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Abstract: In urban environments, semantic segmentation using computer vision plays a pivotal
role in understanding and interpreting the diverse elements within urban imagery. The Cityscapes
dataset, widely used for semantic segmentation in urban scenes, predominantly features urban
elements like buildings and vehicles but lacks aquatic elements. Recognizing this limitation, our
study introduces a method to enhance the Cityscapes dataset by incorporating aquatic classes, crucial
for a comprehensive understanding of coastal urban environments. To achieve this, we employ a
dual-model approach using two advanced neural networks. The first network is trained on the
standard Cityscapes dataset, while the second focuses on aquatic scenes. We adeptly integrate
aquatic features from the marine-focused model into the Cityscapes imagery. This integration is
carefully executed to ensure a seamless blend of urban and aquatic elements, thereby creating an
enriched dataset that reflects the realities of coastal cities more accurately. Our method is evaluated
by comparing the enhanced Cityscapes model with the original on a set of diverse urban images,
including aquatic views. The results demonstrate that our approach effectively maintains the high
segmentation accuracy of the original Cityscapes dataset for urban elements while successfully
integrating marine features. Importantly, this is achieved without necessitating additional training,
which is a significant advantage in terms of resource efficiency.

Keywords: deep learning; semantic segmentation; Cityscapes; aquatic images

1. Introduction

Machine learning plays a pivotal role in urban planning and development [1–3].
Particularly, semantic segmentation [4,5] can serve as a foundational technology in applica-
tions ranging from smart city design to environmental monitoring. This process involves
classifying each pixel in an image to demarcate distinct regions with semantic relevance,
thus facilitating a detailed understanding of urban landscapes [6,7]. While the Cityscapes
dataset [8] is a benchmark for assessing semantic segmentation algorithms in urban settings,
it primarily focuses on terrestrial urban environments and lacks representation of aquatic
regions [9,10]. This gap is significant in urban science, particularly for coastal cities and
waterway management [11].

Retraining the Cityscapes dataset to include aquatic environments poses significant chal-
lenges, including high computational demands and extensive time requirements [12,13]. Simpli-
fication techniques, such as fixed-point calculations [14] or binary neural networks [15–17], offer
some relief, but their impact is marginal given the scale and complexity of the data [18].

Addressing this limitation, our study introduces a novel fusion model that synergizes
the capabilities of two advanced neural networks: Panoptic DeepLab [19] and Water Seg-
mentation and Refinement (WaSR) [20]. Panoptic DeepLab, trained on the Cityscapes
dataset, excels in urban landscape segmentation; however, as demonstrated by our experi-
ments in this paper, it falls short in identifying aquatic regions due to dataset limitations.
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Conversely, WaSR specializes in aquatic environment segmentation but lacks the diversity
to classify varied terrestrial urban elements.

A fusion model [21] is proposed to combine the strengths of both networks, enabling
comprehensive segmentation that includes aquatic areas without the need for retraining.
The model is enhanced and the approach is illustrated in our model architecture diagram
(Figure 1). The model first employs WaSR to segment aquatic regions in the input image
and then integrates these results with the output from Panoptic DeepLab. This hybrid
approach allows for accurate and holistic labeling of urban scenes, including both terrestrial
and aquatic elements, which is essential for urban environmental studies and sustainable
city planning. In general, our contributions are as follows:

• Efficient and resource-saving methodology: Our fusion model efficiently labels images
with mixed urban and aquatic environments using the pretrained models Panoptic
DeepLab and WaSR. This approach eliminates the need for retraining new networks,
conserving significant time and computational resources.

• Versatile application across various environments: The model’s adaptability extends its
application beyond the Cityscapes dataset, enhancing semantic segmentation perfor-
mance in diverse fields such as environmental monitoring and underwater exploration.

• Comprehensive analysis of complex urban ecosystems: By integrating urban and
aquatic segmentation, the model offers a more nuanced understanding of urban
landscapes, particularly beneficial in coastal or riverine cities where water bodies
are integral.

