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Abstract: Audio classification using deep learning models, which is essential for applications like
voice assistants and music analysis, faces challenges when deployed on edge devices due to their
limited computational resources and memory. Achieving a balance between performance, efficiency,
and accuracy is a significant obstacle to optimizing these models for such constrained environments.
In this investigation, we evaluate diverse deep learning architectures, including Convolutional
Neural Networks (CNN) and Long Short-Term Memory (LSTM), for audio classification tasks on
the ESC 50, UrbanSound8k, and Audio Set datasets. Our empirical findings indicate that Mel
spectrograms outperform raw audio data, attributing this enhancement to their synergistic alignment
with advanced image classification algorithms and their congruence with human auditory perception.
To address the constraints of model size, we apply model-compression techniques, notably magnitude
pruning, Taylor pruning, and 8-bit quantization. The research demonstrates that a hybrid pruned
model achieves a commendable accuracy rate of 89 percent, which, although marginally lower than
the 92 percent accuracy of the uncompressed CNN, strikingly illustrates an equilibrium between
efficiency and performance. Subsequently, we deploy the optimized model on the Raspberry Pi
4 and NVIDIA Jetson Nano platforms for audio classification tasks. These findings highlight the
significant potential of model-compression strategies in enabling effective deep learning applications
on resource-limited devices, with minimal compromise on accuracy.

Keywords: model compression; deep learning; audio classification; LSTM; CNN; edge device

1. Introduction

Audio classification or sound classification can be referred to as the process of ana-
lyzing audio recordings. Audio classification involves the application of machine learning
algorithms to raw audio data to categorize the type of audio present. Typically, this process
relies on data that have been annotated and classified into target categories by human
listeners in various applications.

There is a wide range of different applications for audio classification. Extensive
research has been conducted in the field of speech recognition, leading to the advancement
of speech-to-text systems. Similarly, audio classification technology has found applications
in automating music categorization and powering recommendation engines for music.
The classification of environmental sounds has been proposed for the identification of
specific species of birds and whales. Additionally, the monitoring of environmental sounds
in urban environments has been proposed to aid in law enforcement through the iden-
tification of sounds that may be associated with crime (i.e., gunshots) or unauthorized
construction (i.e., jackhammers). Pioneering efforts are directed toward developing a small,
versatile, efficient deep network for acoustic recognition on resource-limited edge devices.
Additionally, a key component of many intelligent Internet of Things (IoT) applications,
including predictive maintenance [1,2], surveillance [3,4], and ecosystem monitoring [5,6],
is audio classification. With several possible applications, including audio surveillance [7]
and smart room monitoring [8], environmental sound categorization (ESC) is a significant
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study topic in human–computer interaction. Designing suitable features for environmental
sound categorization is a practical task because acoustic settings are dynamic and un-
structured. A classifier is trained with the features in many existing ESC approaches to
determine the category likelihood of each environmental sound wave. The features are
frequently generated based on prior knowledge of acoustic settings. One of the effective
tools in the field of problem diagnosis is intelligent fault diagnosis [9,10]. It is possible to
replace diagnosticians by using artificial intelligence techniques like neural networks to
quickly evaluate these signals and automatically identify mechanical health issues based
on the massively monitored signals of the machines [11–13]. Therefore, intelligent problem
identification is vital in contemporary enterprises, particularly when there are abundant
vibration signals. Edge computing is the concept of performing computations at the edge
of the network rather than in the cloud. Edge computing has advantages in terms of
decreased latency, increased integrity, and a lessened network load. The application of
machine learning techniques to edge computing is known as edge AI [14].

Audio classification or sound classification can be referred to as the process of ana-
lyzing audio recordings. Audio classification encompasses the systematic application of
machine learning algorithms to analyze unprocessed audio data to identify distinct audio
types. This methodology predominantly employs data that has been meticulously anno-
tated and categorized into predefined classes, with these classifications being determined
by expert human auditors [15]. This approach is widely adopted in numerous applications
to enhance the accuracy and efficiency of audio analysis. There is a wide range of different
applications for audio classification. A great deal of research has been completed for speech
recognition and the development of speech-to-text systems [16].

