divergence is considered in order to obtain leaf area index inversion. The methodology
presented by Hodge et al. in [32] includes a more detailed model of beam divergence and a
full backscattered waveform simulation for TLS measurement error quantification.

It is also worth mentioning other recent and more complex ALS simulators, such as
Limulator 4.0 [33] or HELIOS [34] and its enhanced version, HELIOS ++ [35], where both
versions were proven useful in both aerial and terrestrial points of view. HELIOS++ offers a
versatile balance between computational efficiency and point cloud quality, accommodating
a wide range of virtual laser scanning (VLS) scales. Users can easily configure simulations,
combining different scales within a scene, such as modeling intricate tree details alongside
a forest represented by voxels. The high usability of this simulation software makes it
easy to script and automate workflows, linking seamlessly with various external software,
unlike most of the previously mentioned simulators.
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As seen in further sections, all of the synthetic scenarios simulated with our method-
ology do not have any point of view or trajectory for a LiDAR device. Nevertheless, the
digital model is generated completely from scratch without considering any of the physical
properties present in a real case of LiDAR measurement.

The main objective of this research work consists of designing and developing a
synthetic 3D scenario and point cloud data generator that provides cost-effective labeled
datasets of roadside environments to be used as an input for DL semantic classifiers.
The simulator is assessed by using the obtained datasets to train the well-known CNN
Pointnet++ and comparing the classification results with those obtained with the established
HELIOS++ simulator. The main contributions to the state of the art consist of helping road
managers reduce time-consuming and demanding work to achieve labeled 3D point cloud
datasets to train DL classifiers to support the elaboration of an accurate road inventory for
improved safety and asset management.

The structure of this paper is as follows: Section 2 provides insights into the archi-
tecture, design considerations, and implementation details of ROADSENSE that bear
significance for scientific applications; Section 3 illustrates an application example of
ROADSENSE; Section 4 showcases and discusses the results; and, lastly, Section 5 concludes
this work.

2. Implementation of ROADSENSE

ROADSENSE (Road and Scenic Environment Simulation) is a novel 3D scene simu-
lator that generates synthetic scenarios and data entirely from scratch to serve as input
for DL-based semantic classifiers in road environments, including roadside forest areas.
Including 3D point clouds of roads in traditional surveying methods helps road managers
directly characterize infrastructure from geometric features, permitting them to perform
safety assessments, plan road interventions, and simulate the effects of retrofitting activities.

In this section, the principles and interfaces of ROADSENSE are introduced, emphasiz-
ing the implementation details that hold significance for scientific utilization and gaining
understanding of the produced synthetic data. The key components of ROADSENSE’s
performance can be categorized into two sub-sections: the geometric design (Section 2.1)
and the comprehensive architecture and modules (Section 2.2).

2.1. Geometric Design

ROADSENSE is designed to primarily produce realistic point clouds. This serves to
facilitate the training of DL models for semantic segmentation tasks across varied scenarios,
encompassing forested areas and road networks.

Furthermore, ROADSENSE is an improved version of the work presented in [36],
which consists of three steps: (i) the generation of a digital terrain model (DTM), (ii) the
simulation of roadways and their assets according to official road design norms, and, finally,
(iii) the positioning of trees along suitable regions of the DTM. Regardless of the type of
point cloud, the initial stages involving the creation of the DTM and tree generation remain
consistent. Once these initial steps are completed, the sole differing aspect between the two
scenarios is the road and its main assets.

Innovatively, our simulator enhances realism by incorporating road cross section
definitions, addressing a limitation observed in a prior work [36]. The previous model
placed all road stretch points at the same height, hindering DL model learning due to
difficulties in distinguishing equivalent areas. To overcome this, we introduced a vertical
pumping feature in the height profile of road points (Figure 1), ensuring improved accuracy
and realism in simulated scenarios.
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2.2. Architecture and Modules

All changes within the 3D scenarios generated by ROADSENSE are monitored by the
configuration file, from now on referred to as config file, which is the central element and is
located inside the config folder. The config file contains all of the parameters required to
simulate the point clouds, considering all different scenarios and settings, and it is written
in a .txt format, which can be easily modified using a text editor. All parameters defined in
the config file are summarized as follows:

• seed (index 0): This is a random seed used in intermediate randomizers. Options: “None”
or “integer number”. If the None option is selected, the simulator will consider the
time.time() value. Specifying an int number will make all clouds and their features equal.