The organization of this paper is as follows: Section 2 presents a review of the latest
segmentation works. In Section 3, we provide a comprehensive overview of two neural
network models: Panoptic Deeplab and WaSR. Following that, we will delve into the fusion
process that combines these two models. The results of our experiments are presented in
a visualized manner in Section 4. Finally, we summarize our findings and conclusions in
Section 5.

Figure 1. Overall structure.

2. Literature Review

The existing literature reflects a diverse array of segmentation algorithms, each tailored
for specific urban and environmental applications. Some research studies [22,23] focused
on sea–sky scene perception, crucial for coastal urban monitoring, handling dual subtasks
in a single inference process. In urban context understanding, some researchers [24,25]
introduced two hierarchical frameworks that efficiently incorporate contextual information
for enhanced semantic segmentation, crucial for complex urban environments.
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Another work [26] contributed significantly to maritime urban science by creating
MaSTr1325, a marine semantic segmentation training dataset, alongside the MODS bench-
mark [27]. MODS focuses on maritime object detection and obstacle segmentation, key
aspects in developing safe and efficient marine navigation systems in urban coastal areas.

Previous research studies [28,29] proposed two methods for detecting the sea–sky line
under complex backgrounds, a tool essential for urban coastal surveillance. Enhancing this,
Bovcon et al. [20] innovated a method that merges inertial data with visual features for
improved water edge detection, vital for urban planning in areas where land meets water.

Later, some researchers [30,31] extended the urban landscape segmentation by design-
ing a network that classifies pixels into water, land, or sky using a CRF method. This is
particularly relevant for urban areas with diverse landscapes, from water bodies to green
spaces [32].

In the realm of detailed urban scene analysis, the researchers [33,34] focused on
differentiating foreground and background elements, enhancing object detection in densely
populated urban areas. Some researchers [35,36] introduced two methods to refine panoptic
segmentation, a step forward in creating coherent urban maps. Further, researchers [37,38]
developed two models optimized with point-based supervision, improving accuracy in
urban feature detection. Gasperini et al. [39] presented Panoster, a segmentation method
for urban LiDAR data, vital for 3D urban modeling. The researchers also [40,41] proposed a
methodology based on a dual-encoder network to process RGB and depth data, enhancing
3D urban scene perception.

These advancements demonstrate the growing versatility and applicability of semantic
segmentation algorithms in urban science, from coastal urban monitoring to detailed 3D
urban modeling. The incorporation of environmental elements like water and sky into
urban scene understanding, as seen in these works, is crucial for comprehensive urban
planning and management.

3. Methodology
3.1. Panoptic DeepLab Trained on Cityscapes

Figure 2 presents the results of Panoptic Deeplab applied to the Cityscapes dataset.
Cityscapes comprises a substantial variety of distinct labels. However, Panoptic Deeplab
demonstrates its ability to successfully recognize and classify all of these labels, due to its
efficient computational architecture, following thorough training.

Figure 2. Results of Panoptic Deeplab.

Figure 3 illustrates the structure of Panoptic DeepLab. Panoptic-DeepLab stands out
in the realm of image segmentation with its innovative dual-atrous spatial pyramid pooling
(ASPP) and dual-decoder modules [42,43]; this structure is specifically designed to tackle
the intricacies of both semantic and instance segmentation tasks within the broader scope of
panoptic segmentation. This advanced architecture is bolstered by a shared backbone [44],
which serves both segmentation tasks simultaneously. This not only optimizes computa-
tional resource usage but also ensures the extraction of rich feature representations that
are equally beneficial for semantic and instance segmentation. A distinctive feature of
Panoptic-DeepLab is its approach to instance segmentation through class-agnostic instance
center regression. This method deviates from traditional top-down approaches [45] that
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typically rely on region proposal networks. Instead, it directly predicts the center of each
object instance and accurately computes the offset for each pixel within that instance,
thus pinpointing its precise location [46]. The semantic segmentation branch of Panoptic-
DeepLab aligns with conventional semantic segmentation models, focusing on classifying
each pixel into various categories, including “things” and “stuff”. Complementing these
features is the model’s efficient merging operation. In summary, the main functionality of
Panoptic-DeepLab is as follows:

• The dual-ASPP and dual-decoder modules enable the network to handle the intricacies
of both semantic segmentation (categorizing areas into broad classes) and instance
segmentation (identifying individual object instances).