Additionally, audio classification technology has found its use in the automation
of music categorization and the development of music recommendation systems. The
classification of environmental sounds has been proposed for the identification of specific
species of birds and whales. Additionally, the monitoring of environmental sounds in urban
environments has been proposed to aid in law enforcement through the identification of
sounds that may be associated with crime (i.e., gunshots) or unauthorized construction (i.e.,
jackhammers) [17,18]. Pioneering efforts are directed toward developing a small, versatile,
efficient deep network for acoustic recognition on resource-limited edge devices. Edge
devices can perform real-time audio classification, enabling immediate response to audio
events. Also, by performing classification locally, edge devices can reduce the latency of the
audio classification process, improving the responsiveness of systems. Edge devices can
perform audio classification without transmitting sensitive audio data to the cloud, thus
protecting privacy. Edge devices can also help in cost reduction. By reducing the amount
of data transmitted to the cloud, edge devices can reduce the costs associated with audio
classification [19].

Deep learning models have shown tremendous success in audio classification tasks.
There are several limitations to these models when we want to implement them in any edge
device. In general, data collected at the edge of the network from different sensors are sent
to the cloud for processing and decision making. This will create latency for transmitting a
massive amount of data, and cause privacy concerns. For these reasons, it will be difficult
to use edge devices for real-time analytics. If the analysis and recognition occur directly in
edge devices, the latency can be overcome. For this, we need to rely on the computation
power of the edge devices [20].

Deep learning models require an ample amount of data, extended training time,
and large trained models. Thus, it is challenging to run deep learning models such as
convolutional neural networks on edge devices that have a low processing power, no
GPU, and low memory [21,22]. Krizhevsky et al. [23] showed that they used 60 million
parameters and 650,000 neurons for five convolutional layers and 1000-way SoftMax. The
ImageNet dataset consists of 15 million labeled high-resolution images of 22,000 categories.
Another popular face-recognition method, Deep Face, trained about 120 million parameters
for more than four million facial images [24].
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The authors in [25] proposed a large deep convolutional network for audio classifica-
tion using raw data and then compressed the model for resource-improvised edge devices,
which produced above-state-of-the-art accuracy on ESC-10 (96.65%), ESC-50 (87.10%),
Urban-Sound8K (84.45%), and AudioEvent (92.57%); we describe the compression pipeline
and show that it allows us to achieve a 97.22% size reduction and a 97.28% FLOP reduc-
tion. Audio classification on microcontrollers using XNOR-Net for end-to-end raw audio
classification was explored, comparing it with pruning-and-quantization methods. It was
found that XNOR-Net is efficient for small class numbers, offering significant memory and
computation savings. Still, its performance drops with larger class sets where pruning-
and-quantization methods are more effective. In [26], a knowledge distillation method
enhances on-device audio classification by transferring temporal knowledge from large
models to smaller, on-device models. This method focuses on incorporating the temporal
information embedded in the attention weights of large transformer-based models into
various on-device architectures, including CNNs and RNNs. In [27], a real-time audio
enhancement system is proposed that uses convolutional neural networks for precise audio
scene classification, optimizing sound quality with minimal latency. This system efficiently
enhances audio frame-by-frame, overcoming the limitations of traditional scene-rendering
methods in audio devices. A sequential self-teaching approach proposed in [28] for sound
event recognition is especially effective in challenging scenarios like weakly labeled or
noisy data. The authors proposed a multi-stage learning process that enhances the gen-
eralization ability of sound models, demonstrated by up to a 9% improved performance
on the large-scale Audio Set dataset. Additionally, this method shows enhanced transfer-
ability of knowledge, boosting generalization in transfer-learning tasks. In [29], LEAN,
a lightweight, efficient deep learning model for audio classification on resource-limited
devices is introduced. It combines a trainable wave encoder with a pretrained YAMNet and
cross attention-based realignment, achieving high performance with a low 4.5 MB mem-
ory footprint, and improving the mean average precision on the FSD50K dataset by 22%.
Another approach [30] is a sequential self-teaching approach for sound event recognition,
which is especially effective in challenging scenarios like weakly labeled or noisy data. It
proposes a multi-stage learning process that enhances the generalization ability of sound
models, demonstrated by up to a 9% improved performance on the large-scale Audio
Set dataset.