• road (index 1): This indicates whether the resulting point clouds will have a road or
not. Options: “True” or “False”.

• spectral_mode (index 2): This parameter is used in the case of performing a spectral
simulation on the resulting point clouds. Options: “True” or “False”. If True is set, the
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simulator will take longer to generate each point cloud since there are several interme-
diate calculations, like the normals estimation or the virtual trajectory simulation.

• road_type (index 3): This indicates the type of road to simulate. Options: “highway”,
“national”, “local”, or “mixed”. If the “mixed” option is selected, the resulting point
cloud dataset will consist of a mix of different types of roads.

• tree_path (index 4): This represents the absolute path to the directory where all of the
tree segments are stored.

• number_of_clouds (index 5): This represents the total number of point clouds that
will be simulated. It must be an integer number greater than zero.

• scale (index 6): This is a geometric scale of the resulting point cloud. Bigger scales will
result in bigger sized point clouds but with less point densities. It must be an integer
number greater than 0.

• number_of_trees (index 7): This represents the total number of trees per cloud. It
must be an integer number greater than 0.

• number_of_transformations (index 8): This is the number of Euclidean transforma-
tions that will suffer each tree segment. It must be an int number. If the total number
of tree segments specified in the “tree_path” is less than the “number_of_trees”, then
the simulator will randomly repeat all segments until completion.

• X_buffer (indexes 9–11): This represents the width of the “X” element in meters. “X”
can be “road”, “shoulder”, or “berm”. It must be a float number greater than 0.

• slope_buffer (index 12): This represents the width of the slope in meters. Options:
“float number greater than 0” or “random”. If “random” is set, then there will be
slopes with different widths in the final point clouds.

• noise_X (indexes 13–18): This represents the noise threshold in each XYZ direction per
point of the “X” element. “X” can be “DTM”, “road”, “shoulder”, “slope”, “berm”, or
“refugee_island”. It must be in the “(x,y,z)” bracket notation, where x, y, and z must be
float numbers.

• number_of_trees_refugee_island (index 19): This represents the number of trees in
the median strip. It must be an integer number.

• number_points_DTM (index 20): This represents the number of points in the edge of
the DTM grid. It should be ~10 times the scale. It must be an integer number greater
than 0.

• vertical_pumping (index 21): This indicates whether the simulated road will have
vertical pumping or not, i.e., if the points closer to the axis road will have different
heights than the ones that are further. Options: “True” or “False”.

Also, the different functionalities that ROADSENSE requires to perform each inter-
mediate operation, such as the generation of every road element or the vertical pumping
of the road, are defined under the utils folder. The main modules and functions can be
summarized as follows:

• DTM_road_wizard.DTM_road_generator: This function generates all road-related
geometries from scratch.

• cross_section.X_vertical_pumping: This function generates some sort of ground
elevation in the road-related parts of the “X” road type, i.e., the points closer to the axis
road will have a different height than the ones that are further. “X” can be highway,
national, or mixed roads.

• reading_trees.read_segments: This function reads and stores external tree segments.
• road_generator.Road_Generator: This function generates all ground components of

the road (except traffic signals and barriers).
• signal_generator.create_X_signal: This function generates signals regarding its “X”

type. “X” can be “elevated” for elevated big traffic signals in highway and mixed
roads or “triangular”, “circle”, or “square” for shaped vertical signals.

• tree_wizard.tree_generator: This function performs data augmentation with the
previously read tree data and generates new tree segments.
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• trajectory_simulation.compute_spectral_intensity: This function draws a trajectory
over the generated 3D scene and performs a spectral simulation.

