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Abstract: The goal of this paper is to provide an initial assessment of water-vapor feedback (WVF)
in humid urban heat island (UHI) environments based on temperature difference data. To achieve
this, a novel temperature difference WVF model was developed that can analyze global and UHI
local temperature difference data. Specifically, the model was applied to a comparative temperature
literature study of similar cities located in humid versus dry climates. The literature study found
that the daytime UHI ∆T was observed to be 3.3 K higher in humid compared to dry climates when
averaged over thirty-nine cities. Since the direct measurement of WVF in UHI areas could prove
challenging due to variations in the temperature lapse rates from tall buildings, modeling provides
an opportunity to make a preliminary assessment where measurements may be difficult. Thus, the
results provide the first available UHI ∆T WVF model assessment. The preliminary results find local
water-vapor feedback values for wet-biased cities of 3.1 Wm−2K−1, 3.4 Wm−2K−1, and 4 Wm−2K−1

for 5 ◦C, 15 ◦C, and 30 ◦C UHI average temperatures, respectively. The temperature difference
model could also be used to reproduce literature values. This capability helps to validate the model
and its findings. Heatwave assessments are also discussed, as they are strongly affected by UHI
water-vapor feedback and support the observation that humid regions amplify heat higher than
UHIs in dry regions, exacerbating heatwave problems. Furthermore, recent studies have found that
urbanization contributions to global warming more than previously anticipated. Therefore, cities in
humid environments are likely larger contributors to such warming trends compared to cities in dry
environments. These preliminary modeling results show concern for a strong local UHI water-vapor
feedback issue for cities in humid environments, with results possibly over a factor of two higher
than the global average. This assessment also indicates that albedo management would likely be an
effective way to reduce the resulting WVF temperature increase.

Keywords: water-vapor feedback; urban heat islands; lapse rate; humid climates; dry climates;
convection cooling; heatwaves

1. Introduction

Observations of excess water vapor steaming off hot city roads and surfaces during
precipitation are commonplace, especially in humid environments. This is a gross ob-
servation that is easy to detect during precipitation periods in UHIs. However, complex
subtle warming feedback effects occur in wet environments, amplifying the UHI intensity
compared to dry environments. A humidity effect, where UHI daytime wet vs. dry envi-
ronmental temperature differences showed a strong increase in ∆T with an average of 3.3
K was observed in a 2014 study by Zhao et al. [1], which is detailed in Section 2. In this
paper, a temperature difference WVF model (WVFM) is developed, and using the data in
their study, preliminary wet-biased WVF UHI estimates are provided.

The cities selected in the Zhao et al. (2014) [1] study were based on precipitation
amounts. In this paper, the observation of increased warming in humid cities is assumed to
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be due to water-vapor feedback, which is associated with cities having reduced cooling
efficiencies. UHI convection cooling to the lower troposphere includes warm water-vapor
air parcels and their re-radiation effect. If water-vapor feedback was not an issue, the
opposite would occur, and cities in high precipitation regions would cool more than cities
in dry regions. Furthermore, feedback causes an amplification that can occur from several
mechanisms, as described below. The key requirement for WVF estimates is that they
are derived using the constraints of the water-vapor feedback equation (see Sections 2–4).
The ∆T WVFM meets these constraints and is reasonably robust, as it was also used to
reproduce literature results (see Section 3.1).

Other authors have observed the exacerbation effects of humid environments, and in
particular there has been work in the area on heatwaves (HWs). This is the main concern
for UHIs since humid heat creates harsh adverse conditions that can impact health and
death rates [2–7] and adverse economic issues [8,9]). Since 55% of the population now
lives in cities, and this is expected to increase to near 70% by 2050 [10], heatwaves are a
major concern that can be affected by UHI water-vapor feedback. Wang et al. (2021) [11]
studied intensified humid heat events under global warming and found that that, “Humid
heat events show intensifications to dry heat events with higher frequency, duration,
and intensity”.

Empirical HW evidence exists for synergistic effects [12,13]. Liao et al. (2018) [13], in a
study on HW exacerbation from UHIs in dry versus wet climates in China, also showed a
strong synergistic heatwave effect that was observed both in duration and frequency. Liao
also noted that “in wet climates, the increasing trends of HWs in urban areas are greater
than those in rural areas, suggesting a positive contribution of urbanization to HW trends”.

Li et al. (2020) [14] showed that the summer mean wet bulb globe temperature (WBGT)
has increased almost everywhere across China since 1961 as a result of human-induced
climate change. Consequently, hot summers, as measured by the summer mean WBGT,
are becoming more frequent and more conducive to heat stress. Hot summers, such as the
hottest on record during 1961–2015 in western or eastern China, are now expected to occur
once every 3 to 4 years. These hot WBGT summers have become more than 140 times as
likely in eastern China and more than 1000 times as likely in western China in the present
decade (the 2020s) as in the 1961–1990 baseline period.