This study aims to perform model compression and acceleration in deep neural
networks without significantly decreasing the model performance. The current state
of the art for deep learning model compression and acceleration includes pruning and
quantization. We analyze deep learning algorithms with different model-compression
techniques that can classify audio data with better accuracy in edge devices. We used
environmental sound datasets such as the UrbanSound8K, ESC 50, and Audio Set datasets
for the experiments. There are many different uses for audio classification and edge
devices. Their capacity for real-time audio analysis and categorization offers a wide range
of opportunities for enhancing functionality, security, and convenience across numerous
fields and spheres of life.

This research provides the following contributions:

1. We compare different DL models for audio classification for raw audio and
Mel spectrograms.

2. We apply different model-compression techniques to the neural network and propose
hybrid pruning techniques.

3. We deploy DL models for audio classification in the Raspberry Pi and NVIDIA
Jetson Nano.

The remainder of this paper is structured as follows. Section 2 introduces in detail
the algorithm of the proposed method along with the theoretical and technical parts. In
Section 3, the experimental details are presented, and the results are discussed in Section 4.
Conclusions and future works are then presented in Section 5 and acknowledgement in
Funding part.
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2. Methodology

In the realm of image categorization, deep learning demonstrates exceptional profi-
ciency, producing transformative outcomes in diverse domains. This advanced computa-
tional approach also exhibits significant potential in auditory classification tasks, including
the categorization of musical genres and environmental soundscapes. The research method-
ology proposed for this study is outlined as follows in Figure 1:

Figure 1. Pipeline of the proposed method.

2.1. Model Architecture

The model consists of several types of layers, including convolutional layers (Conv2d),
batch normalization layers (BatchNorm2d), rectified linear unit layers (ReLu), max pooling
layers (MaxPool2d), a permutation layer (Permute), an average pooling layer (AvgPool2d),
a flatten layer, a linear layer, and a softmax layer. The CNN architecture is shown in Table 1.

Table 1. CNN Architecture.

Layer Operation/Description

Conv2d
Input: (1, 1, 30,225)

Filters: 8, Kernel: (1, k); Output: (8, 1, 15,109)
Batch Normalization, ReLU Activation

MaxPool2d Max Pooling, Kernel: (2, 1); Stride: (2, 1); Output: (8, 1, 7554)

AvgPool2d Average Pooling, Kernel: (2, 1); Stride: (2, 1); Output: (8, 1, 3777)

Permute Permute Dimension Order

Flatten Flatten to 1D Vector

Linear Fully Connected Layer, Output: (1, n)

Softmax Softmax Activation for Classification

The model has a total of 4,735,378 parameters, indicating its complexity and capacity.
The model performs approximately 544,422,040 floating-point operations. FLOPs are a
measure of computational complexity, indicating how many operations are required to
make a forward pass through the network. In LSTM, we employ the bidirectional unit and
dense layer at the model’s conclusion. Adam is employed as the optimizer in all models.
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We used the following hyperparameters to extract the features from the Mel spectrograms:
128 Mels, n_fft of 512, window size of 400, 16 kHz sample rate, and hop length of 160. To
create the Mel spectrograms, we combined the STFT and the Hann window.

2.2. Model Compression

For deploying audio classification models on resource-constrained devices like the
Raspberry Pi 4 and NVIDIA Jetson Nano (Manufactured by NVIDIA, Santa Clara, CA,
USA), selecting the right model-compression techniques is crucial to balance performance
and efficiency.

2.2.1. Pruning

To compress the model for audio classification we used magnitude pruning and Taylor
pruning. Using magnitude pruning and Taylor pruning for model compression offers
several benefits, particularly when deploying models on resource-constrained devices like
the Raspberry Pi and NVIDIA Jetson Nano. These benefits stem from the ability of these
techniques to reduce the model size and computational complexity while maintaining
acceptable levels of accuracy. Magnitude pruning significantly reduces the number of
parameters in a neural network by eliminating weights with the smallest magnitudes. The
equation for magnitude pruning can be expressed as follows:

w′ =

{
0 if |w| ≤ threshold
w otherwise

Here, w is the original weight. w′ is the pruned weight after applying the magnitude
pruning. threshold is a predefined threshold value, and weights with magnitudes below
this threshold are pruned to zero. Pruning process is shown in Figure 2.