3. Case Study

The full workflow of this procedure is illustrated in Figure 3. As a concise overview of
the subsequent subsections, the methodology is structured in the following manner: First,
LiDAR point clouds of real scenarios are acquired with different scanners in the study area
and segmented in order to obtain a reference validation dataset to evaluate the performance
of the proposed method. Then, a bunch of datasets comprising 3D scenes are generated us-
ing the simulator software under different conditions. Finally, a state-of-the-art DL model
is trained with the previously obtained synthetic data and used to perform semantic classi-
fications of the real point clouds acquired in the study area. This procedure is also followed
using HELIOS++, which simulates a different input dataset for the DL model training stage
in order to compare the results obtained in our work with a well-established simulator.
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3.1. Real MLS Point Cloud Acquisition

To assess the suitability of 3D scene simulation for specific applications, two distinct
scenarios were chosen: dense forests, comprising a mixture of various tree species, shrubs,
and undergrowth, which were scanned using Terrestrial Laser Scanning (TLS) devices, and
highway roads, which were surveyed with a Mobile Laser Scanning (MLS) system.

The TLS forest data collection sites are situated within the O Xurés region of Galicia,
Spain, as depicted in Figure 4.

The TLS data acquisition process employed two distinct sensors, namely Riegl VUX-1UAV
and Riegl miniVUX-1DL, referred to hereafter as VUX and miniVUX, respectively. Detailed
technical specifications for each sensor are provided in Table 1.

Conversely, the road case study involved a labeled dataset comprising point clouds
and images that were collected along a 5 km stretch of highway in Santarem, Portugal.
These MLS road data were collected using an Optech Lynx Mobile Mapper M1 system
equipped with two LiDAR sensors capable of rotating at a rapid rate of up to 200 Hz,
enabling a remarkable number of 200 scanning cycles per second [39]. Each LiDAR sensor
within this system boasts a laser measurement rate of up to 500 kHz, achieving a range
measuring precision of 8 mm. The navigation system utilized for this MLS data collection
process was provided by Applanix [40], featuring an Inertial Navigation System (INS), two
Global Navigation Satellite System (GNSS) antennas, and an odometer.
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Table 1. Technical characteristics of laser scanning systems [37,38].

miniVUX-1DL VUX-1UAV

Field of view 46◦ ± 23◦ off-nadir 330◦

Scanning pattern Circular Linear
Pulse repetition frequency 100 kHz 550 kHz

Wavelength 905 nm (NIR) 1550 nm
Beam divergence 1.6 × 0.5 mrad 0.5 mrad

Footprint size at 100 m 160 × 50 mm 50 mm
Accuracy 15 mm at 50 m 10 mm at 150 m
Precision 10 mm at 50 m 5 mm at 150 m

For the purposes of this study, the scan frequency was set to its maximum of 200 Hz,
and the laser measurement rate was maintained at 250 kHz for both sensors. A single
revolution of one sensor generated a scan comprising 1250 points, resulting in an angu-
lar resolution of 0.288 degrees. In practical terms, this equates to a point separation of
approximately 13 mm within the same scanning line at a range of 2.5 m.

3.2. Validation Data of Forest Scenarios

The accuracy of ground truth, particularly in the context of LiDAR data within forest
environments, is often uncertain and is typically assumed rather than precisely known [41].
Specifically, the TLS forest data of this study consist of complex plots with diverse vegeta-
tion elements at various heights, which are challenging even for human classifiers. Figure 5
illustrates this complexity, where the close proximity of multiple trees and shrubs makes it
difficult to discern individual points.

To address this challenge, we employ the algorithm introduced in [42], which identifies
clusters representing individual and multiple trees. While existing methods in the state of
the art address the semantic segmentation of individual trees within TLS forest data, the
selected algorithm allows for the collection of vegetation segments irrespective of their type,
whether represented by trees or shrubs. Also, for the task of retrieving a validation dataset
in this section, only semantic information regarding the “vegetation” class is required
instead of instance information of each individual element, so all resulting segments are
merged in one single collection, reducing classification errors while enhancing the reliability
of the validation data. However, this approach is only applicable to forested areas, so road
point clouds, which are easier to segment manually, must follow a different process.
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crowns and undergrowth makes it challenging to distinguish points belonging different elements.

