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Abstract: Extreme weather events such as droughts are catastrophic and can have serious conse-
quences for people and the environment. Drought may be managed if measures are taken in advance.
The success of this endeavor depends on a number of factors, not the least of which is accurate
descriptions and measurements of drought conditions. Reducing the negative consequences of
droughts requires an early forecast of drought conditions. The primary objective of this research is,
hence, to establish a process for the assessment and prediction of drought. The drought evaluation
was carried out using the standards established by the SPI and the Indian Meteorological Department.
Maps of drought severity were generated using severe drought data. Thirty years’ worth of SPI
readings was analyzed. Fuzzy-based drought forecasting model parameters were determined during
a 25-year period, and the model was validated throughout the remaining years. The findings of this
study can be used by the community to help combat the drought. Before the drought worsens, the
local government can implement lifesaving mitigating measures.

Keywords: drought; forecast models; fuzzy; SPI; validation

1. Introduction

A drought is a period of abnormally low precipitation that lasts for an extended length
of time (months to years) across the land. There are four types of droughts that may
be identified by their underlying causes: meteorological, agricultural, hydrological, and
socioeconomic. In meteorology, drought is defined as an extended period of below-average
rainfall throughout an entire region. Low precipitation, dry winds, and high temperatures
characterize drought, and these factors vary greatly from place to region (Nagarajan, 2010;
Haied et al., 2017) [1,2]. When the relative humidity drops low enough to have an effect on
soil moisture, a severe agricultural drought will begin. The drop in soil moisture during
this time period will have negative effects on crops and animals, lowering agricultural
production and disrupting the ecosystem’s delicate food web. A dry period is defined in
a hydrological manner as being very long in that affected river flows and water storages
are below long-term mean levels in aquifers, lakes, or reservoirs. It is slugger than the
last two classes, as it covers not only the depletion process but also the refilling stage. As
a consequence, a socioeconomic drought occurs when the water resources systems fail
to meet the demand for the economic good (Dutta et al., 2015; Bhunia et al., 2020) [3,4].
Droughts can also practically be classified on the basis of precipitation anomalies schedules.
The importance of water in the Indian economy can be measured by the fact that the
agricultural sector traditionally accounted for two-fifths of the GDP and two-thirds of the
country’s population. But due to several factors, including the effect of the drought, it
has experienced a decreasing trend. Drought directly affects urban sustainability. The
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shortage of water in urban areas is affecting the lifestyle of living people, affecting the
overall water demand of the city and reducing pure water quality. One of the most vital and
taxing functions of meteorological services is weather forecasting (Ekundayo et al., 2022;
Lakshmi et al., 2020) [5,6]. It is projected that the challenges and damage to the economy,
agriculture, and survival will worsen over time. To lessen the impact of this, efficient water
resource planning and management is required. For both short-term and long-term agricul-
tural production planning, accurate rainfall forecasts at varying times are crucial. Rainfall
predictions are notoriously difficult to make. Given the intrinsic complexity of hydrologic
processes and the variety of geomorphological and climatic elements involved, modeling
precipitation series using conventional ways to simulate responses is a typical task. Quan-
tity variability and observational errors are described by statistical modeling (Pai et al.,
2011) [7]. However, the data in these models are typically thought of as integers or vectors.
Because the results of continuous measurements are never perfectly precise, it is not always
reasonable to make this assumption. Such uncertainty differs from mistakes and variability.
Whereas errors and variability can be modeled by stochastic variables and distributions of
probability (Danger et al., 2019) [8], imprecision, or fuzziness, is another type of uncertainty.
The most up-to-date method is to apply fuzzy numbers and fuzzy vectors, which are special
fuzzy models for a quantitative description of these data. The fuzzy theory of precipitation
was recently used as an alternative method to develop an ambiguity/vagueness forecasting
model. In order to model and predict data on local rainfall, Halide and Ridd (2002) [9]
used flush logic. The mean root squared error between the data and the model output was
319.0 mm, smaller than the local rain or niño. Wong et al. (2003) [10] built the fuzzy rule
bases using SOM and neural propagation networks and developed a predictive rainfall
model for spatial interpolation over Switzerland using the rule base. To predict precip-
itation in the West, Karamouz et al. (2004) [11] used a model of furious rule and neural
networks. They showed that the same error occurred in both models. The neurofuzzy
system was employed by Annas et al. (2006) [12] to model tropical rainfall in the wet
season. The low root mean squared error values of the models showed that the model
forecasts are reliable. Subramanian (1999) [13] has developed an aridity index concept for
the classification of drought (Ia). The aridity rate is the percentage of annual water failure
to yearly water consumption or annual evapotranspiration potential. The elaborate and
comprehensive droughts identifying technique was developed by Palmer (1965) [14]. The
Palmer methodologies were implemented by George et al. (2010) [15] for different Indian
subdivisions and 71-year defined periods and intensity of drought. One of the great short-
comings of this method is its uniform application in all agro-climate zones. In wetlands,
it is more of an agricultural drought, while it is a hydrological drought in semi-arid and
arid areas (Shewale and Kumar 2005) [16]. The Integrated Drought Severity Index (IDSI)
was developed by Ravikumar (2017) [17] in Dharmapuri district, Tamil Nadu, to identify
drought susceptible areas. In the application of a land use criterion, IDSI integrates the
effect of meteorological, hydrological, and agricultural factors.

