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Abstract: With the increase in the availability of annotated X-ray image data, there has been an
accompanying and consequent increase in research on machine-learning-based, and ion particular
deep-learning-based, X-ray image analysis. A major problem with this body of work lies in how newly
proposed algorithms are evaluated. Usually, comparative analysis is reduced to the presentation of a
single metric, often the area under the receiver operating characteristic curve (AUROC), which does
not provide much clinical value or insight and thus fails to communicate the applicability of proposed
models. In the present paper, we address this limitation of previous work by presenting a thorough
analysis of a state-of-the-art learning approach and hence illuminate various weaknesses of similar
algorithms in the literature, which have not yet been fully acknowledged and appreciated. Our
analysis was performed on the ChestX-ray14 dataset, which has 14 lung disease labels and metainfo
such as patient age, gender, and the relative X-ray direction. We examined the diagnostic significance
of different metrics used in the literature including those proposed by the International Medical
Device Regulators Forum, and present the qualitative assessment of the spatial information learned
by the model. We show that models that have very similar AUROCs can exhibit widely differing
clinical applicability. As a result, our work demonstrates the importance of detailed reporting and
analysis of the performance of machine-learning approaches in this field, which is crucial both for
progress in the field and the adoption of such models in practice.

Keywords: roentgen; chest; disease; thorax; error; label

1. Introduction

Chest X-ray is one of the most widely available and easy-to-use medical imaging tools
in the diagnostics of lung disease. In no small part, its attractiveness stems from the fact
that it is relatively inexpensive compared to other imaging techniques [1,2]. The quality
of the acquisition process and the subsequent analysis are of crucial importance as more
extensive tests are often only performed for acute cases due to cost or a lack of availability.
A wrongly interpreted X-ray image can lead to a misdiagnosis with severe consequences.

Advances in the field of machine learning (ML) have made it possible, in principle,
to automate the interpretation of X-ray images or at least assist in the process. Interpreting
X-ray images can be quite challenging to do accurately. Junior doctors generally perform
rather poorly on the task [3], and even specialists exhibit significant variability between
readings (intra-personal variability) or one another (inter-personal variability) [4]. The dif-
ference in contrast between an anomaly and normal tissue can often be minimal, and it
is often virtually or literally impossible to distinguish between two conditions from an
X-ray alone, so further investigation may be needed. The goal of the present paper is to
emphasise the importance of interpreting model results by training and evaluating the
diagnostic capabilities of a model to diagnose and localise 14 disease labels.

Following a review of the related previous work in Section 1, we overview the perfor-
mance metrics most widely used in research on computer vision and machine-learning-
based diagnostics and prognostics in Section 2 and then describe the specific models
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adopted in the present study in Section 3. The nexus of the article is found in Section 4,
wherein we present our experiments and analyse and contextualise the corresponding
findings. A summary and conclusions are presented in Section 5.

Background and Previous Work

As noted earlier, the focus of the present work is not on the technical approach
itself, but rather on the issues related to the interpretation of the output of machine-
learning models trained to analyse X-ray imagery. Hence, since all but without exception,
previous work has suffered from much the same weaknesses (while differing in “under
the bonnet” technicalities), we illustrate this with a representative example—namely the
work of Wang et al. [5]—without seeking to survey different learning methodologies
in detail. The authors described a data-gathering and -labelling process using natural
language processing (NLP) from radiology reports gathered from institutional picture
archiving and communication systems (PACSs) and trained a deep convolutional neural
network (CNN) model to predict the label corresponding to an input X-ray image. Their
experimental corpus included labelled X-ray images and metadata such as patient ID,
age, sex, and the X-ray view position (VP) (antero-posterior or postero-anterior). A total
of 14 disease labels were considered: Atelectasis, Cardiomegaly, Consolidation, Oedema,
Effusion, Emphysema, Fibrosis, Hernia, Infiltration, Mass, Nodule, Pleural Thickening,
Pneumonia, and Pneumothorax, with the meaning of each being clear from the label itself.
Furthermore, for approximately 1000 images, the information on the locality of the label (or
indeed, the disease) was provided in the form of a bounding box. The promising results
reported by the authors have made this work influential, with a number of follow-up
methods having been put forward by others, all bearing conceptual and methodological
similarity, such as those by Baltruschat et al. [6], Rajpurkar et al. [7], Yao et al. [8], Li et al. [9],
and Gündel et al. [10].