Now that the process of obtaining a single validation point cloud has been explained,
the relevance of DL-based classifiers is notable in these tasks, as they have been proven
to be better in terms of time cost and overall result goodness than other manual or
ML-based methods.

3.3. Generation of Synthetic Datasets

As mentioned previously, DL models need large and labeled datasets for their training
stages, which is a requirement that can be difficult to fulfill depending on the case. To
overcome this situation, simulating artificial data can be useful if there is enough similarity
between synthetic and real data.

Some examples of point clouds generated with the version 1.0 of the ROADSENSE
software are freely available in sharepoint [43].

Since the point clouds used for this study can be grouped as highways and national
roads and forestry infrastructures, the generation of synthetic data is carried out within
these environments. The differences between the types of roads considered rely on the
presence or absence of certain elements, such as the number of platforms, lanes, or median
strips. A comparative view of these types of roads can be found in Figure 6.

On the other hand, the well-established virtual laser scanning (VLS) simulator HELIOS++
is used to generate an alternative dataset to train the PointNet++ network. This software takes
a 3D scene as an input and performs a full-wave LiDAR simulation, which outputs a 3D point
cloud that is hypothetically seen by the specified scanner.

To use this software, it is required to define a survey XML file which contains general
VLS information, and it is also necessary to define other XML files, like platform, scene,
and scanner files. The definition of the scene XML file is the most important and difficult
among all, since all semantic elements must be manually specified one by one with their
coordinates and spatial transformations, if applied. This proves the fact that each dis-
crete element must be previously defined from scratch, as carried out with ROADSENSE,
or subtracted from an external data source. One way to carry this out is by using the
0.3.1 version of the OSM2World software [44], which creates 3D models of the world from
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OpenStreetMap (OSM) [45] data. However, these data lack terrain elevation, and the study
cases of this work are underrepresented since only few semantic classes can be retrieved
from the OSM data. Elements like barriers, traffic signals, tree varieties, and elevations
of the terrain should be added separately to the OSM2World output, because they are
conditions that hinder the fluency of the proposed methodology.
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By setting the RIEGL VUX-1UAV as the main scanner device in the survey, whose
physical characteristics are reflected in Table 1, onboard of a terrestrial vehicle at differ-
ent speeds, synthetic forest and road datasets are generated. Some examples are shown
in Figure 7, and Table 2 offers a comparative view of the requirements and main character-
istics of both simulators.

Table 2. Requirements and main characteristics of HELIOS++ and ROADSENSE simulators.

Features HELIOS++ ROADSENSE

Trajectory independent No Yes
Performs full-wave simulation Yes No

Scene creation flexibility No Yes
Performs multispectral simulation Yes Yes

Not dependent on laser scanner parameter setup No Yes
Provides semantic information Yes Yes

Not dependent on prior labeling procedures No Yes
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3.4. Semantic Segmentation with DNN Model

As shown in the related work, there are several architectures that perform semantic
classification on point clouds, but only a few of them work directly with the point cloud
itself and not with discretized representations or images. Among all point-wise meth-
ods, PointNet is considered as the pioneer, and its enhanced version, PointNet++, was
tested in many cases, providing state-of-the-art results for object detection and semantic
classification [46]. Accordingly, PointNet++ is the model selected to perform semantic
classification in real scenarios from synthetic data learning.

The original PointNet applies a function, f, that creates a vector of an unordered set
of points:

f (x1, x2, . . . , xn) = γ(Maxn
i=1{h(x)}), (1)

where γ and h represent MLP (multilayer perceptron). The architecture of PointNet++
includes several key layers related to sampling, feature extraction, grouping, and segmen-
tation, which are based on PointNet. The sampling layer is focused on efficiency; thus,
it selects a subset of points from the input. This small subset of points is used to extract
features related to the fine detail of the objects. The following layer is a grouping that con-
structs local region sets using the Farthest Point Sampling algorithm to obtain higher-level
features. The final layer based on PointNet performs the classification based on feature
aggregation. This DNN was first used for classifying the Scannet dataset [47], and, because
of this, the internal architecture of the model was designed to fit that purpose. This dataset
is mainly made of 3D scanned objects with small point densities, and this is the reason why
the authors of PointNet++ considered a total of 8192 entries for their model. However, this
is not enough in scenes where there are high point densities spread over big spaces like
the synthetic and real environments studied in this work. In this work, four tests were
conducted using modifications of the original PointNet++ architecture to see how sensitive
the DNN is to the input data in each scenario. Tables 3 and 4 include a definition of the
default and modified architectures of PointNet++.