Russo et al. (2017) [15] “found that the magnitude and apparent temperature peak of
heatwaves, such as the ones observed in Chicago in 1995 and China in 2003, have been
strongly amplified by humidity. Climate model projections suggest that the percentage of
the area where heatwave magnitude and peaks are amplified by humidity increases with
increasing warming levels”. The studied regions included the eastern U.S., similar to the
work by Zhao et al. (2014) [1].

Other authors have studied heatwaves in various humid climates where water-vapor
feedback is problematic. Li and Zeid (2013) [12] studied the Baltimore–Washington
metropolitan humid areas and found “synergies between urban heat islands and heatwaves.
That is, not only do HWs increase the ambient temperatures, but they also intensify the
difference between urban and rural temperatures. As a result, the added heat stress in
cities will be even higher than the sum of the background urban heat island effect and the
heatwave effect”. In China, Knong et al. (2020) [16] found “the occurrence probability of
human-perceived HW nearly doubled over the recent decades, of which urbanization and
greenhouse gases contribute to 21.9% and 72.9% of the intensification of HWs, respectively”.
Zou et al. (2021) [17], showed that “the UHI effect was significantly amplified during HWs”.
In the very humid wet climate of Bangladesh, Dewan et al. (2021) found, “Results indicated
that annual surface urban heat island intensity (SUHII) was greater in the larger cities of
Dhaka and Chittagong than in the smaller cities. SUHII observed during the day was also
greater than at night”. This supports Zhao et al.’s (2014) daytime observations, which are
detailed in Section 2.
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In general, these heatwave observations illustrate the importance of UHI water-vapor
feedback and help qualitatively support Zhao et al.’s (2014) results (see Sections 2 and 3) with
the general conclusion that humid environments can significantly amplify UHI intensity.

The actual mechanism causing UHI daytime humid vs. dry environmental temper-
ature differences may not be fully understood. Zhao et al. (2014) described the effect
as “largely explained by variations in the efficiency with which urban and rural areas
convect heat to the lower atmosphere. If urban areas are aerodynamically smoother than
surrounding rural areas, urban heat dissipations are relatively less efficient, and urban
warming occurs (and vice versa)”.

In addition to convection cooling inefficiencies, it is also possible that water-vapor
greenhouse gas (GHG) effects also contribute. This would increase long-wavelength
downwelling in humid environments. Daytime air temperatures are also typically higher
in UHIs. The specific humidity can increase (Fan et al. 2017) quickly due to warmer daytime
UHI temperatures from impermeable surfaces in humid environments. Since warm air
holds more water vapor and the environment is humid, it is not unreasonable to suspect
that local water-vapor GHG also plays a role. Therefore, while the actual mechanism is not
well understood, Zhao et al.’s observation may consist of a dual mechanism. Somewhat
supportive is the work of Yang et al. (2017) [18] in eastern China (a humid environment
in the summer) that found, “Overall, urbanization contributes to more than one-third of
the increase of intensity of extreme heat events in the region, which is comparable to the
contribution of greenhouse gases”.

Another interesting effect that reduces convection cooling efficiencies is temperature
inversions. This effect is not well studied, so there are no data to support this possible
increase in humid vs. dry environments, other than the fact that they reduce convection
efficiency. One possible mechanism is that humid denser hot air parcels likely have lower
convection cooling efficiencies in areas prone to daytime solar temperature inversions. This
effect should be studied further in dry versus humid environments. For example, Bornstein
(1968) [19] assessed temperature inversion in New York City and noted, “On mornings
with relatively strong urban elevated inversion layers, the heat island extended to well
over 500 m”. Without inversion layers, Bornstein noted the heat extended to about 300 m.
Fast et al. (2005) [20] made measurements over Phoenix, Az., and noted “The peak UHI
usually occurred around midnight; however, a strong UHI was frequently observed 2–3 h
after sunrise that coincided with the persistence of strong temperature inversions”.

In our climate system, water-vapor feedback is observed to be highest in the tropical
upper troposphere (Dessler et al. 2008 [21], see Section 4). Dessler et al. (2008) [21] assessed,
“it is tropical changes in specific humidity that primarily determines the size of the water-
vapor feedback” (see Section 4). We know that UHIs present complex environments, and
in humid areas, their climate can be very tropic-like. Therefore, it is important to realize
that water-vapor feedback can also be a dominant factor in cities with humid tropic-like
climates that can exacerbate heatwave severity, frequency, and duration.

2. Data and Methods

In this paper, based on the constraint of the water-vapor feedback equation, specific
modeling is provided so it can be applied to Zhao et al.’s UHI temperature dataset. This
is therefore a targeted assessment based only on the unique work of Zhao et al.’s (2014)
study that quantified temperature differences, showing that, on average, cities are hotter in
humid compared to dry environments. The model also provides a relationship between
the average UHI temperature and water-vapor local feedback. Nevertheless, due to this
limited dataset, we caution that results should be considered preliminary.