• The shared backbone allows for feature extraction that is beneficial for both segmenta-
tion tasks, maximizing the use of learned features.

• The instance center regression facilitates the bottom-up approach for instance segmen-
tation, identifying individual objects without needing region proposals.

• The efficient merging operation combines the outputs of both segmentation tasks to
create a cohesive panoptic segmentation map, integrating both “thing” (individual
objects) and “stuff” (amorphous regions like grass or sky) categories.

In addition, Panoptic-DeepLab distinguishes itself with its simplicity, speed, efficiency,
and state-of-the-art performance, setting a new benchmark in the field of panoptic seg-
mentation. The architecture of the model is ingeniously crafted to be less complex yet
robust, offering a simpler alternative to the more intricate two-stage methods commonly
found in image segmentation. This simplicity not only facilitates ease of implementation
and modification but also enhances its appeal for a broader range of applications. A key
strength of Panoptic-DeepLab lies in its speed and efficiency, attributes that stem from its
streamlined structure and the use of a shared backbone. This makes it particularly well
suited for real-time applications, where quick processing is essential. In terms of perfor-
mance, Panoptic-DeepLab excels, consistently achieving competitive or leading results
across various renowned benchmarks, including Cityscapes, Mapillary Vistas, and COCO.
This high level of performance is a testament to the model’s effectiveness in handling di-
verse segmentation tasks. Furthermore, its bottom-up approach in panoptic segmentation
simplifies the process while maintaining high-quality output.

Figure 3. DeepLab based on Cityscapes. In our analysis, we found that while the DeepLab neural
network performs well in detecting various environmental instances in the Cityscapes dataset,
it struggles with identifying aquatic areas. Our experiments showed that the model incorrectly
segmented some aquatic areas as roads, streets, or other incorrect classes. This highlights the need for
a more specialized neural network to accurately identify and segment aquatic regions in an image.

The performance of neural networks, particularly in the domain of computer vision,
is fundamentally tied to the caliber and diversity of the training data they are exposed to.
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This principle is exemplified in the case of Panoptic DeepLab, a cutting-edge model in the
field of panoptic segmentation. A key contributor to its success is the Cityscapes dataset, an
extensive collection of stereo video sequences meticulously captured in street scenes from
50 different urban environments. This dataset is not just voluminous but rich in quality
and variety, comprising high-quality pixel-level annotations of 5000 frames along with a
substantial set of 20,000 frames with weaker annotations. This exhaustive dataset encom-
passes an extensive range of urban object classes, including cars, pedestrians, bicycles, and
buildings, each presenting unique challenges in terms of segmentation and recognition.

Cityscapes’ detailed and diverse dataset serves as a crucial benchmark for the de-
velopment and evaluation of advanced semantic segmentation algorithms. The dataset’s
complexity and real-world variability make it an ideal proving ground for models intended
for intricate tasks in computer vision, such as panoptic segmentation and object tracking.
The depth and breadth of its data contribute significantly to the training of models, en-
abling them to learn and accurately identify a wide range of objects and scenarios typical
of urban landscapes.

Trained on the Cityscapes dataset, Panoptic DeepLab has demonstrated exceptional
proficiency, achieving state-of-the-art performance across several metrics. This high level
of accuracy is particularly evident in the model’s panoptic segmentation of city views,
where it successfully differentiates and segments a multitude of elements within dense
urban scenes. Table 1 clearly illustrates that the Cityscapes dataset encompasses a wide
array of living-thing categories; however, it notably lacks labeled categories for aquatic
environments. This limitation hinders its ability to efficiently process data related to aquatic
areas, which, significantly, constitute the majority of the Earth’s surface.

Table 1. The legend of Cityscapes.