In none of the aforementioned work, except for that of Baltruschat et al. [6], is there
a discussion of the shortcomings to any extent. The scores, usually the area under curve
(AUC) of the receiver operating characteristic curve (ROC) or the F1-score, are adopted
without any consideration of their clinical significance or insight into what is failing in the
proposed method when it does (and failure certainly does occur often enough that it ought
to have been discussed).

Quantifying performance using a single numerical measure is certainly an attractive
proposition: it is usually easily interpretable, quickly absorbed, and provides unambiguous
rank ordering of different approaches. While this approach can be appropriate in some
problem contexts, it certainly is not in the case of X-ray image analysis, when nuances in
what a model is learning or basing its decisions on can lead to significant clinical differences,
yet leave a simple all-encompassing performance measure unaltered (or virtually so).
The present paper sheds additional light on this issue and furthers the understanding of
the effectiveness of software as a medical device (SaMD) that may be measured.

2. Performance Quantification

The Food and Drug Administration (FDA), as a part of the IMDRF, has issued guide-
lines for SaMDs’ clinical evaluation where they list a number of evaluation functions they
would like to see reported for clinical validation in future SaMDs. These are specificity,
sensitivity, accuracy, and the odds ratio [11]. These metrics can all be computed from the
values comprising the confusion matrix—a 2 × 2 matrix containing the empirical true posi-
tive (TP), true negative (TN), false positive (FP), and false negative (FN) ratios measured
by applying a model on the test data. Sensitivity, or recall, specificity, accuracy, and the
F1-score are thus defined as follows:



Sci 2022, 4, 3 3 of 13

Sensitivity =
TP

TP + FN
(1)

Speci f icity =
TN

TN + FP
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1 =
TP

TP + 1
2 × (FP + FN)

. (4)

A high sensitivity entails that there are very few false negatives, while a high specificity
means that there are few false positives. Accuracy describes the proportion of correct
diagnoses, but has the downside of not accounting for imbalanced data, as it is possible to
always predict a class with very few samples as another class with more numerous samples
and still have high accuracy. Having both sensitivity and specificity included can therefore
indicate how well the SaMD performs in a relatively straightforward way. Accuracy can
then be looked at with respect to the other metrics.

The diagnostic odds ratio (DOR) is also often used as a single indicator of diagnostic
performance. Its value can range from zero to infinity, with higher values corresponding to
better performance. A value of one means that the a positive result is as likely to be the
result of a true positive or a true negative, and a score below one means that there are more
negative results for positive examples of a given class. The DOR is independent of sample
prevalence, as apposed to accuracy, and the 95% confidence interval can be calculated as:

ln(DOR)± 1.96 × SE(ln(DOR)) (5)

where:

SE(ln(DOR)) =

√
1

TP
+

1
TN

+
1

FP
+

1
FN

(6)

A drawback of the DOR is that it is undefined when the confusion matrix contains
zero entries (i.e., in practice, if there are no false positives or false negatives). A commonly
used ad hoc adjustment applied in such cases is to add 0.5 to all values in the matrix.

Lastly, we turn our attention to the AUROC, i.e., the area under the receiver operating
characteristic curve, which is used extensively in medical research as a means of ranking
different diagnostic procedures [12–17]. Recall that the receiver operator characteristic
(ROC) curve captures the dependency between of the true positive rate on the the false
positive rate of a binary classifier. The ROC curve is highly useful in that it captures
the nuanced behaviour of a classifier and is indispensable in informing the choice of the
classifier’s operating point, that is the FP/TP combination that is deemed best according
by the relevant clinical criteria. However, it is exactly this nuance that makes the ROC
difficult to interpret by clinical staff (as opposed to statisticians) [18]. The use of the
AUROC as an alternative for comparing different methods is an attempt to simplify the
information conveyed by the ROC curve and to allow for different classifiers to be ranked
unambiguously. It is, as the name suggests, simply the integral of the TP rate as a function
of the FP rate, over the entire FP range from 0–1. Therefore, a randomly guessing classifier
achieves an AUROC of 0.5, whereas a perfectly performing one that of 1.0. As we will
demonstrate in Section 4, a major limitation of the AUROC lies in the loss of clinically
important information captured by the ROC curve. In short, two classifiers with vastly
different behaviours and significantly different clinical usefulness can be characterised by
the same AUROC.