• Zhao et al. (2014) observed that UHI temperatures increase in the daytime (∆T) by 3.3 K
more in humid compared to dry climates. Here, the temperature difference between
urban and rural areas is given by ∆T. They found a strong correlation between the ∆T
increase and daytime precipitation, stating, “the daytime ∆T has a discernible spatial
pattern that follows precipitation gradients across the continent”. In their assessment,
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they asked the question: “if two cities are built identically in terms of morphological
and anthropogenic aspects, but in different climates, will they have the same ∆T?”
Comparisons were made with twenty-four cities located in the humid southeastern
United States, which coincided roughly with the Koppen–Geiger temperate climate
zone, and 15 cities in the dry region. In Zhao et al.’s (2014) article, their Figure 1 [1]
shows a map with the locations of the cities in North America. “Their daytime annual-
mean ∆T is on average 3.9 K and is 3.3 K higher than that of the 15 cities in the dry
region. By comparison, the night-time ∆T differs by 0.1 K between the two groups”
(see Table 1 summary). At night, they noted that the release of the stored heat is the
dominant contributor to ∆T across the three studied climate zones. In their study, wet
and dry cities were defined by annual precipitation amounts, with dry cities receiving
less than 500 mm, wet cities receiving more than 1100 mm, and cities in between these
amounts not being used. Their results concluded that albedo management would be a
viable means of reducing ∆T on a large scale.

Table 1. Summary of cities and temperature differences of interest.

Number of Cities Region Time Temperature

15 Dry Day TU_Dry
24 Humid Day TU_Dry + 3.3± 0.3 K
15 Dry Night

(
TU_Dry

)
Night

24 Humid Night
(

TU_Dry

)
Night

+ 0.1 K

The key UHI metric of interest is ∆T = TU − TRu, which depends on urban (U) and ru-
ral (Ru) data. In general, according to Zhao et al., in humid environments, TRu ↓ cools while
TU ↑ increases due to convection inefficiency differences so that ∆TU ↑

(
= TU ↑ −TRu ↓

)
increases for humid environments. They stated, “In the humid climate, convection is less
efficient at dissipating heat from urban land than from rural land. . . At these locations, the
rural land is in general densely vegetated, owing to ample precipitation, and is aerodynam-
ically rough. Quantitatively, this difference is manifested in a lower aerodynamic resistance
to sensible heat diffusion . . . in terms of aerodynamic resistance, urbanization has reduced
the convection efficiency by 58%”.

In general, for dry climates, according to Zhao et al., TRu ↓ cools as TU ↓ decreases
due to better convection efficiencies, and ∆TU ↓

(
= TU ↓ −TRu ↓

)
is observed from the

overall decreases for dry compared to humid environments with better urban convection
cooling trends. They stated that, “The opposite occurs in the dry climate zone, where urban
land is rougher than rural land and has enhanced convection efficiency. . . In this zone, the
urban landscape has lower aerodynamic resistance than the adjacent rural land which is
typically inhabited by vegetation of low stature such as shrubs, sage brushes, and grasses.
On average, the urban land is about 20% more efficient in removing heat from the surface
by convection than is the rural land”.

2.1. Theory

Climate measurements are typically relative. For example, global warming today is
often expressed as a temperature rise from a reference year such as 1950. The common
reference metric ∆T is often used for the average temperature difference between rural
and a UHI center. In addition, in this analysis, daytime ∆T values of humid vs. dry UHI
environments are compared. In this assessment, the associated atmospheric water-vapor
∆q increase is a function of temperature change ∆T(∆q) since this is what was observed by
Zhao et al. Then, comparisons using the Stefan–Boltzmann equation can be made. T is the
average air temperature at the height of interest (detailed in Section 3) for the climate area
of interest (urban (U) or rural (Ru)), P is then the average power radiated per area, and ε
is the average value for the effective emissivity constant for the planetary system. Now,
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consider that the urban temperature is higher than the rural temperature in a wet humid
environment, as TU_Wet = (TRu + ∆TU(∆q))Wet. Relative assessments using ∆T in humid
environments can be made using the following equation:

∆PU_Ru,Wet =
(

PU
)

Wet −
(

PRu
)

Wet = εσ
(
(TRu + ∆TU(∆q))4

Wet − (TRu)
4
Wet

)
(1)

Here, the Stephan–Boltzmann equation is utilized with P = εσT4, where (∆TU)Wet =(
TU − TRu

)
Wet for the UHI intensity in humid environments (often subscripted Wet). The

subscript U indicates the center of the built-up UHI, and the Ru subscript is for rural areas.
Similarly, in dry environments,

(
TU
)

Dry = (TRu + ∆TU)Dry. Therefore:

∆PU_Ru,Dry =
(

PU
)

Dry −
(

PRu
)

Dry = εσ
(
(TRu + ∆TU)

4
Dry − (TRu)

4
Dry

)
(2)

where ∆TU =
(
TU − TRu

)
Dry.