ID Name RGB Value Color Name

0 unlabeled 0, 0, 0 Black
1 ego vehicle 0, 0, 0 Black
2 rectification border 0, 0, 0 Black
3 out of roi 0, 0, 0 Black
4 static 0, 0, 0 Black
5 dynamic 111, 74, 0 Dark brown
6 ground 81, 0, 81 Purple
7 road 128, 64, 128 Medium purple
8 sidewalk 244, 35, 232 Bright pink
9 parking 250, 170, 160 Light salmon
10 rail track 230, 150, 140 Light taupe
11 building 70, 70, 70 Dim gray
12 wall 102, 102, 156 Slate gray
13 fence 190, 153, 153 Dusty rose
14 guard rail 180, 165, 180 Grayish-pink
15 bridge 150, 100, 100 Sienna
16 tunnel 150, 120, 90 Olive
17 pole 153, 153, 153 Gray
18 polegroup 153, 153, 153 Gray
19 traffic light 250, 170, 30 Yellow
20 traffic sign 220, 220, 0 Electric yellow
21 vegetation 107, 142, 35 Olive green
22 terrain 152, 251, 152 Pale green
23 sky 70, 130, 180 Steel blue
24 person 220, 20, 60 Crimson
25 rider 255, 0, 0 Red
26 car 0, 0, 142 Deep Blue
27 truck 0, 0, 70 Navy Blue
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Table 1. Cont.

ID Name RGB Value Color Name

28 bus 0, 60, 100 Dark cerulean
29 caravan 0, 0, 90 Dark blue
30 trailer 0, 0, 110 Dark midnight blue
31 train 0, 80, 100 Dark teal
32 motorcycle 0, 0, 230 Blue
33 bicycle 119, 11, 32 Maroon
34 license plate 0, 0, 142 Deep blue

3.2. WaSR

Cityscapes has established itself as a popular and valuable dataset for urban scene
segmentation [47]. It possesses inherent limitations, particularly in its applicability to
environments beyond urban landscapes. One notable area where Cityscapes falls short is
in the segmentation of aquatic environments [48]—a domain vastly different from urban
settings in terms of visual features and segmentation challenges [49]. Recognizing this gap,
researchers [20] started to develop a specialized model tailored for aquatic environments,
leading to the creation of the WaSR model.

The WaSR network structure is a specialized deep learning architecture designed for
maritime obstacle detection, with several distinctive features and functionalities. Below is
a detailed breakdown of its network structure, functionalities, and advantages:

1. Encoder–decoder architecture:

(a) Encoder: Based on ResNet101 with atrous convolutions for extracting rich
visual features.

(b) Decoder: Integrates features from the encoder, upsampling them to construct
the segmentation map. Includes multiple fusion modules for handling various
water appearances.

2. Fusion modules:

• Essential for combining visual features with inertial measurements, addressing
maritime challenges such as reflections and wakes.

3. Inertial measurement unit (IMU) integration:

• Incorporates IMU data to determine the horizon line and camera orientation,
enhancing accuracy in ambiguous conditions.

4. IMU feature channel encoding:

(a) Encoding methods: Drawing a horizon line, encoding a signed distance to the
horizon, and creating a binary mask below the horizon.

(b) These encoded channels are fused into the decoder for improved segmentation
accuracy.

The WaSR network is meticulously designed for precise semantic segmentation in
maritime environments, a pivotal functionality for autonomous navigation and surveillance
in marine settings. Its primary capability lies in its adeptness at distinguishing various
elements within a maritime scene, such as water, sky, ships, and other pertinent objects.
This specificity is crucial, as it directly informs navigation decisions for unmanned marine
vehicles, ensuring safety and efficiency in navigation.

An essential aspect of WaSR’s functionality is its robustness in handling the complex
appearances of water. Maritime environments are inherently dynamic, with varying condi-
tions such as different lighting scenarios, reflections, and diverse water textures. WaSR’s
sophisticated architecture can navigate these challenges, ensuring accurate segmentation
even under these fluctuating conditions.

A standout feature of the WaSR network is its integration of data from an inertial
measurement unit (IMU). This integration is not just a supplementary enhancement but a
core aspect of its functionality. The IMU data play a critical role in accurately determining
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the horizon line and the camera’s orientation relative to the horizon. This is particularly
vital in the ambiguous visual conditions often encountered at sea, such as foggy or glare-
heavy scenarios. By fusing this inertial data with visual cues, WaSR achieves a higher
level of precision in horizon detection and orientation, which is instrumental in correctly
interpreting maritime scenes.