This leads to a smaller model size, making it more suitable for devices with limited
storage, like the Raspberry Pi. With fewer weights to process, the computational load
during inference is reduced. This can lead to faster response times, which is crucial for
real-time audio classification applications on both the Raspberry Pi and NVIDIA Jetson
Nano. Smaller and less-complex models require less power to run, which is beneficial for
battery-powered or energy-sensitive applications, a common scenario for Raspberry Pi-
based projects. The reduced model size offers more flexibility in deploying complex models
on the Raspberry Pi, which might otherwise be infeasible due to memory constraints.

Figure 2. Pruning.
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Taylor pruning considers the impact of each weight on the loss function, allowing
for a more informed decision about which weights to prune. This often results in a better
preservation of model accuracy compared to magnitude pruning.

By focusing on the removal of weights that have the least effect on the model output,
Taylor pruning ensures that the computational resources of the NVIDIA Jetson Nano are
used more efficiently, focusing on weights that contribute most to the model’s performance.
Taylor pruning can be applied to a variety of neural network architectures, making it a
versatile choice for different types of audio classification models that might be deployed on
these devices. For the NVIDIA Jetson Nano, which has more computational power than the
Raspberry Pi, Taylor pruning can effectively balance model complexity and performance,
optimizing the use of its GPU capabilities. Below is the equation for Taylor pruning:

L(w′) ≈ L(w) + (w′ − w)T∇L(w) +
1
2
(w′ − w)T H(w)(w′ − w)

A hybrid pruning approach leveraging both magnitude and Taylor pruning techniques
can provide a more effective and adaptable solution for model compression. It allows for a
nuanced balance between the model size, computational efficiency, and accuracy, which is
particularly beneficial in resource-constrained environments or in applications where both
speed and accuracy are crucial. Magnitude pruning effectively reduces the model size by
eliminating weights with the smallest magnitudes, which are often deemed less important.
However, this approach does not always consider the overall impact of each weight on
the model’s output. Taylor pruning, on the other hand, evaluates the impact of weights
on the loss function, providing a more nuanced view of each weight’s importance. By
combining these two methods, a hybrid approach can prune the model more aggressively
than magnitude pruning alone (thus reducing the size and computational load) while
still maintaining a higher level of accuracy, as it considers the impact of pruning such as
Taylor pruning on model performance. Different layers of a neural network might have
varying levels of sensitivity to pruning. A hybrid approach allows for a more tailored
pruning strategy, where magnitude pruning can be applied more aggressively in layers
that are less sensitive, and Taylor pruning can be used in layers where accuracy is more
critical. Different neural network architectures may respond differently to pruning. A
hybrid approach provides the flexibility to adjust the pruning strategy according to the
specific architecture, whether it is a convolutional neural network for image processing or
a recurrent neural network for sequence modeling like audio classification. On devices
like the Raspberry Pi and NVIDIA Jetson Nano, the reduced model size from magnitude
pruning leads to faster inference times and lower power consumption. The careful pruning
from the Taylor method ensures that this efficiency does not come at the cost of a significant
drop in accuracy. A hybrid approach needs to be implemented iteratively, starting with
magnitude pruning to quickly reduce the size and then refining with Taylor pruning to
fine-tune the model. This iterative process leads to a more optimized balance between size,
speed, and accuracy.

2.2.2. Quantization

8-bit quantization is a highly effective technique for optimizing deep learning models
for deployment on devices like the Raspberry Pi and NVIDIA Jetson Nano. It addresses the
key challenges of limited computational resources, storage capacity, and power constraints,
making it a popular choice for edge computing applications. Quantization reduces the
precision of the weights and activations in a neural network from 32-bit floating-point
to 8-bit integers. This reduction in bit width leads to a significant decrease in the model
size, which is crucial for devices with limited storage capacity like the Raspberry Pi. 8-bit
integers are computationally less expensive to process than 32-bit floating-point numbers.
This results in faster computation during model inference, which is particularly beneficial
for real-time applications like audio or video processing. With smaller data sizes, the
memory bandwidth requirement is reduced. This means that data can be transferred more
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quickly between the memory and the processor, further speeding up the inference process.
Most deep learning frameworks support 8-bit quantization, making it a widely accessible
technique for optimizing models for edge deployment.

3. Experimental Details

For hardware, the Raspberry Pi and NVIDIA Jetson Nano were used. The Convolu-
tional Neural Network was implemented in PyTorch and the Wavio audio library was used
to process the audio files.