2.2. Simplifying for Estimates

It is now of interest to extend the Zhao et al. data observations so they can be applied
using the water-vapor feedback equation (see Section 4). Let ∆R stand for the radiative
difference between the humid and dry climates, where ∆TWet(∆q) > ∆TDry(∆q). The key
metric of interest is the daytime effect. Therefore:

∆RWet−Dry, daytime = ∆PU−Ru,Wet − ∆PU−Ru,Dry =
{(

PU
)

Wet −
(

PRu
)

Wet

}
−
{(

PU
)

Dry −
(

PRu
)

Dry

}
(3)

According to Zhao et al., in a humid climate, convection is less efficient at dissipating
heat from urban land than from rural land, and the associated temperature increase is
3.0 ± 0.3 K (mean plus standard deviation), which dominates the overall ∆T in the dry
climate zone, where urban land is rougher than rural land and has enhanced convection
efficiency. Zhao et al. also noted that in dry climates, “On average, the urban land is
about 20% more efficient in removing heat from the surface by convection than is the rural
land”. Thus, the major ∆T change is dominated by the urban convection cooling effect
change and local water-vapor greenhouse gas. In the key metric ∆T = TU − TRu, the
TU ↑ increase is the contributing factor. Therefore, in the rural part of Equation (3), we can
set
{(

PRu
)

Wet −
(

PRu
)

Dry

}
≈ 0 so that ∆RW−D, daytime (Equation (3)) simplifies the urban

effect to:

∆RWetU−DryU = ∆PU−Ru,Wet − ∆PU−Ru,Dry ≈
(

PU
)

Wet −
(

PU
)

Dry (4)

Then, using the concepts in Equations (1) and (2), similarly:

∆RWetU−DryU , daytime ≈ PWet_U − PDry_U = εσ f (∆q)
(

T4
U_Wet − T4

U_Dry

)
= εσ f (∆q)

(
(TRu_wet + ∆TU(∆q)Wet)

4 − T4
U_Dry

) (5)

Here, we have substituted TU_Wet = (TRu_wet + ∆TU(∆q)Wet), and f (∆q) is
described below.

In general, Zhao et al. made a key observation: “Twenty-four of the cities are located
in the humid southeast United States, which coincides roughly with the Koppen–Geiger
temperate climate zone (see Figure 2a in Ref. [1]). Their daytime annual-mean ∆T is on
average 3.9 K and is 3.3 K higher than that of the 15 cities in the dry region (Zhao et al.
Figure 2d,e). By comparison, the night-time ∆T differs by 0.1 K between the two groups
(Zhao et al. Figure 2f,g).” These data are summarized in Table 1 (also see Figure 1).
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Equation (5) can be written for the special case when TRu_Wet = TU_Dry:

∆RWetU−DryU , daytime ≈ PWet_U − PDry_U = εσ fX,Y,Z=30m(∆q)
(
(TU−Dry + 3.3 K)

4 − T4
U−Dry

)
(6)

It is necessary to obtain estimates for this special case when TRu_Wet = TU_Dry, as it
allows for simplified results. However, this is a reasonable case to assess since estimates
are affected primarily by the temperature difference that averages 3.3 K between wet and
dry urban environments in similar cities, and the results are understood to be for this
particular case. Here f X,Y,Z = 30 m is a generalized location factor that has been averaged in
the Zhao et al. data at a height of Z = 30 m. Then, relative to their findings, f is set at unity.
Then, an estimate of the WVF from the UHI temperature difference data can be obtained
using Equation (5) for a specific height, f = 1, as detailed in the general WVF model in
Equation (14) and in Section 3, giving:

λWU−DU ≈ ∆RWetU−DryU (∆TU)/∆TWet−Dry,S (7)

Then, the UHI ∆T water-vapor feedback model (WVFM) simplifies to:

λWU−DU ≈ εσ
(
(TU−Dry + ∆TWet)

4 − T4
U−Dry

)
/∆TWet−Dry,S (8)

Although the actual T measurement value may not be known, a range can be considered.

2.3. Temperature Data

Here, a simplified overview of Zhao et al.’s data is presented in Figure 1, primarily
to aid the reader and provide support for Zhao et al.’s dataset, which is incorporated into
Equation (6). For simplicity, their direct MODIS dataset was selected for comparisons.