Moreover, the network’s ability to incorporate IMU data for horizon estimation and
to adaptively respond to various sea states showcases its advanced approach to maritime
scene understanding [50,51]. This results in a significant reduction in false positives, a
common challenge in water segmentation due to the reflective and dynamic nature of
marine environments. The WaSR network presents several substantial advantages that
set it apart in the field of maritime obstacle detection and navigation. These advantages
underscore its potential as a transformative tool for a wide array of maritime applications.

One of the primary advantages of the WaSR network is its remarkable capability to
reduce false positives. In the context of maritime environments, where the reflective and
dynamic nature of water often leads to visual ambiguities [52,53], reducing false positives
is crucial. Traditional segmentation methods can struggle with differentiating between
actual obstacles and reflections or other water-related phenomena [54–56]. WaSR, with its
sophisticated fusion of visual and inertial data, excels in accurately distinguishing between
these elements. This precision is particularly beneficial in ensuring the safety and efficiency
of autonomous marine navigation, where accurate detection of obstacles is vital.

Another significant advantage of WaSR is its impressive generalization capabilities.
The network has been tested and has shown commendable performance across various
datasets and hardware setups. This ability to generalize ensures that WaSR is not limited to
the specific conditions or environments it was trained, making it a versatile and robust tool
for maritime obstacle detection. Whether deployed on different types of unmanned surface
vehicles or in varied geographical locations, WaSR maintains a consistent level of accuracy
and reliability.

Additionally, WaSR is exceptionally robust in challenging conditions. Maritime en-
vironments can be highly unpredictable, with factors like fog, glare, and varying light
conditions often impeding visibility [57–59]. WaSR’s design and integration of IMU data
make it adept at navigating these challenges, ensuring accurate segmentation even in
less-than-ideal visual conditions. This robustness enhances the network’s applicability in
real-world scenarios, where such conditions are commonplace.

Figure 4 illustrates the main procedure of the WaSR model, showcasing the intricate
process of how the model handles aquatic imagery. The model’s procedure involves a
series of steps that include initial segmentation, feature extraction, and refinement stages,
each meticulously designed to address the unique challenges posed by water bodies. The
WaSR network presents several substantial advantages that set it apart in the field of
maritime obstacle detection and navigation. These advantages underscore its potential as a
transformative tool for a wide array of maritime applications.

A primary limitation of the WaSR model is its specialization for maritime environ-
ments, which inherently restricts its effectiveness in nonmaritime contexts as shown in
Table 2, which only includes three different items, obstacle, water, and sky. Its algorithms
and data processing techniques are optimized for water, sky, and marine obstacles shown
in Figure 5, which means it might not yield the same level of accuracy or reliability in
terrestrial or aerial environments. This specialization, while a strength in marine settings,
limits its versatility across diverse environmental applications, especially for large and
complex terrestrial environments.
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Figure 4. WaSR. WaSR is a neural network with an input and output size of 512 × 384 × 3. It consists
of an encoder module that includes four neural networks with a ResNet-101 backbone, combined
with max pooling layers. In the decoder, attention refinement modules (ARMs) are used to learn an
optimal fusion strategy. Additionally, the feature fusion module (FFM) is used to extract low-level
and high-level features and combine them in the CNNs. The atrous spatial pyramid pooling (ASPP)
module is used to improve the segmentation performance for small structures while generating
minimal computing load. These design choices make WaSR a powerful and efficient segmentation
model for aquatic environments.

Figure 5. Results of WaSR.

Table 2. The legend of WaSR.

ID Name RGB Value Color Name

0 Obstacle 247, 195, 37 Goldenrod
1 Water 41, 167, 224 Dodger blue
2 Sky 90, 75, 164 Dark purple

Another significant challenge is the requirement for substantial training data [60–63].
To achieve its high level of accuracy, WaSR needs to be trained on extensive datasets that
comprehensively cover various maritime scenarios and conditions. Gathering such large
and diverse datasets can be resource-intensive and may not be feasible for all applications,
especially those with limited access to maritime environments or those operating under
constrained research budgets. The model’s demand for significant computational resources
is also a drawback. To process complex datasets and perform real-time segmentation and
detection, WaSR requires powerful processing capabilities. This requirement can pose a
barrier to its deployment on systems with limited computational power or in scenarios
where minimizing power consumption is critical, such as on unmanned, battery-operated
marine vehicles.