3. Model

As we noted earlier, the method described by Wang et al. [5] is influential and rep-
resentative of a whole body of work in the area, and hence herein, we adopted it as our
baseline. We took a pre-trained network and re-training on the task specific data set—that
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of X-ray images. A key feature of this process is that the entire network is re-trained and
not just the classification layer (which is more common in the literature). In particular, we
adopted the 121-layer dense convolutional network (DenseNet) [19] pre-trained on the
ImageNet corpus [20] and re-trained on the data made available by Wang et al., using the
same training–validation–test split as the original authors and the binary cross-entropy
loss function:

`(x, y) =
1
N

N

∑
i=1

li (7)

where:

ln = −[yn · log xn + (1 − yn) · log(1 − xn)] (8)

where x and y are respectively the input and the output vectors and N is the batch size.
For the localisation of the salient image region corresponding to the label, we used

gradient-weighted class activation mapping (Grad-CAM) based on the work by
Zhou et al. [21] and further improved on by Selvaraju et al. [22]. Herein, we summarise
the process for the reader’s benefit. Firstly, an input image is run through the model
and the activations from the forward pass on the last convolutional layer saved. Then,
backpropagation with respect to a given label is performed, and the output gradients from
the backwards pass on the same convolutional layer are also saved. Next, the gradients
are pooled together into a single layer and multiplied by the activations saved earlier.
An average pooling is applied to the activation, per feature, leaving an H × W matrix.
A ReLU function is then applied to the matrix, removing all negative feature outputs,
and the remaining features are then normalised around the maximum entry in the array.
At this point, the Grad-CAM heat map is generated and can be overlayed on top of the
original image.

In the end, we compared two models: one that just follows the method mentioned
above and another one where the network was modified to use metadata by virtue of two
additional binary nodes, corresponding to a patient’s gender and the X-ray VP, in the last
prediction layer; see Figure 1. We refer to the first model as the standard model and the
second one as the modified model.

Figure 1. Coarse structure of the baseline neural network model.
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4. Experiments
4.1. Data Corpus

Following its widespread use in the existing literature, herein, we also adopted the
ChestX-ray8 data corpus introduced by Deng et al. [20] and which, to the best of our
knowledge, remains a publicly accessible chest X-ray data set. To summarise its contents
succinctly (the reader is referred to the original publication for further detail), NLP was
employed to extract from radiology reports the labels ultimately associated with each X-ray
image in the set; Table 1 summarises the statistics of the thus-extracted labels. In total,
the corpus comprises 108,000 labelled images from over 30,000 patients.

Table 1. The distribution of automatically extracted labels associated with the images in the ChestX-
ray8 data corpus.

Label Occurrences (Number) Frequency (%)

Normal 60,361 53.84
Infiltration 19,894 17.74
Effusion 13,317 11.88
Atelectasis 11,559 10.31
Nodule 6331 5.65
Mass 5782 5.16
Pneumothorax 5302 4.73
Consolidation 4667 4.16
Pleural Thickening 3385 3.02
Cardiomegaly 2776 2.48
Emphysema 2516 2.24
Oedema 2303 2.05
Fibrosis 1686 1.50
Pneumonia 1431 1.28
Hernia 227 0.20

4.2. Analysis

In line with the primary aims of this work, we started by assessing the different
methods’ performance using the most widely used metric in the literature, namely the
AUROC. Under this metric, the standard and the modified models stand on par with one
another, the former achieving an AUROC value of 0.800 and the latter a marginally higher
value of 0.806. We note that this is consistent with the previous reports in the literature,
with the reported AUROC ranging from 0.745 (see Wang et al. [5]) to 0.806 using the method
proposed by Baltruschat et al. [6]. The picture painted by comparing the per-label AUROC
values, shown in Table 2, is similar: on some labels, one model performs somewhat better,
on others, the other does. Weighted by the frequencies of the labels, as we saw earlier,
the difference all but disappears.

Both the standard and the modified model achieve nearly identical empirical AUROC
scores, which, as we noted already, are normally used as the metric for ranking different
methods in the field. Thus, superficially, this result suggests that the two methods are
performing on par. Yet, in clinical terms, which is really what is of ultimate interest, this is
far from the case: a closer look shows that the models actually perform rather differently.