3.1. Datasets

The UrbanSound8K [31] dataset was created in 2013 by Salamon, Jacoby, and Bello
as part of their research on audio event classification. The dataset is designed to be a
resource for researchers and practitioners in the field of audio processing and machine
learning. The audio files were recorded in various urban environments, including streets,
parks, and residential areas, with a focus on capturing the sounds of everyday life in
cities. The UrbanSound8K dataset is a collection of 8000 audio files recorded in various
urban environments. Each file is labeled with one of ten different classes, including “air
conditioning”, “car horn”, “children playing”, “dog bark”, “drilling”, “engine idling”,
“gunshot”, “jackhammer”, “siren”, and “street music”. Each of the 8000 audio files in the
dataset is 4 s long and is labeled with one of the 10 classes mentioned earlier. The dataset
was created to provide a challenging and diverse set of audio events that can be used to
evaluate and compare the performance of different audio classification algorithms.

The ESC-50 [32] dataset is a collection of 2000 environmental sound recordings orga-
nized into 50 different classes. The classes include various types of natural sounds, such as
water sounds, animal sounds, and weather sounds, as well as man-made sounds, such as
vehicle sounds, alarm sounds, and musical instrument sounds. Each sound recording is 5 s
long and is annotated with the corresponding class label.

Audio Set [33] is a large-scale dataset of audio events and scenes created by Google.
The dataset contains over 2 million 10 s audio clips, representing a diverse range of sounds,
including human speech, music, animal sounds, and environmental sounds. Each audio
clip is annotated with one or more labels from a hierarchical ontology of over 632 sound
event classes, including fine-grained classes such as “saxophone” and “dog bark” as well
as broader classes such as “music” and “animal”.

3.2. Data Preprocessing

The ESC-50 dataset comprises a total of 2000 audio samples, each with a duration of
five seconds. These samples were recorded at two distinct sampling rates: 16 kHz and
44.1 kHz. The dataset is meticulously organized into 50 distinct and balanced classes,
with each class containing 40 individual audio samples. Additionally, the ESC-50 dataset
is partitioned into five separate splits, a structure that facilitates the implementation of
five-fold cross-validation, thereby aiding researchers in obtaining unbiased and compa-
rable experimental results. By contrast, the UrbanSound8K (US8K) dataset encompasses
8732 labeled audio clips. Each clip, featuring urban soundscapes, has a maximum dura-
tion of four seconds and was recorded at a sampling rate of 22.05 kHz. This dataset is
categorized into 10 classes. Notably, the US8K dataset is pre-arranged into 10 folds, specif-
ically designed to support 10-fold cross-validation. This arrangement is instrumental in
ensuring that the research outcomes are unbiased and comparable, adhering to rigorous aca-
demic standards. The network in question is configured to process audio data sampled at
20 kHz, with each input corresponding to a length of 30,225 data points. This length equates
to approximately 1.51 s of audio. The decision to downsample the data to 20 kHz was
driven by the objective to minimize the input size, reduce the overall model size, and
decrease the power consumption. It is noteworthy that based on empirical observations,
the performance of the network remains consistent and unaffected when handling audio
that has been resampled at this lower rate. This indicates that the reduction in the sampling
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rate to 20 kHz does not detrimentally impact the network’s ability to process and analyze
audio data effectively.

Mel spectrograms (Figure 3), created by mimicking the non-linear response of the
human ear to different frequencies, offer advantages over raw audio data. They compress
frequency information, capturing essential acoustic features while reducing redundancy.
The high-dimensional nature of raw audio data is condensed into a more manageable set
of features, aligning with machine learning preferences for lower-dimensional inputs. Mel
spectrograms are designed to be perceptually relevant, enhancing performance in tasks
influenced by human perception, such as speech-related applications. They also exhibit
better noise robustness due to frequency compression and feature extraction, reducing the
impact of irrelevant noise. Moreover, the computational efficiency of Mel spectrograms
makes them a practical choice by providing a more efficient representation for processing
in terms of both memory and computation.

Figure 3. Mel spectrogram.

4. Results

In this study, the extraction of low-level features from raw audio data is a critical step,
with a particular focus on the zero crossing rate (ZCR). ZCR, a key measure in the analysis
of audio signals, quantifies the frequency at which the audio waveform crosses the zero
amplitude axis, thereby providing insights into the frequency content of the signal. This
metric is integral to various digital signal processing applications, including speech and
music analysis, as well as broader audio classification tasks. The utility of ZCR lies in its
ability to effectively differentiate between tonal sounds, which exhibit a lower ZCR, and
more noisy or percussive elements, characterized by a higher ZCR.