As the number of road assets considered in this work exceeds the number of tree
species, the variability of the synthetic road point clouds is higher than that of the nearby
forest point clouds. Thus, a different planification of the training stages must be developed
for each scenario. So, the synthetic training datasets that were simulated were made by a
total of 400 road point clouds, with 200 of each scenario, while just 50 samples were needed
to train the DNN in forest environments. This difference is due to the number of classes
that the DNN needs to learn, which consists of 7–8 classes and just 2 classes in road and
forest environments, respectively.
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Table 3. The key properties of the default architecture of PointNet++. Each layer receives 32 sample
points and their associated tensors, which contain the features to be used for the classification of the
input cloud. The N_Points, Radius, and N_samples columns show the different sizes of PointNet
characteristics for each type (ID) of layer.

Downsampling

Layer ID Point Features N_Points Radius

0 [7,32,32,64] 1024 0.1
1 [67,64,64,128] 256 0.2
2 [131,128,128,256] 64 0.4
3 [259,256,256,512] 16 0.8

Upsampling

4 [1024,512,512,256] 16 0.1
5 [256,256,256,256] 64 0.2
6 [64,128,256,128] 256 0.4
7 [16,128,128,128] 1024 0.8

Table 4. The modifications of PointNet++ basic architectures. As an extension of Table 2, the first
3 columns represent whether each modified version of PointNet++ incorporates the specified layers.
The symbol ✓ indicates the presence of the layer in question in the modified version.

4-Layer
Version

5-Layer
Version

6-Layer
Version Layer ID Point Features N_Points Radius

✓ ✓ ✓ 0 [7,32,32,64] 65,536 0.1
✓ ✓ ✓ 1 [67,64,64,128] 8192 0.2
✓ ✓ ✓ 2 [131,128,128,256] 2048 0.4
✓ ✓ ✓ 3 [259,256,256,512] 1024 0.5

✓ ✓ 4 [512,512,512,1024] 512 0.7
✓ 5 [1024,1024,1024,2048] 256 0.8

✓ ✓ ✓ 6 [256,4,128,128] 256 0.1
✓ ✓ ✓ 7 [1024,64,128,128] 512 0.2
✓ ✓ ✓ 8 [2048,64,128,128] 1024 0.4
✓ ✓ ✓ 9 [4096,128,256,128] 2048 0.5

✓ ✓ 10 [8192,256,256,256] 8192 0.7
✓ 11 [65536,512,512,256] 65,536 0.8

Finally, the GPU NVIDIA A1000 and 40 GB of HBM2 of the FinisTerraeIII (FTIII) were
used during this stage, and it took 1 h per architecture to train over 100 epochs from scratch.

4. Results and Discussion
4.1. Segmentation Metrics

In order to evaluate the performance of the neural network for semantic classification
during the training validation and testing stages, we obtain the following well-established
quantitative parameters that are frequently used for both image and 3D scene
segmentation [48]: overall accuracy (OA), mean accuracy (MA), mean loss (ML), intersec-
tion over union (IoU) and mean intersection over union (MIoU).

It is worth mentioning that the mean values, i.e., MA and MioU, take into account
their values per class in the dataset and compute their averages, complementing the overall
accuracy and the intersection over union. This improves the confidence for the classification
of unbalanced data, and the highest MIoU value is used to estimate when the DNN achieved
its best performance.

4.2. Architectures Training

Based on [49,50], over 100 epochs, the DNN model is trained with synthetic data in
its four different architecture modifications, and to analyze its training performance, the
metrics of the previous subsection are computed after each epoch. Also, to test the model,
a total of five labeled point clouds of real scenarios are considered in each case.