Ray and Shewale (2001) [18] reported that the likelihood of drought over Gujarat, West
Rajasthán, and Jammu and Kashmir exceeded 20 percent. Herbst et al. (1966) [19] developed
a drought assessment technique using monthly rainfall. The technique determines both
the duration and intensity of droughts and the month in which they begin and end. Chow
(1959) [20] suggested that analyzing low flows is an appropriate way to quantify droughts.
He found that the deviation from normal conditions is greater when the river flows than
when rain flows during periods of poor precipitation. He also suggested that low-flow data
in terms of flux magnitude should be indicated. Herbst et al. (1966) [19] developed a system
that Mohan and Rangacharya (1991) [21] used to evaluate severe meteorological drought
using rainfall data for stream flow data. The properties of droughts were investigated
using the geometric probability distribution by Yevjevich (1967) [22], which defined the
drowsiness for a consecutive year when water resources were inadequate. Yevjevich
(1967) [22] suggested that ARMA models are the best global models for short and long-term
persistence forecasting. The distribution of the annual maximum precipitation deficit for



Urban Sci. 2023, 7, 88 3 of 14

six districts within the Netherlands was studied by Beersma and Buishand (2007) [23]
following the model series based on nearby resampling. SPI-based drought forecasting
using log-linear models was developed. Pongracz et al. (1999) [24] have developed a
fuzzy rules-based approach to the forecast of droughts in the U.S. Great Plains, based on
broad-base climate information, namely the daily atmosphere circulation patterns (CPs)
(SOI). A fuzzy model to predict local droughts (characterized by PMDI) was proposed by
Pongracz et al. (1999) [24] using two forcing inputs, ENSO and CPs, in a typical Nebraska
state in the Great Plains.

Drought forecasting helps to protect an area from drought and to reduce the en-
vironmental, social, and economic impacts of drought in advance. The estimation and
forecasting of drought is therefore very important and could involve short and long-term
strategies. Studies on the assessment and forecasting of drought are important for humanity
in general and for the economy of any nation. In this article, we examine the numerous
drought definitions and analyze their consequences for the outward appearance and the
importance of drought evaluation. The focus of this research is on improving drought
forecasting using a rule-based technique and creating a meteorological and agricultural
drought evaluation mechanism. A fuzzy rule-based drought forecasting methodology
was developed employing the Standardized Precipitation Index (SPI), and for forecasting
drought classification, AR and MA models were used. A case study of the Thamiravaruni
River Basin, located in South Tamil Nadu State in India, is used for the illustration of the
methodology. The weather droughts evaluation is performed using the Indian Metrological
Department (IMD) method, and spatial distribution of drought over the study area is
generated from the meteorological drought gravity map using GIS.