A notable challenge arises when the audio contains significant ‘dead spots’ or segments
of minimal amplitude, as these can obscure the distinctive features of the audio, leading to
difficulties in classification. To mitigate this issue, the initial step involves the cleansing of
audio data by removing dead space, utilizing a technique that involves the application of
a signal envelope. The signal envelope, a conceptual curve outlining the extremes of the
audio waveform, provides a framework for identifying and excising sections of the audio
below a threshold of 20 dB.

For uniformity and computational efficiency, the audio clips were standardized to a
fixed frame size. To facilitate the real-time GPU-based extraction of audio features from Mel
spectrograms, the study employed Keras audio preprocessors (Kapre). Kapre’s capabilities
extend to the optimization of signal parameters in real time, significantly simplifying and
enhancing the reliability of model deployment.

In Table 2, the comparison between the audio classification using raw audio and Mel
spectrograms is shown. The Mel spectrograms achieve the highest accuracy of 95%.
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Table 2. Audio classification comparison between feature extractions by raw audio and Mel spectrogram.

Datasets Raw Audio Mel Spectrograms

ESC-50 91% 92.7%
UrbanSound8k 79% 84%

AudioSet 90% 95%

We have also shown in Table 3 that with the proposed methodology, the experimental
result was also better than with many existing models.

Table 3. Comparison of our result with the existing results of Mel spectrograms.

Networks ESC50 US8k

Pizak-CNN [34] 64.50% 73.70%
Multi-CNN [35] 89.50% -
GoogLENet [36] 73% 93%

Proposed 92.7% 84%

Hybrid pruning, combining magnitude and Taylor pruning, offers superior model
optimization by balancing the efficient size reduction of magnitude pruning with the
precision of Taylor pruning. In Table 4, we can see that hybrid pruning obtained bet-
ter accuracy than the individual pruning methods. This approach enhances the net-
work performance and generalization while maintaining an optimal level of complexity.
It strikes a fine balance between computational efficiency and the retention of crucial
network features.

Table 4. Comparison between different pruning methods.

Pruning Methods Accuracy

Weight 88%
Taylor 88.75%
Hybrid 89.25%

Though we obtained better accuracy for audio classification using pruning techniques,
the model size and execution time were smaller using quantization techniques. A compari-
son between the accuracy and model size is shown in Table 5.

Table 5. Comparison between pruning and quantization.

Model Compression Accuracy Model Size

Original Model 92% 18.18 MB
Pruning 89.25% 528 KB

Quantization 85.25% 157 KB

Later, the audio classification model was deployed in the Raspberry Pi4 and NVIDIA
Jetson Nano to check the performance. Table 6 shows the results of the accuracy, inference
time, and power consumption in the devices.

Table 6. Performance of audio classification on edge devices.

Device Accuracy Inference Time Power Consumption

Raspberry pi4 85% 3.89 s/it 7 W
NVIDIA Jetson Nano 88% 2.12 s/it 10 W
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5. Conclusions

In contemporary applications, edge devices augmented with audio classification capa-
bilities are pivotal in enhancing a myriad of real-world scenarios. In domestic environments,
such technologies facilitate the intuitive, hands-free interaction with smart home systems
and yield immediate auditory feedback. Within the healthcare sector, these devices play a
crucial role in the perpetual monitoring and early diagnosis of conditions like sleep apnea,
offering vital, real-time data. Furthermore, in the public safety and industrial domains, their
ability to detect auditory cues of distress or mechanical irregularities significantly bolsters
emergency responsiveness and operational safety. In our research, it has been observed that
the efficacy of audio classification is notably enhanced when utilizing Mel spectrograms as
opposed to raw audio data. Particularly in scenarios where accuracy is paramount, Mel
spectrograms emerge as the preferred methodology. The significance of audio classification
in edge device applications is underscored by its widespread applicability. To facilitate
real-world deployment, it is imperative to compress these models efficiently. Our findings
indicate that hybrid pruning outperforms singular pruning methods in this context. Addi-
tionally, the implementation of quantization techniques contributes to a further reduction
in the model size, thereby expediting execution on edge devices.
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