Consider a slightly more nuanced comparison of the methods’ performances sum-
marised in Table 3. In terms of specificity and accuracy, the standard model can be seen to
be superior. This is significant. For example, the difference of 0.023 in specificity means that
out of 1000 patients, 23 can be (correctly) not subjected to further investigation and tests,
thereby reducing the unnecessary discomfort caused and reducing the financial burden
on the health care system. On the other hand, the modified model has a higher recall,
so it is more likely to detect disease present in patients that have it. The difference in
recall of 0.025 means it correctly diagnoses 25 more patients in 1000 than the standard
model. To contextualise this, patients and healthcare professionals were willing to exchange
2250 FP diagnoses of colorectal cancer for one additional TP diagnosis [23]. Similarly, 63%
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of women were found as >500 FPs reasonable per one life saved, and 37% would tolerate
10,000 or more [24]. Some 1000 images have expert-drawn bounding boxes associated with
them, localizing the visual presentation of the corresponding disease.

Reflecting on these observations, it is neither correct to say that the methods perform
comparably, nor that one is superior to the other. Rather, there are significant differences
between the two, and the question that is to be preferred in a specific context is one that
demands collaborative consultative effort between teams of clinicians who understand
the particular operative environment of interest and, no less importantly, medical ethicists
whose role in the process is still inadequately appreciated.

Table 2. Comparison of the standard and modified models using the standard AUROC score, per
label and overall. Bold font indicates the better-performing method for a specific label/diagnosis.

Label Modified Model Standard Model

Atelectasis 0.763 0.768
Cardiomegaly 0.875 0.887
Consolidation 0.749 0.749
Oedema 0.846 0.835
Effusion 0.822 0.830
Emphysema 0.895 0.873
Fibrosis 0.816 0.818
Hernia 0.937 0.896
Infiltration 0.694 0.697
Mass 0.820 0.814
Nodule 0.747 0.739
Pleural Thickening 0.763 0.762
Pneumonia 0.714 0.708
Pneumothorax 0.840 0.829

Average 0.806 0.800

Table 3. Coarse model comparison.

Model Specificity Sensitivity Accuracy DOR

Standard 0.741 0.726 0.741 9.56
Modified 0.718 0.751 0.720 10.63

4.3. Understanding the Data and the Interpretation of the Findings

A major concern of relevance to the efforts in the development of medical applica-
tions of machine learning concerns data used for training and testing algorithms. Notable
problems include quality control (both of the data themselves, as well as their labelling),
the clinical relevance and appropriateness of any associated annotations, the data balance,
and numerous others. Indeed, concerns regarding the ChestX-ray14 corpus have been
raised as well. Indeed, their nature mirrors the aforementioned pervasive ones: labelling
accuracy (quality control), confounding information (quality control), clinical meaning of
labels (quality control and clinical significance), and the usefulness of the labels (clinical sig-
nificance and appropriateness) [25]. Consider the following quality control concern: since
some pneumothorax images are of patients that have already been treated and who hence
have a chest drain, a machine-learning algorithm can learn to detect the presence of a drain
and thus to correctly label the image, rather than learning to detect directly the condition
itself (a similar issue in an anatomically different context was noted by Tun et al. [26]). This
is illustrated in Figure 2, which shows on the left the original image, with the drain tube
indicated, and on the right the learned class (pneumothorax) activation map.
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Figure 2. Image labelled as “Pneumothorax” after it has been treated by a drain tube.

Another important observation is that an image can have more than one class label
associated with it (e.g., both the “Pneumonia” and “Infiltration” labels can be associated
with the same X-ray image). Using the same loss function used to train the network, we
can compute the mean model loss as a function of the number of labels, N, associated
with an image (n.b. N ranges from zero for healthy lungs and goes up to eight, which
is the maximum number of labels in this corpus). The loss increases at a linear rate with
each additional label (see Table 4), suggesting that the number of labels does not affect the
per-label accuracy.

Table 4. Mean model loss dependency on the number of labels per image.