In terms of operational limitations, the WaSR model shows sensitivity to lighting
conditions, particularly in low-light environments. Its performance can decrease under such
conditions, as the visual sensors may not capture enough detail to accurately differentiate
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between various elements in the scene. This sensitivity could be a hindrance in operations
conducted during nighttime or in areas with poor visibility [64–66]. Lastly, the model’s
ability to detect small obstacles is an area of concern, especially in safety-critical applications.
While WaSR excels in identifying larger objects, it may sometimes miss smaller obstacles,
which, in a maritime setting, can be just as hazardous as larger ones. This limitation
necessitates additional caution and possibly supplementary detection systems to ensure
comprehensive safety in navigation.

3.3. Model Fusion

In our endeavor to refine segmentation for both aquatic and terrestrial environments,
we innovated a fusion model that capitalizes on the distinct strengths of the WaSR and
Panoptic DeepLab models. This model is designed to overcome each system’s specific limi-
tations when dealing with complex environmental scenes that include both land and water.

The aquatic model excels in segmenting aquatic areas but falls short in providing intri-
cate details for land segments. Conversely, Panoptic DeepLab, trained with the extensive
Cityscapes dataset, offers comprehensive labeling for land features but cannot segment
aquatic regions effectively. Our fusion model aims to harness these disparate capabilities
for a more robust segmentation solution.

The process begins with a standard preprocessing step where an input image is resized
to a uniform dimension, making it compatible with analysis by the two models. The aquatic
model processes the image to segment it into three categories: aquatic, sky, and other.
Following this, we employ a custom mask that filters out the ‘sky’ and ‘other’ segments,
isolating the aquatic region in the image. Concurrently, Panoptic DeepLab performs its
segmentation, producing detailed split instance graphs based on its terrestrial-focused
training labels. However, it is important to note that Panoptic DeepLab’s output for aquatic
areas is not reliable due to the absence of such labels in its training set.

The challenge then lies in effectively merging these outputs to produce a cohesive
segmented map. To address this, our fusion model initially discards the aquatic segment
from Panoptic DeepLab’s output, acknowledging its inherent inaccuracy. We replace this
segment with the aquatic mask generated by the aquatic result, ensuring precise delineation
of water bodies. However, a critical issue arises in extracting nonaquatic segments from
Panoptic DeepLab’s output, given its inaccuracy in classifying aquatic regions. To resolve
this, we introduce an innovative color-based tag finder. This tool analyzes the RGB output
from the WaSR model, focusing on identifying the blue hues that correspond to aquatic
areas. By accurately pinpointing these regions, we can seamlessly integrate the detailed land
segmentation from Panoptic DeepLab with the aquatic segmentation from the other model.

Through this sophisticated fusion approach, our model effectively combines the
detailed terrestrial segmentation of Panoptic DeepLab with the precise aquatic delineation
of WaSR. This results in a comprehensive and accurate representation of both land and
water environments, significantly enhancing the capabilities of environmental segmentation
and analysis.

Our novel fusion model adeptly merges the segmentation capabilities of Panoptic
DeepLab and WaSR, resulting in a system that can accurately segment both land and
aquatic areas by utilizing the strengths of both models. The comprehensive structure and
workflow of this fusion model are depicted in Figure 1, illustrating how the outputs of the
two models are integrated to achieve superior segmentation performance.

In our fusion model, a critical component is the color-based tag finder, whose structure
and function are detailed in Figure 6. This finder is tasked with processing the RGB images
from the label classification results of the aquatic elaboration. These images are then
converted into LAB value images, a format that significantly enhances color differentiation,
making it easier to isolate specific color ranges. The finder operates by pinpointing and
extracting the areas that match the predefined aquatic color values. The resulting mask, as
shown in Figure 6b, uses black to denote the extracted aquatic area. This mask is a pivotal
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element in the fusion process, allowing us to overlay it onto the combined output of WaSR
and Panoptic DeepLab, effectively replacing inaccurately segmented areas.

Figure 6. Extracting label.