2. Methodology
2.1. Study Area

The river basin Thamiravaruni was chosen in this study as the focus catchment.
The basin is one of Tamil Nadu’s oldest systems. The river in the south of this state is
short but perennial. Irrigation development for the people living near the Thamiravaruni
River is a major source of revenue. The behavior of the river is erratic, and the major
part of the region under the basin is susceptible to droughts of mild to severe intensity.
The river Thamiravaruni originates at an altitude of 2000 m and converges with Bengal
Bay at the Gulf of Mannar from the Pothigai Mountains of the eastern slopes of Western
Ghats. From its origins up to the Gulf of Mannar, the river Thamiravaruni is 125 km long.
For the Thirunelveli and Thoothkudi districts, it is their lifeline. The overall area of the
basin is 5969 km2, 688 km2 of which is hilly. The basin is located between latitudes of
8◦21′ N and 9◦13′ N and 77◦10′ E and 78◦8′ E. Figure 1 shows the map of the basin of
Thamiravaruni. Southwest and northeast monsoons benefit from the forecasting of rainfall
over the Western Ghats.

2.2. Data Collected

The data needed for assessing the drought can be grouped into three categories, i.e.,
meteorological, hydrological, and agricultural. The above data collected from various
departments are detailed below.

2.2.1. Meteorological Data

The State Surface and Ground Water Data Centre and the Water Resources Organiza-
tion (WRO) Public Works Department (PWD), for the period from 1975 to 2018, collected
monthly precipitation data for 26 rain stations. For the Malaipatty meteorological station
at the Institute for Water Studies (IWS), WRO, PWD, we collected climate data such as
temperature, humidity, sunshine, wind velocity, pan-evapement, etc. Weather data were
collected from the Indian Meteorological Department for the Palayankottai Weather Station.
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Figure 1. Thamiravaruni River basin map.

2.2.2. Hydraulic and Hydrological Data

Papanasam, Manimuthar, Gadana, Ramanathi, Karuppanadhi, Gundar, and Servalar
have been hydraulically recovered from the IWS reservoirs. Data from the stream flow
was collected from the state surface, groundwater data centre, WRO, PWD, Chennai, and
other WRO offices in Madurai, Thirunelveli, and Tenkasi for the period 1991–2018 for
the gauging stations in Kodaimelalagian, Nadhijunni, Kannadian, Palavour, Suttamalli,
Marudur, and Srivaikuntam Anicuts. WRO, Thamiravaruni Basin, Thirunelveli, collected
hydraulic elements such as water expansion area, capacity, aricuts, etc., for 1300 tanks
located in the Thamiravaruni Basin.

2.2.3. Agricultural Data

For the Thirunelveli and Thoothukudi provinces, statistical and agricultural depart-
ments in Thirunelveli and Thoothukudi collected agricultural data such as land use, crop-
ping calendars, crop patterns, and cultivated areas. The agricultural data from the relevant
District Offices of the Statistical Department were also collected.

3. Fuzzy Rule-Based Drought Forecasting

Fuzzy reasoning provides a means of understanding the system conduct when it is
possible to infer between the observed input and output situations in systems with few
numerical data and if ambiguous or uncertain information is available. Fuzzy systems
can implement crisp inputs and outputs and create a nonlinear mapping of functions
similar to algorithms (Ross 2005) [25]. Fuzzy systems can, on the other hand, focus on
modeling problems with inaccurate or ambiguous information. It uses linguistic variables
instead of quantitative ones to represent inaccurate concepts, the underlying power of
the fugitive theory set. Fuzzy logic succeeds in two sorts of situations: (i) very complex
models with strictly limited or judgmental understanding and (ii) processes inextricably
involving human reasoning, perception of man, or decision-making of man. Drought is a
smooth phenomenon in which the above-mentioned factors play a major part. It requires
a thorough understanding of the drought factors, the classification of severity, and the
interpretation of drought variables. In the following sections, we propose the methodology
of fuzzy-based SPI drought forecasting.
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Estimation of the Standardized Precipitation Index