N 0 1 2 3 4 5 6 7 8

Loss 0.055 0.206 0.346 0.491 0.647 0.827 0.956 1.134 1.353
Count 9861 7992 5021 1958 572 152 31 8 1

Looking at all instances of images with a single label and examining the mean acti-
vations across classes reveals a clear bias. An example is illustrated in Table 5. The mean
activation for the correct, ground truth label “Consolidation” is only 0.0842, whereas the
mean activation for “Infiltration” is 0.2724—a 3.2-fold difference.

This observation is corroborated further by the plot in Figure 3, which shows counts
of the number of times each class exhibits among the three highest mean activations for
single-label images across all classes. “Infiltration” is the most frequent class in the corpus,
and for six out the fourteen ground truth labels, it exhibits the highest activation mean.
In seven cases, it is the second-most-activated class, and in one, it is the third. In other
words, it is always amongst the top three most-activated output classes, regardless of what
the true, target label is. The same can be seen for the three other most common classes,
namely “Atelectasis”, “Effusion”, and “Mass”. The frequency of high activations is highly
affected by the number of class instances in the corpus.
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Table 5. Mean activation of “Consolidation” for single-label images, across different ground truth
target labels.

Class Mean Activation

Atelectasis 0.134
Cardiomegaly 0.023
Consolidation 0.084
Oedema 0.075
Effusion 0.244
Emphysema 0.011
Fibrosis 0.006
Hernia <0.001
Infiltration 0.272
Mass 0.061
Nodule 0.050
Pleural Thickening 0.024
Pneumonia 0.025
Pneumothorax 0.019

Figure 3. Frequency of the highest activation mean.

4.4. Saliency and Explainability

As we noted previously, using Grad-CAM, or indeed similar methods [27], it is possible
to quantify and thus visualise the importance of different parts of an analysed image a
network uses as the basis for its prediction. This can be helpful both in understanding why
the model fails when it does as well in focusing an expert’s attention for further analysis
and interpretation.

In the context of the ChestX-ray8 corpus, the labelling within it has been criticised
by some [25]. This is hardly surprising, for the very manner in which the labels were
extracted makes it impossible to consider them as the oracle ground truth. For instance,
some pneumothorax images are of patients that have already had treatments indicated by
a chest drains in the image. This can lead a network simply localising the drain and, based
on this finding alone, label the image as belonging to the pneumothorax class, rather than
as a result of the actual visual analysis of the presentation of the condition—see Figure 2,
wherein the drain has been marked with an arrow.

Using the bounding boxes information provided, we further examined how well the
models performed in localizing the visual presentation of different diseases. We quantified
this using the intersection over union (IoU), a ratio of the intersection of the bounding box
and heat map activation and the union of the area they both cover, which can be loosely
related to the well-known Bhattacharyya coefficient, a measurement of the amount of
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overlap between two statistical samples [28,29]. The ratio was calculated using thresholded
heat maps with the key findings summarised in Tables 6 and 7.

Table 6. Intersection-over-union (IoU)-quantified assessment of the standard model’s localisation of
the disease presentation.

Label Mean STD Max Min Case Count

Atelectasis 0.096 0.104 0.514 0 180
Cardiomegaly 0.551 0.140 0.758 0 146
Effusion 0.127 0.109 0.519 0 153
Infiltration 0.140 0.173 0.697 0 123
Mass 0.099 0.132 0.574 0 85
Nodule 0.013 0.016 0.067 0 79
Pneumonia 0.151 0.160 0.617 0 120
Pneumothorax 0.079 0.104 0.435 0 98

Average 0.157 0.117 0.522 0 –

Table 7. IoU-quantified assessment of the modified model’s localisation of the disease presentation.

Label Mean STD Max Min Case Count

Atelectasis 0.029 0.046 0.207 0 180
Cardiomegaly 0.512 0.173 0.723 0 146
Effusion 0.071 0.075 0.309 0 153
Infiltration 0.161 0.163 0.632 0 123
Mass 0.076 0.109 0.415 0 85
Nodule 0.032 0.039 0.173 0 79
Pneumonia 0.015 0.041 0.290 0 120
Pneumothorax 0.074 0.110 0.588 0 98

Average 0.121 0.094 0.417 0 –

These findings are interesting in the context of the previously discussed AUROC-
based comparison. Although the modified model performed better in terms of the former
performance measure, that is to say AUROC, here, we found that it is the standard that
does a better job in localizing the diseases. The likely explanation for this apparent paradox
can be found in the structure of the network that was introduced in Section 3 and shown in
Figure 1 and the flow of the metadata information and the manner in which it is used in
the backpropagation. In any event, the important lesson to draw here is the same one that
pervades the present article: any model must be examined in a variety of different ways
and its performance measured using a range of comprehensive metrics and with a keen
eye on their clinical significance, and its failure modes must be identified and understood,
before any application in the real world is even considered.