The four different DNN configurations are tested at four different scenarios, and
the metrics are calculated from random samples, as shown in Tables 4–6. Since smooth-
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ing is a method that involves finding a sequence of values that exhibits the trend of a
given set of data [51], the obtained graphs are smoothed to overcome the variability, as
depicted in Figures 8–10. These figures present the results for the training and valida-
tion of PointNet++ in different environments using synthetic point clouds generated by
ROADSENSE as input data. The figure includes the results using (a) the default architec-
ture of PointNet, (b) four PointNet-like modified layers, (c) five PointNet-like layers, and
(d) six PointNet-like layers. The overall accuracy (OA) is depicted in blue, whereas the
mean accuracy (MA) is depicted in yellow. Other metrics, such as the mean loss (ML) and
mean intersection over union (MIoU), are presented in red and green, respectively. The
context of the results is as follows: Figure 8 is focused on a highway environment, Figure 9
is focused on national roads, and Figure 10 is focused on a forest environment.

Table 5. Summary of results in highway environments with ROADSENSE point clouds used as input
data. Class labels are as follows: (0) trees, (1) DTM, (2) circulation points, (3) barriers, (4) signals,
(5) refuge island, (6) slope, and (7) berm. Bold numbers represent the highest MIoU score.

Default 4 Layers 5 Layers 6 Layers

OA (%)
MA (%)

98.113 97.768 97.440 98.051
92.463 96.417 93.832 96.925

IoU per
class (%)

0 10.074 75.910 76.022 10.074
1 2.075 96.290 95.014 2.075
2 98.072 97.932 96.420 98.072
3 1.002 95.010 95.227 1.002
4 64.213 80.009 98.092 64.213
5 30.026 22.069 31.440 30.026
6 0.000 0.000 0.000 0.000
7 75.363 72.073 68.962 75.363

MIoU (%) 35.103 67.412 70.147 65.547

Table 6. Summary of results in national road environments with ROADSENSE point clouds used as
input data. Class labels are as follows: (0) trees, (1) DTM, (2) circulation points, (3) barriers, (4) signals,
(6) slope, and (7) berm. Bold numbers represent the highest MIoU score.

Default 4 Layers 5 Layers 6 Layers

OA (%)
MA (%)

87.019 88.581 97.533 96.870
80.839 82.336 94.892 96.347

IoU per
class (%)

0 21.031 65.915 85.072 82.007
1 0.000 0.000 0.000 0.000
2 92.762 91.057 93.996 95.044
3 71.091 75.002 70.671 69.200
4 31.059 66.931 82.552 91.404
6 11.12 62.448 83.683 83.726
7 23.331 78.798 79.385 77.481

MIoU (%) 35.771 62.879 70.766 71.266

Additionally, the same experiments were conducted with the point clouds generated
by HELIOS++, and the computed metrics are reflected in Figures 11–13 and Tables 7–9.
The figures show the resulting metrics with the same color code as that in the previous
ROADSENSE case, focusing also on highway (Figure 11), national road (Figure 12), and
forest environments (Figure 13).
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Figure 9. Training and validation of PointNet++ in national road environments with ROADSENSE
point clouds used as input data.
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Figure 11. Training and validation of PointNet++ in highway environments with HELIOS++ point
clouds used as input data.
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Figure 12. Training and validation of PointNet++ in national road environments with HELIOS++
point clouds used as input data.
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Table 7. Summary of results in forest environments with ROADSENSE point clouds used as input data.
Class labels are as follows: (0) trees and (1) DTM. Bold numbers represent the highest MIoU score.

Default 4 Layers 5 Layers 6 Layers

OA (%)
MA (%)

94.385 98.662 99.283 95.979
87.976 96.370 96.594 89.102

IoU per
class (%)

0 75.092 95.281 92.001 91.085
1 80.270 90.310 92.312 89.271

MIoU (%) 77.681 92.796 92.157 90.178

Table 8. Summary of results in highway environments with HELIOS++ point clouds used as input
data. Class labels are as follows: (0) trees, (1) DTM, (2) circulation points, (3) barriers, (4) signals,
(5) refuge island, (6) slope, and (7) berm. Bold numbers represent the highest MIoU score.