The SPI was used to predict drought. The primal reason why SPI is used is that SPI is
based solely on precipitation, which makes it possible to assess drought even if other hydro-
meteorological measures are not available. The topography also has no damage to the SPI.
The SPI is defined by different time frames, enabling it to describe conditions of drought
through a range of meteorological, wetland, and agricultural applications. The fourth
advantage of SPI is that it is standardized, which ensures that extreme event frequencies
are consistent in all locations and at any time. The SPI also detects a moisture deficit, which
is about 8–12 months in response. The 12-month SPI results detect long-term dry periods
linked to the global impact of drought on hydrological regimes and water resources of
a region (Paulo et al., 2005) [26]. This study, therefore, considered a 12-month or annual
time scale.

In this study, McKee et al. (1993) [27] developed the Standardized Precipitation
Index (SPI), which quantifies the multi-time precipitation deficit, reflective of the effect of
precipitation deficiency on the availability of different water supplies. Technically, for a
normal distributed random variable, SPI is the number of defaults that would deviate the
observed value from the long-term mean. Given that precipitation does not have a normal
distribution, a transformation is applied so that the precipitation values transformed are
distributed in normal order (Rouault and Richard 2003) [28]. The SPI is calculated on the
basis of the long-term precipitation record at a desired station that is then converted into a
normal distribution so that the average SPI is nil. Criteria for drought classification in the
categories described in Table 1 were assessed according to Wu et al. (2016) [29].

Table 1. Standardized precipitation index range with different categories.

S. No. SPI Values Drought Category

1 2 and above Extremely wet

2 1.5–1.99 Very wet

3 1.0–1.49 Moderately wet

4 −0.99–0.99 Normal

5 −1.0 to −1.49 Moderately dry

6 −1.5 to −1.99 Severe dry

7 −2.0 or less Extreme dry

4. Results and Discussion

The IMD procedure was used to evaluate the severe drought of the annual rainfall time
series. For all 26 stations, weather drought assessments were performed, and the results are
presented in Table 2. As shown in Table 2, several blocks of drought in the years 1974, 1975,
1981, 1986, 1996, and 1999 have been affected by moderate and severe drought. Twelve
blocks were seriously damaged in 1974, eight blocks were moderately damaged, and other
blocks were less affected. In 1975, eleven blocks were severely affected, eight blocks were
moderately affected, and other blocks were slightly affected. Four blocks suffered severe
damage, four blocks were moderately affected, and others were less affected during 1982.
In 1986, there were moderate impacts on 12 blocks and severe damage to nine blocks. One
block suffered severe damage in 1996, and nine blocks were moderately affected. In 1999,
six blocks were severely affected, and 11 blocks were moderately affected. The drought was
constantly prevalent between 1974 and 1976 and between 1980 and 1983. Table 2 shows the
above results. The drought seriousness of each rain gauge station was used to generate
maps of drought seriousness each year. The drought gravity in 1986 and 1999 is shown as
an example in Figures 2 and 3.
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Table 2. Meteorological drought assessment in the Thamiravaruni basin using the IMD method.