Figure 1, bar a, is from Zhao et al.’s Figure 2e, humid climate (MODIS only), and is
also similar in values to their Figure 2b. Figure 1, bar b, is from the dry climate daytime
results in their Figure 2d. Figure 1, bar c, is from the mild humid nighttime climate results
in their Figure 2g. Figure 1, bar d, is from the nighttime dry climate results in their Figure 2f.
The ∆TWet = 3.3 K value is evident in Figure 1, taken from the Zhao et al. MODIS data,
where the average ∆TWet ≈ 3.9 K (in Zhao et. al., Figure 2d,e) compared to the daytime dry
value of about ∆TWet ≈ 0.5 K, and the difference is about 3.4 K, close to the 3.3 K value in
their statement (with error bars, 1 s.e. whiskers, shown in the figure). Note that Figure 1 bar
c for humid night and bar d for dry night shows no differences. Their measurements were
taken at a 30 m height at 1:00 and 13:00 local time on clear days. This is also summarized in
Table 1.

3. Results

In Zhao et al.’s data, although no direct measurements of T were provided, an initial
estimate of the potential radiative difference between dry and humid climates can be
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provided. For example, using the average temperature of the earth, TU-Dry = 288 K (15 ◦C),
and the mean for ∆TWet = 3.3 K, with a standard error in their convection cooling data of
±0.3 K, yields:

∆RWetU−DryU =


εσ
(
(TU−Dry + 3.3K)

4 − T4
U−Dry

)
Z=30m,Daytime

= 11.3± 1.04Wm−2

εσ
(
(TU−Dry + 0K)

4 − T4
U−Dry

)
Z=30m,Nighttime

= 0 (9)

for TRu_Wet = TU_Dry.
Note that a standard error (s.e.) of±0.3 for ∆TWet yields an s.e. for ∆R of±1.04 Wm−2.

Here, a value of ε = 0.62 [22,23] is used. This value of ε is comparable to the Liu et al.
data measurement (see Equation (13)) and is the average value for the effective emissivity
constant for the planetary system, referenced to the top of the atmosphere (i.e., outgoing
longwave radiation OLR~εσT4

s). Then, it is possible to come up with a rough approxima-
tion for the water-vapor feedback, λ~dOLR/dTs (per Equation (8)). ∆T(q)U-Wet dominated
the Zhao et al. daytime observation, yielding the higher observed UHI temperature in the
humid environment. This was not observed (Figure 1c,d) in the Zhao et al. [1] nighttime
data for humid vs. dry cities, and the model agrees, finding ∆R = 0 in Equation (9), as
required. For the daytime example, at an average UHI temperature of TU−Dry = 15 ◦C
and ∆TWet = 3.3 K, the UHI water-vapor feedback λWU−DU wet-biased estimate from Zhao
et al.’s dataset (see Equations (7), (8) and (14)) with ∆TWet−Dry, S = 3.3 K yields:

λWU−DU

∣∣30m, Daytime = 11.3 W/m2/3.3 K = 3.43± 0.32 Wm−2K−1 for
TRu_Wet = TU_Dry

(10)

Using this method, λWU−DU wet-biased estimates can be provided for a range of
5 ◦C < TU < 30 ◦C in Equation (9), yielding:

3.1± 0.32 Wm−2K−1 < λWU−DU

∣∣30m, Day < 4.0± 0.32 Wm−2K−1, f or 5◦C < TU−Dry < 30 ◦C (11)

where TRu_Wet = TU_Dry.
The three-standard-error range is fairly wide, given a sample size of 24 wet cities

and their mean and s.e. Therefore, the 99 percent Student’s t confidence range has a
reasonably smaller range of approximately ±0.19 Wm−2K−1. That is, if we repeated these
measurements, 99 times out of 100 the results should fall within this±0.19 Wm−2K−1 range.

Note that the Equation (11) result is fairly consistent with the heatwave assessments
that humidity amplification is correlated with warming temperature levels That is, we note
that the WVF results are greater at 30 ◦C than 5 ◦C. For example, Russo et al. (2017) [15]
found that the magnitudes and apparent temperature peaks of heatwaves suggest that
amplification by humidity increases with increasing warming levels, in agreement with the
Equation (11) results.

3.1. Generalized Model to Reproduce Literature Results

Lastly, it is important to show how the UHI ∆T WVF model can be used to make
comparisons to literature results to illustrate that the UHI water-vapor feedback model
yields reasonable results. Equation (8) can be generalized for this purpose by providing a
∆T WVFM for global (Gl) warming temperature difference data, similar to Equation (8),
where:

λWU−DU = ∆RGl_Wet−Gl_Dry/∆TGl ≈
(

PGl_Wet − PGl_Dry

)
/∆TGl

= εσ
(
(TGl_Wet)

4 − T4
Gl_Dry

)
/∆TGl

= εσ
(
(TGl_Dry + ∆TWVF(∆q))4 − T4

Gl_Dry

)
/∆TGl

(12)
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Here, ∆TWVF is the estimated global warming average temperature change due to
WVF, TGl_Dry is the earth’s average temperature minus the anomaly (i.e., before climate
change), and ∆TGl is the global warming temperature change anomaly. This can help us
gain confidence in the estimates in Equations (10) and (11), for example, if literature values
can be reproduced with this similar generalized ∆T WVF model.