Default 4 Layers 5 Layers 6 Layers

OA (%)
MA (%)

90.841 86.804 79.798 95.119
61.948 63.124 65.798 82.106

IoU per
class (%)

0 30.527 75.842 75.432 76.028
1 91.280 96.016 94.942 95.796
2 97.248 97.019 96.022 97.751
3 55.161 94.043 94.498 93.742
4 64.142 79.554 98.059 64.119
5 59.247 21.800 20.796 29.129
6 0.000 0.000 0.000 0.000
7 88.014 71.180 68.030 75.067

MIoU (%) 65.183 69.959 70.911 71.289

Table 9. Summary of results in national road environments with HELIOS++ point clouds used as
input data. Class labels are as follows: (0) trees, (1) DTM, (2) circulation points, (3) barriers, (4) signals,
(6) slope, and (7) berm. Bold numbers represent the highest MIoU score.

Default 4 Layers 5 Layers 6 Layers

OA (%)
MA (%)

66.383 74.731 73.503 71.715
51.205 53.563 50.655 52.865

IoU per
class (%)

0 50.889 65.035 64.734 71.432
1 0.000 0.000 0.000 0.000
2 92.742 91.031 93.826 84.510
3 90.898 74.449 70.571 68.253
4 50.607 66.465 82.194 85.830
6 30.522 62.012 75.475 73.352
7 52.992 78.766 78.880 70.679

MIoU (%) 57.224 72.321 77.081 75.372

4.3. DNN Performance: Inferences on Real LiDAR Point Clouds

The outcomes of the training phases exhibit remarkable similarity, with the primary
distinction being the convergence time. This is particularly notable as an increase in the
number of network layers enhances the results.

As a common fact, in all three scenarios, the minimum IoU scores were achieved with
the default architecture of PointNet++, and this is because the DNN increased its size as it
used more layers and more feature vectors to learn.

The difference between the MIoUs achieved by the default architecture and the vari-
ants presented in this section is in the range of 15–36% of improvement in the classifications,
which is a phenomenon that supports the idea of using alternative versions and configura-
tions of the hidden layers of the DNN model selected, if withstood by the hardware.
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Some views of each real scenario classified by the best models are shown
in Figures 14–16. Figures 14 and 15 show, respectively, the segmentation results for high-
ways and national roads, with a similar color scheme, as follows: black for circulation
points, light grey for barriers, blue for signals, brown for DTM, orange for berms, dark grey
for refuge islands, and green for vegetation. For forest environments, the color scheme
consists of green and brown colors to represent vegetation and DTM points, respectively.
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The trained models used in these classifications were those that achieved the highest
MIoU values during their training stages.
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When comparing the performances of this methodology applied on the ROADSENSE
and HELIOS++ point clouds and those of other related works, as shown in Table 10, it can
be seen that the MIoU scores achieved by the models proposed in this paper, which are in
the range of 71–93%, outperform the results of other related works in the literature where
other simulators and real data sources were used.

Table 10. Summary of results in forest environments with HELIOS++ point clouds used as input data.
Class labels are as follows: (0) trees and (1) DTM. Bold numbers represent the highest MIoU score.

Default 4 Layers 5 Layers 6 Layers

OA (%)
MA (%)

94.956 91.418 95.169 88.608
68.160 74.094 77.870 65.868

IoU per
classes (%)

0 70.210 85.550 86.605 85.145
1 79.909 90.519 91.824 89.471

MIoU (%) 74.903 87.999 89.176 87.281

The MIoU metrics from other state-of-the-art works shown in Table 11 vary
from ~40% to ~63%, which are significantly lower than the 70–95% range of the results
from the experiments carried out using the methodology in this paper. The main difference
between this work and most of the previous ones is the use of synthetic data to train
a DL model instead of a previous labeling process with real data, which can be highly
time-consuming, even if it is carried out manually by the user or by using a traditional
unsupervised ML method. It is worth mentioning the cases of references [19,24], where the
DL models were trained by mixed datasets composed of both synthetic and real data but
in urban scenes. In these works, there were some classes like “cyclist” or “fence” where
the DL model achieved very low results (~3% and ~21% for IoU, respectively), showing
that the observed MIoU scores were under 45%. Instead, if all classes whose IoU scores
were below 25% were ignored, these works would reach MIoU scores close to ~71%, which
is on the same range as the results offered by PointNet++, which was previously trained
with ROADSENSE.