Sr. No Name of Station
Year Wise Drought Severity

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

1 Sivagiri M1 M0 M0 M2 M3 M1 M0 M1 M0 M0 M3 M3 M2 M0 M0

2 Gadana dam M3 M0 M0 M3 M2 M2 M0 M1 M0 M2 M1 M1 M1 M0 M0

3 Kannadian anicut M0 M1 M0 M2 M2 M1 M0 M0 M0 M1 M1 M1 M2 M0 M1

4 Papanasam M3 M3 M3 M3 M3 M3 M3 M3 M3 M1 M1 M1 M1 M0 M1

5 Dam Camp M3 M3 M3 M3 M3 M3 M3 M3 M3 M0 M0 M1 M0 M0 M0

6 Ambasamudram M1 M2 M0 M2 M3 M2 M0 M0 M0 M2 M1 M3 M2 M0 M0

7 Manimuttar M0 M0 M0 M2 M2 M1 M0 M1 M0 M1 M1 M2 M2 M0 M2

8 Cheranmadevi M3 M3 M1 M3 M3 M2 M0 M2 M0 M2 M2 M2 M2 M0 M0

9 Nanguneri M0 M0 M0 M2 M2 M1 M0 M0 M0 M1 M2 M1 M2 M0 M2

10 Radhapuram M0 M2 M0 M3 M2 M1 M0 M0 M0 M0 M2 M3 M2 M1 M2

11 Nilaparai M0 M1 M1 M2 M0 M0 M0 M1 M0 M0 M0

12 Thirunelveli M0 M0 M0 M0 M3 M1 M1 M2 M0 M3 M2 M1 M2 M0 M0

13 Palayankottai M0 M0 M0 M3 M3 M0 M0 M1 M0 M0 M1 M1 M2 M0 M0

14 Senkottai M2 M2 M0 M0 M0 M2 M0 M1 M0 M2 M1 M2 M2 M0 M1

15 Tenkasi M0 M0 M0 M1 M1 M2 M0 M0 M0 M1 M2 M0 M1 M0 M1

16 Karuppanadhi anicut M0 M0 M0 M0 M2 M0 M2 M1 M1

17 Ayikudi M1 M0 M0 M2 M1 M1 M0 M0 M0 M1 M2 M0 M0 M0 M0

18 Kadauanallur M0 M0 M0 M3 M3 M2 M0 M0 M0 M0 M2 M0 M2 M2 M1

19 Sankarankovil M0 M0 M0 M2 M3 M0 M0 M2 M0 M0 M1 M0 M1 M1 M2

20 Kovilpatti M0 M0 M0 M3 M1 M1 M0 M1 M0 M2 M2 M1 M0 M0 M1

21 Kayattar M1 M2 M0 M1 M1 M3 M2 M1 M1 M3 M1 M3 M3 M3 M2

22 Otappidaram M0 M0 M0 M3 M2 M1 M0 M2 M0 M1 M1 M2 M0 M0 M1

23 Thoothukudi M0 M0 M0 M3 M3 M0 M0 M0 M0 M1 M2 M0 M1 M0 M0

24 Srivaikuntam M0 M0 M1 M3 M2 M0 M0 M0 M0 M0 M0 M1 M2 M0 M0

25 Santtankulam M0 M0 M0 M3 M3 M1 M0 M0 M0 M1 M2 M1 M2 M0 M0

26 Tiruchendur M0 M0 M0 M2 M2 M1 M0 M0 M1 M1 M1 M0 M3 M0 M0

Figure 2. Drought severities in the Thamiravaruni basin.
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Figure 3. Drought severity in the Thamiravaruni basin (block-wise).

Here M0 to M3 define drought category, where M0 stands for no drought, M1 is mild
drought, M2 is moderate drought, and M3 stands for severe drought.

Drought frequency analysis was conducted using thirty-year rainfall data from the
Thamiravaruni basin, based on percentage deviation using the IMD method. The following
are stages of severe drought, once in 3 to 6 years, in Sivagiri, Kadaiyam, Papanasam, Damp
Camp, Cheranmahadavi, Radhapuram, Nilaparai, Kayattar, Ottappidaram, Thoothukudi,
Srivaikuntam, and once in 7 to 10 years in the stations Palayankottai, Karuppanadhi anicut,
Kadaiyanallur, Sankarankovil, Sattankulam, and Tiruchendur. Other blocks are less often
exposed to serious drought. All other blocks will be exposed to moderate drought once
2–9 years apart from Sivagiri, Gadana Dam, Ambasamudram, Manimuthar, Papanasam,
Dam camp, Sencotttai, and Tenkasi. All of the blocks are often subject to mild droughts
with a return period ranging from two to five years other than Kadaiyam and Papanasam,
Cheranmahadevi, Tenkasi, Kadaiyanallur, and Ambasamudram.

4.1. Meteorological Drought Risk Index

The Meteorological Drought Risk Index (MDRI) was developed using frequency
analysis based on thirty years of rainfall data by calculating the probability of each drought
severity class. The drought risk index ranges from 1.00 at Senkottai to 2.64 at Thoothukudi.
Four drought risk classes were delineated based on the range of the drought risk index, as
shown in Table 3. From the IMD results presented in Table 3, the meteorological drought
risk status of each block was determined.