To accomplish this, we first need some ∆T data. Appendix A provides an assessment
of the Liu et al. (2010) results. Equation (A2) in Appendix A finds that WV was responsible
for a temperature increase of ∆TWVF = 0.298 ◦C out of global temperature rise at the time of
Liu et al.’s [4] assessment of approximately 0.64 K. The global mean temperature in 2010 (see
Table 2) if climate change did not occur is estimated to have a value T = 13.74 ◦C = 286.89 K.
Then, similar to Equation (9), the results yield:

λWU−DU = εσ
(
(286.89 K + 0.298 K)4 − (286.89 K)4

)
/0.64 K

= 1.55 Wm−2K−1
(13)

Table 2. UHI and general water-vapor feedback model results.

UHI Water-Vapor Feedback Model Results from Equation (8)

Authors Average Year Period of
Study ε ∆TWet(K) ∆TWet−Dry,S TU−Dry

λ
(Wm−2K−1)

UHI ∆T
WVFM

Equation (8)

λ
(Wm−2K−1)

Reported

Zhao et al. (2014) [1] 2008 2003–2012 0.62 3.3 K 3.3 K 5 ◦C 3.1 ± 0.3 NA
Zhao et al. (2014) [1] 2009 2003–2012 0.62 3.3 K 3.3 K 15 ◦C 3.4 ± 0.3 NA
Zhao et al. (2014) [1] 2010 2003–2012 0.62 3.3 K 3.3 K 30 ◦C 4.0 ± 0.3 NA

Generalized Water-Vapor Feedback Model Used to Reproduce Literature Results from Equation (12)

Authors Average Year Period of
Study ε

∆T Due to
WV

Feedback

Global
Warming

(K)

Average Earth
Temp.

λ
(Wm−2K−1)
∆T WVFM
Equation

(12)

λ
(Wm−2K−1)

Reported
Average

Liu et al. (2018) [4] 2010 2004–2016 0.62 0.298 * 0.64 * 13.73 ◦C 1.55 1.55
Gordon et al. (2013) [24] 2006 2003–2008 0.89 0.288 * 0.62 * 13.72 ◦C 2.39 2.4
Dessler et al. (2008) [21] 2006 2002–2009 0.815 0.288 * 0.62 * 13.72 ◦C 2.19 2.2

* See Appendix A and Section 3.1.

This result reproduces the water-vapor feedback measurement by Liu et al. (2018).
This is discussed in Section 4 (see Table 2). To match their results, a value of ε = 0.62 is
needed. This is the average value for the effective emissivity constant for the planetary
system [22,23]. In addition, this value is used in Equations (10) and (11). The model was
also used for Gordon et al. (2013) [24] and Dressler et al.’s (2008) [21] results. However,
in their cases, the model finds that a higher ε value is required to match their numbers.
Therefore, the Liu et al. assessment appears to be more relevant for comparisons. From
this point of view, comparing Equations (10)–(13) (with similar average temperatures of
T = 13.7 ◦C and 15 ◦C, the UHI ∆T water-vapor feedback in wet environments is a little
over twice as high compared to Liu et al.’s (2018) [4] results. This assessment helps to
provide a measure of credibility to the UHI temperature difference WVFM. It indicates that
the WVF value found based on the Zhao et al. (2014) measurements is rigorous and can be
compared to global estimates with reasonable confidence.

Table 2 summarizes the water-vapor feedback modeling estimates, including the
model’s findings in reproducing literature results based on average temperature differences
(see Equations (8) and (12)).

4. Discussion

Global water-vapor feedback is strongly positive, and estimates vary. For example,
Dessler et al. (2008) [21] estimated a climate feedback average of λ = 2.04 Wm−2K−1
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(for the short-term period of 2003–2008), with yearly variation between 0.94 Wm−2K−1

and 2.69 Wm−2K−1, Gordon et al. (2013) [24] estimated 1.9 Wm−2K−1–2.8 Wm−2K−1

(for the period of 2002–2009), and Liu et al. (2018) [4] estimated the short-term value of
1.55 Wm−2K−1 (for the years 2004–2016).

Dessler et al. (2008) [21] found that, “It is tropical changes in specific humidity (q)
that primarily determines the size of the water-vapor feedback, and tropical q is primarily
regulated by the tropical surface temperature”. Dessler et al. found that years with
milder surface temperature change led to lower water-vapor change and lower water-
vapor feedback. For example, a value of 0.94 Wm−2K−1 was found in the year 2007,
corresponding to a lower tropic surface temperature change. One can make a comparison
to the results in Equation (11), where for wet-biased cities, as the average UHI temperature
decreases, so does the water-vapor feedback. Moreover, many cities exhibit tropic-like
conditions in high humidity environments.