In contrast, in this paper, PointNet++ was used, which is a point-wise DL model
like the SEGCloud adaptation of [24] or the SqueezeSegV2 network presented in [19].
However, it can outperform many other point-wise classifiers in terms of accuracy due to
improved training strategies and increased model sizes [52], such as the four, five-, and
six-layer adaptations of PointNet++ used in this work. Since the classification metrics on
real environments made by these PointNet++ variants are good enough, it can be assumed
that it is preferable to avoid performing on-site measurements of several point clouds in
real scenarios that can be digitally simulated, either using full geometry generators or VLS
frameworks, like ROADSENSE and HELIOS++, respectively.

These results show that ROADSENSE, along with HELIOS++, can help improve road
management. An application use case of the simulator is related to road safety. Previous
works have shown that the use of unmanned aerial vehicles (UAVs) for data acquisition
on road sections that could present road safety problems is straightforward [7]. Even
though UAVs make it easier for highway managers to collect data soon after identifying
safety issues, national- and European-level regulations restrict flight operations over roads.
ROADSENSE can generate 3D scenarios to test analytic procedures that are suitable for
assessing sight distance on a road section. The resulting methods could be applied to actual
3D models of a road derived from the data captured by the UAV platform.
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Table 11. A segmented comparison between the performance of the proposed methodology applied
on ROADSENSE point clouds and that of other state-of-the-art works. The technology and source
columns refer to the points of view of the collected or simulated training data.

Work Technology Source Task Model Max. MIoU (%)

[23] MLS Real Urban and transport scene segmentation SEGCloud 61.30
[20] MLS Real Road marking segmentation PointNet++ 63.35
[22] MLS Real Urban and transport scene segmentation ARandLA-Net 54.40
[21] ALS Real Urban scene segmentation PointNet++ 44.28
[19]

MLS
Synthetic Urban scene segmentation SqueezeSegV2 44.90

[24] Synthetic Urban scene segmentation SEGCloud based 39.97

(Ours)
MLS HELIOS++

Transport scene segmentation

PointNet++ based

77.08
Forest scene segmentation 89.18

Synthetic ROADSENSE
Transport scene segmentation 71.27

Forest scene segmentation 92.80

5. Conclusions

This study introduces a new open-source 3D scene simulation framework, ROADSENSE.
This simulator is designed to address the scarcity of public 3D datasets in forest and roadway
environments by generating point clouds with semantic information. Its specific focus lies in
facilitating the training of DL-based models that necessitate extensive datasets.

To assess the reliability of the simulator, experiments were conducted. The state-of-the-art
DL model, PointNet++, was trained with synthetic data generated by ROADSENSE and
demonstrated its effectiveness through inferences on real point clouds, yielding favorable
results. Comparable experiments were also conducted using point clouds generated by
the state-of-the-art LiDAR simulator HELIOS++, which, unlike ROADSENSE, requires the
specification of non-trivial inputs such as a predefined 3D scene and physical characteristics
of the simulated LiDAR device alongside a trajectory. Although configuring training datasets
with HELIOS++ demands a notably longer time compared to ROADSENSE, the observed
similarity in the results encourage digital simulations of scenarios with ROADSENSE to
be prioritized over on-site measurements of multiple point clouds in real environments.
This paper addressed how ROADSENSE can benefit road safety assessments by generating
data that are suitable for road managers to evaluate the visibility distance on a road section
or the vegetation condition nearby roads. These generated data allow for the labeling of
assets at a negligible cost compared to other sources and, most importantly, will permit
safety-related methodologies to be applied to actual datasets. As a result, ROADSENSE is a
valuable tool for monitoring green and grey infrastructures within transportation systems
and their surrounding forest environments, whose interaction is critical for anticipating
potential risks concerning roadway health.
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