Table 3. Drought severity classification for the Tamiravaruni Basin based on the MDRI.

S. No. Range Drought Severity

1 1.0–1.41 Very mild

2 1.41–1.82 Mild

3 1.82–2.23 Moderate

4 2.23–2.64 Severe
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The meteorological drought risk index spatial interpolation was performed. The
region is less susceptible to meteorological drought than other regions because the blocks
around the West Ghats are subjected to very good rainfall. The rainfall decreases with the
increase of the distance from the Western Ghats. This leads to a gradual rise in drought
propensity toward the east, which is evident from the drought risk map. Figure 3 shows
the risk map of the meteorological drought in the Thamiravaruni Basin.

As Ambasamudram, Tenkasi, Gadana Dam, and Senkottai are shielded by the Western
Ghats, they are less prone to meteorological drought risk than other stations. However,
Tenkasi, Gadana Dam, and Senkottai are not located on the main stream and are located
on the tributaries of the Thamiravaruni River. They are slightly more prone to drought
compared to Ambasamudram. Palayankottai, Nanguneri, Tiruchendur, Udangudi, part
of Kadaiyanallur, Vasudevanallur, Kelappavar, Kadaiyam, Pappakudi, Cheranmadevi,
Kalakkadu, Azhwartirunagari and Kayattar blocks are under moderate drought risk status.
Northern and tail-end blocks such as Sankarankovil, Kuruvikulam, Kayattar, Ottappidaram,
Srivaikuntam, Karunkulam, Sattankulam, Manur, Azhwartirunagari, and Tiruchendur are
all liable to severe drought risks as shown in Figure 4.

Figure 4. Meteorological drought risk map of the Thamiravaruni basin.

4.2. Drought Forecasting Using Fuzzy Logic

The drought forecasting was conducted using the standard precipitation index and
fuzzy logic. In subsequent paragraphs, the analysis and drought classification using SPI
and the SPI forecast are discussed with the application of the proposed fuzzy logic drought
forecasting methodology.

4.2.1. Analysis of SPI for Drought Forecasting

The SPI values for all the rain gauge stations were calculated based on monthly rainfall
values. The SPI is calculated on the basis of long-term rainfall records for the desired station,
which is then converted into a normal distribution so that the average SPI is nil. The ranks
were allocated, and the membership value was based according to the drought classification.
Figure 5 shows the evolution of SPI values for various rain gauge stations. Dry classification
according to the SPI values was observed to differ from IMD values. Ambasamudram rain
gauge station, for example, for the year 1974, was classified as moderate drought prone
to IMD. However, SPI was also classified as ‘extremely dry’. The inoperative values of
Karuppanadhi, Nilaparay, and Kadaiyanallur were not consistent and were not considered
for SPI testing. Figure 5a–v gives a good indication of the drought history of the specific
station to plot a time series of years against the SPI.
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4.2.2. Drought Forecasting

Fuzzy ranks for each rain gauge station were determined, and a sample result was pre-
sented. These values were obtained following the transfer of the SPI values to the triangular
fuzzy membership function. The specific SPI value of the respective sets was identified.
For each possible flush set, the Hamming distances were identified, the maximum value of
the fuzzy membership function was considered, and this particular range was assigned.
Similarly, for each SPI value, all fused ranks were identified. The ranks were used to predict
the severity of the drought. These ranks are predicted using MA (2) and AR (2) models.
SPSS was used to estimate the model parameters for all stations. The parameters were used
to predict the corresponding drought classification rank for MA (2) and AR (2).

For analysis and modeling of the hydrological time series, stochastic models are widely
used. The MA and AR were used for two kinds of shocking models. The Box and Jenkins
1976 correlation method was used to apply linear AR and MA models to fuzzified PI series.
The AR and MA models were developed in three phases: identification, estimation, and
diagnostic inspection. In the identification phase, data were transformed to improve the
normality and stability of the time series, if needed, and the general form of the model to
be estimated was determined. For information on the seasonal and non-seasonal AR and
MA operators for the fused annual series, the autocorrelation function (ACF) and partial
autocorrelation function (PACF), calculated using the SPSS software, are used. The ACF
measures linear dependence in time series between observations.