Returning to the findings in Tables 6 and 7, it is a concerning fact that the minimum
IoU for all classes was found to be zero (an interesting example is shown in Figure 4.
In other words, in the case of every class, that is disease, there was at least one instance in
which the ground truth bounding box had no intersection with the thresholded saliency
heat map. The models did, however, perform rather well in many cases, as indicated by
the average scores. To check for potential biases, we measured the Pearson’s correlation
coefficient between the number of class instances and the corresponding mean IoU and
found it to be −0.265. This is an interesting and perhaps somewhat surprising finding,
which should be revisited in future work. On the present evidence, we hypothesise that
the more numerous classes exhibited greater variability in appearance presentation, which
affected the performance under the IoU measure.
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Figure 4. Example of a high-confidence correct label identification, despite the entirely incorrect
disease localisation.

Last but not least, we found that when the heat map is significantly off course, this
is often an indicator of there being confounding information—in the sense that it is not
inherent information affected by imaging, but rather added by human experts such as
radiologists and, as such, being assistive in correct labelling prediction, but misleading
in the context of what the method is trying to achieve; see Figure 5—present in an image
(e.g., various textual descriptors overlaid on the images). If unnoticed, such information
can instil false confidence in the performance of a model. Thus, we were again drawn to
make two conclusions and recommendations: it is important that confounds of this kind be
explicitly stated, observed, and discussed in any research and that a thorough examination
of the data and specific findings be made whenever an algorithm is evaluated.

4.5. General Remarks

In this article, we focused specifically on the methodological assumptions underlying
the prevalent approaches to the interpretation of deep-learning-based analysis of chest
X-ray images. There are several reasons behind this choice. The most important of these
lies in the practical importance of this application itself, a fact also reflected in the already
large body of previous work, as discussed in Section 1.

Secondly, the fact that the relevant phenomenology of the problem is well understood
makes the desiderata and the potential pitfalls to watch for particularly clear, which is
crucial for establishing a reliable and convincing framework needed for the challenging
task of studying interpretability.

Notwithstanding the aforementioned focus, the applicability of the findings and the
analysis we presented in this paper extend further and are not confined to the application of
deep learning to chest X-ray image analysis. The issues we highlighted are readily identified
in the use of deep learning in other medical applications, as well as non-medical ones.
Perhaps the most fundamental question concerns the very premises of perturbation- and
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occlusion-based methods [30–35] to the determination of saliency and thus explainability,
as recently also pointed out by Cooper et al. [27].

Figure 5. Examples of confounding information unwittingly aiding inference.

Questions such as these are undoubtedly worth further study; meanwhile, caution
should be exercised in the making of clinical conclusions based on insufficiently well-
understood models.

5. Summary and Conclusions

Computer software already plays an instrumental role in medicine today and will,
without a doubt, play an increasingly important part in the future. This observation makes
it imperative that the evaluation of such software be performed rigorously and in a manner
that is coherent with its intended clinical application. Indeed, serious concerns have already
been raised about the real-world performance of medical software, which has previously
been reported as successful at the research stage [36]. In this paper, we looked at this issue
in some depth, in the realm of X-ray analysis. We found that in most cases, the analysis
of the performance reported in research papers is rather poor. In particular, there is an
over-reliance on a single metric (or a few metrics). Worse yet, the clinical significance
of these metrics is questionable. Thus, we presented a thorough analysis of a pair of
leading machine-learning methods for X-ray-image-based diagnosis. We showed that the
widely used standards for performance assessment are overly coarse and often misleading
and that seemingly similarly performing methods can in clinical practice exhibit major
differences. Our analysis highlighted the subtleties involved in the comprehensive analysis
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of a machine-learning method in this field, potential biases that emerge, as well as the often
difficult-to-notice confounding factors. In summary, our work calls for a more nuanced
evaluation of newly proposed methods and a more thorough reporting of the associated
findings and presents a blueprint for future research efforts.
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