The results of Equation (11) are also consistent with Colman and McAvaney (2009) [25]
and Jonko et al. (2013) [26], who also found an increase in water-vapor feedback strength
in warmer climates.

Liu et al. (2018) [4] noted that, “the tropics dominate the strength of global mean
feedback because long-wavelength water-vapor kernels dominate over the deep tropics. . .
”. In this study, wet-biased UHIs, per Zhao et al.’s observations, have a measure of tropical-
like climate conditions due to the elevated heat island effect.

Furthermore, the model results indicate that water-vapor feedback is 3.4 Wm−2K−1

(Equation (10)), for a temperature rise of 3.3K in wet-biased UHI environments at 15 ◦C.
This does not seem high in comparison to Equation (A2) in Appendix A. Equation (A2)
indicates that we can associate a global water-vapor feedback of 1.55 Wm−2K−1 (Liu et al.,
2013) with a WV feedback temperature increase of ∆TWVF = 0.298 ◦C (Table 2). This is
an eleven times lower temperature difference value than the UHI temperature change.
By comparison, one could argue that the preliminary findings of these UHI water-vapor
feedback estimates from the model are not high, considering its associated environmental
temperature change with a large ∆T of 3.3 K. In addition, the model was able to reproduce
the literature findings of Liu et al., Gordon et al., and Dessler et al. (see Table 2) using
temperature difference data for their measurement periods. Therefore, these model results
appear credible. We indicated that the Liu et al. (2018) results were the most comparable
where the ε value matched the average value for the effective emissivity constant for the
planetary system [22,23] used in the UHI ∆T WVFM assessment. Therefore, the ∆T WVF
model results appear to provide rigorous values based on the data.

Since the UHI ∆T WVFM results used a limited dataset of 39 cities, with results
at 30 m, the findings should be considered preliminary. However, the results certainly
show concerns for a strong local UHI water-vapor feedback issue for cities in humid
environments, suggesting that actual feedback measurements should be performed to
verify the magnitude. Furthermore, there is concern that water-vapor is strongly interactive
with cities, as shown by the numerous heatwave studies (see Section 1) in humid areas.
However, as was pointed out, direct measurements could be very challenging due to
temperature lapse-rate effects, with possible temperature inversions occurring amongst tall
UHI buildings. Due to this anticipated difficulty in making measurements and the unlikely
challenge of repeating a similar study comparable to the magnitude of the Zhao et al. work,
providing a preliminary water-vapor feedback assessment is needed and important.

The common use of the feedback equation is to partition it into two terms. However,
it does not need to be partitioned, and modeling shows it can be extended for use with the
UHI ∆T observations to provide a preliminary comparative estimate where:

λq =

(
∑

x,y,z

∂ROLR
∂q(x,y,z)

∆q(x,y,z)
∆TS

)
General

→
(

∑
UHIs

∆RWet−Dry, OLR−UHI(∆T) fXYZ(∆q)
∆TWet−Dry, S

)
Extended to UHIs

(14)
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Extending the equation’s applicability to Zhao et al.’s data with the UHI ∆T WVFM
(Equations (7) and (8)) is reasonable since it was a very unique and carefully conducted
study that had strong water-vapor UHI observation.

Measurements such as those by Dessler et al., Gordon et al., and Liu et al. did not focus
on estimating the feedback attributed to humid areas at low portions of the troposphere
due to UHI growth. This leaves a large gap, as 55% of the population now lives in, and this
number is expected to increase to near 70% by 2050 [10]. For many of these cities, humidity
often plays a role in amplifying temperature problems.

Note that because Equation (11) indicates a lower temperature change produces less
feedback, albedo management is likely a key solution. Although there are many ways to
cool cities by design, for existing cities albedo management is likely the most practical
approach. This would also help mitigate exacerbated UHI heatwaves. Albedo management
was also suggested by Zhao et al.

In this case, it is desirable to restore UHIs to their original estimated albedo value
before their existence. In a prior study [27,28], it was estimated that an albedo value of
0.2 (pre-UHI era) removes the urbanization forcing effect. Note that an average UHI albedo
value from the author’s prior study [27,28] was 0.12 due to Sugawara et al. (2014) [29].

The solar geoengineering of UHIs has been studied, and increasing the UHI albedo by
about 0.1 is feasible. In a paper by Akbari et al. (2012) [30], it was estimated that, “white
rooftops and light-colored pavements, can increase the albedo of urban areas by about
0.1 and could potentially offset some of the anticipated temperature increase caused by
global warming”.