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Evolution of SPI for an annual time scale for different locations in the Thamiravaruni
River Basin. (a) Ambasamudram (b) Ayikudi (c) Cheranmadevi (d) Dam Camp (e) Gadana Dam
(f) Kannadian Anicut (g) Kayattar (h) Kovilpatti (i) Manimuttar (j) Nanguneri (k) Ottappidaram
(l) Palayankottai (m) Papanasam (n) Radhapuram (o) Sankarankovil (p) Sattankulam (q) Senkottai
(r) Sivagiri (s) Srivaikuntam (t) Tenkasi (u) Tiruchendur (v) Thirunelveli.

A second-order Moving Average (MA) and Autoregressive (AR) models (Haan 2012)
were used for forecasting the respective rank for the next time step.
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4.2.3. Performance of Fuzzy-Based Drought Forecasting

The performance of both MA and AR models was evaluated using the Root Mean
Square Error (RMSE) for annual time lead. The performance of the fuzzy-based forecasting
model using MA and AR processes is examined, and the results are presented in Figure 6.
Based on the RMSE, the MA (2) process performs well in forecasting the fuzzified drought
ranks compared to the AR (2) process. It is observed that the RMSE value for MA (2) was
less compared to the AR (2) process. Hence, the MA (2) results were used for forecasting
the drought severity class for the immediate time step.

Figure 6. RMSE values for MA (2) and AR (2).

4.2.4. Defuzzification of the Forecasted Ranks

The projected ranks of the triangular fuzzy membership were defuzzified and overlaid,
and their respective drought severity was identified. It is noted that the classification of the
deflated drought severity has the range of drought severity that carries the drought-related
uncertainty. This method is based on a direct approach based on fuzzy logic with better-
integrated drought uncertainty than other models, as discussed in the literature review.

5. Conclusions

Drought forecasting necessitates research into modeling methodologies in the fields
of meteorology, hydrology, agricultural systems, and water resource systems. In order
to enhance the required multi-stage forecasting, accurate forecasting is essential for the
best management practices. Meteorological drought evaluation was conducted using the
IMD technique. The meteorological drought gravity map was used in conjunction with
a geographic information system to determine the geographical distribution of drought
over the research region. Analytical frequency was applied to the IMD outcomes and
the suggested meteorological driving risk index. The findings were discussed. Mild and
moderate IMD drought has been determined to be a threat in areas such as Kayattar,
Karunkulam, Kuruvikulam, Sankarankovil, and Alangulam. These sections are especially
vulnerable to long-term drought. This is clearly demonstrated by the frequency-based
meteorological drought risk index created for this research. According to this proposed
technique, the aforementioned blocks represent extremely drought-prone locations. Based
on frequency analyses, this study finds that a methodology created for meteorological
drought evaluations is more effective than the IMD approach in identifying areas likely to
experience drought. Both of these approaches share the same roots and rationales; however,
the suggested technique is an enhanced version of the IMD approach. With the use of the
supply and demand calculation, the extent of the drought in the agricultural sector was
evaluated. The Thamiravaruni Basin’s whole block set was analyzed. Supply and demand
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analysis was implemented throughout the Kar (June–September), Pishanam (October–
February), and Dry (March–July) seasons. It was discovered that droughts occurred more
frequently during the Kar season than during the Pishanam season. A frequency study of
yearly rainfall in the Thamiravaruni basin shows that the basin is at risk of drought around
once every five years.

People can utilize the study’s findings to help ease the current drought. Before the
drought becomes any worse, the government may take precautions that could save lives.
Using data collected at the block level can help prioritize areas in need of immediate
drought relief, soil conservation, water conservation (including rainwater collecting and
mitigation), environmental planning, and the restoration of geo-ecological balance.
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