5. Conclusions

In this paper, a water-vapor feedback model for UHI daytime humid environments
was developed and used specifically to convert Zhao et al.’s (2014) ∆T dataset to provide
water-vapor feedback estimates. The Zhao et al. study provided a unique observed UHI
∆T dataset with daytime data on 24 wet-biased cities compared to 15 dry UHI cities.
The developed targeted model was used to convert their ∆T observations to UHI local
water-vapor feedback values. The model provided preliminary daytime water-vapor
feedback wet-biased estimates of 3.1 Wm−2K−1, 3.4 Wm−2K−1 4 Wm−2K−1 for UHI
average temperatures of 5 ◦C, 15 ◦C, and 30 ◦C, respectively (see Table 2). The model also
provided negligible nighttime WVFM estimates, as observed. Furthermore, the model
showed that the water-vapor feedback increases with the average UHI temperature. The
results were for Zhao et al.’s measurements taken at 30 m and averaged over the thirty-nine
cities. Thus, the measurement heights and city sample size provide limited data for analysis.
Therefore, we caution that the results are a preliminary assessment.

The UHI ∆T WVFM was generalized to be used for global average temperature
difference data. The generalized temperature difference WVFM reproduced the water-
vapor feedback measurements by Liu et al. (2018), Gordon et al. (2013), and Dressler
(2008). The results indicated that the Liu et al. assessment appears to be more relevant
for comparisons since the results matched the average value for the effective emissivity
constant, f ≈ εe f f , for the planetary system that was also used in the UHI work. From this
point of view, UHI water-vapor feedback in wet environments was a little over twice as
high compared to Liu et al.’s (2018) results. Extending the UHI temperature difference WVF
model to global assessments provided a measure of confidence to the UHI temperature
difference WVFM and indicated that the WVF value based on the Zhao et al. (2014)
measurements was reasonably validated through modeling comparisons.

Overall, these rigorous preliminary modeling estimates show strong concerns for high
water-vapor feedback in UHIs with humid environments. Follow-up UHI water-vapor
feedback verification measurements are suggested.

Albedo management for humid hotter cities should be a priority both for local health
reasons, to reduce water-vapor feedback and to reduce UHI heatwave exacerbation effects,
and to reduce UHI global warming contributions [31]. Recent trends suggest that urban-
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ization is contributing more to global warming than previously assessed (contributing as
much as 13% [28,31,32]. Considering that WVF in UHIs in humid environments ampli-
fies heat and can exacerbate heatwave severity, frequency, and duration, cities in humid
environments are likely larger contributors to such warming trends compared to cities in
dry regions. Unfortunately, both greenhouse gases and UHIs are growing roughly with
population size [27]. In China, a temporal study by Yang et al. (2018) [33] of 302 cities found
higher UHI growth rates than the population growth rate by about a factor of 4.5% per year
from 2003 to 2016. Both GHGs and UHIs are affecting climate change [28,31]. However, a
coordinated worldwide effort to focus on the UHI problem is lacking, as there are no miti-
gation details in the Paris Accord, despite the concern of many UHI authors [27,31,33–39].
It was pointed out that there are many reasons for the albedo management of UHIs in both
dry and wet environments. This study provides strong support for including UHI albedo
management in the Paris Accord goals.

Funding: This research received no external funding.

Data Availability Statement: All data is provided within this paper. There are not external sources
other than the references listed.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Water-vapor feedback is known to dominate feedback in our climate system. Dessler
et al. (2008) provided an estimate of 2.04 Wm−2K−1, Gordon et al. (2013) found an average
of about 2.4 Wm−2K−1, and Liu et al. (2018) estimated the value of 1.55 Wm−2K−1

. These
were all short-term mean estimates of data taken from overlapping time periods (see
summary in Table 2). These authors agree that water-vapor feedback has the capacity to
approximately double the forcing, such as direct warming from greenhouse gas increases.
Feinberg (2021a) found an overall feedback amplification factor of 2.15. If we use this
estimate for the general feedback factor, then feedback is responsible for 53.5% of global
warming and forcing is 46.5%. Since WVF is believed to double the forcing in climate
models, then WVF is also responsible for 46.5%, and other feedbacks would account
for about 7% of the global warming temperature change. We can use this breakdown
to estimate the temperature portion of the warming due to water-vapor feedback. The
temperature difference breakdown is then:

(Forcing% + WVF% + Other Feedback%)∆TGW = ((0.465) + (0.465) + (0.07))∆TGW (A1)

where ∆TGW is the global warming average temperature rise for the year of interest. For
example, in the Liu et al. (2018) measurement period of 2004–2016, with an average year of
2010, the global warming was ∆TGW = 0.64 ◦C [40]. Therefore, WVF in that time period
was responsible for a temperature increase portion, ∆TWVF, of:

∆TWVF = 0.465 ∆TGW = 0.465× 0.64 ◦C = 0.298 ◦C (A2)

This rough estimate is used in Equation (13) to illustrate the ∆T WVFM’s capability to
reproduce Liu et al.’s (2018) reported results.

We see that water-vapor feedback dominates feedback, in agreement with other
authors [21,41,42]. The value in Equation (A2) is used to support the UHI ∆T WVF model
in Section 3.1.
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