The fusion process itself is visually elucidated in Figure 7. Here, we demonstrate
how the extracted mask image from Figure 6 and the output from Panoptic DeepLab are
blended. In this synthesis, the split map from Panoptic DeepLab automatically aligns with
the corresponding areas on the mask. Simultaneously, the remaining areas in the mask,
representing aquatic segments, are overlaid onto the final output map. This method ensures
that the final output not only maintains WaSR’s high accuracy in identifying aquatic areas
but also benefits from the diverse and precise labeling of terrestrial features provided
by Cityscapes.

Figure 7. Model fusion.

Moreover, we introduced a color modification step for the extracted labeled areas. This
alteration is implemented to enhance the visual distinction of these areas, making it easier
to observe and analyze the segmented results. By modifying the color of these areas, we
provide a clearer visual demarcation, which is especially useful in applications requiring
quick identification and differentiation of various segments.

In summary, our fusion model represents a significant advancement in environmental
segmentation, combining the aquatic accuracy of the aquatic model result with the extensive
land labeling capabilities of Panoptic DeepLab. The model not only achieves high accuracy
in segmenting diverse environments but also presents the results in a visually intuitive
manner, enhancing both the usability and applicability of the segmented data.

4. Evaluation

In this section, we delve into the practical application and testing of our fusion model,
implemented using Google Colab’s CPU environment. The focus of our testing was to
assess the model’s ability to effectively combine aquatic and terrestrial data in image
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segmentation. We selected a diverse set of images, each containing elements of both aquatic
and terrestrial environments, to evaluate the model’s performance.

The initial step involved setting up the computational environment in Google Colab
for both the WaSR and Panoptic DeepLab neural networks. This setup included loading
their respective pretrained models, a crucial step to leverage their advanced segmentation
capabilities. To ensure compatibility with each network, we resized the input images ac-
cording to the specific requirements of WaSR and Panoptic DeepLab. These resized images
were then processed through each network to generate their segmentation predictions.

Following the segmentation, we undertook a critical step of size normalization to
align the outputs of both networks. This alignment was essential for the subsequent fusion
process. We extracted the aquatic segment from the WaSR output using the previously
discussed masking technique. This extracted segment was then meticulously integrated
with the output from Panoptic DeepLab, resulting in a composite image that effectively
combined the detailed terrestrial data from Panoptic DeepLab with the precise aquatic
segmentation from WaSR.

The results of this fusion process are showcased in Figure 8, which includes a series
of comparative images: the original input, the standalone outputs from DeepLab and
WaSR, and the final fused output. A critical observation from these results is the seamless
overlay of the aquatic region from the WaSR output onto the Panoptic DeepLab output.
This overlay ensures that the aquatic regions are accurately represented in the final image.

Figure 8. Results of fusion model.

To quantify the effectiveness of our fusion model, we calculated the proportion of
aquatic regions in both the fused output and the original WaSR output.

4.1. Panoptic DeepLab Trained on Cityscapes

In the Panoptic DeepLab neural network, we integrated three essential performance
metrics: panoptic quality (PQ), average precision (AP), and mean intersection over union
(MIoU). The Panoptic DeepLab is initially trained using the Cityscapes dataset, which does
not include aquatic images. To represent aquatic scenes more accurately, we established
two separate MIoU metrics: MIoUorigin for standard scenarios and MIoUwater for aquatic
contexts. The specific values are as follows.

Table 3 illustrates the performance of Panoptic DeepLab based on Cityscapes. MIoUorigin
denotes the metric calculated from the original Cityscapes dataset, which excludes aquatic
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areas. Conversely, MIoUwater refers to the metric derived from test data that include aquatic
regions, yet it is still evaluated using the neural network trained on the original Cityscapes
dataset. Consequently, it is expected that MIoUwater will be lower than MIoUorigin, reflecting
the network’s limited exposure to aquatic imagery during training.

Table 3. Panoptic DeepLab performance on Cityscapes.

Method PQ AP MIoUorigin MIoUwater

Panoptic
DeepLab 63.0% 35.3% 80.5% 76.47%

4.2. WaSR

The WaSR model, specifically designed for aquatic data, was trained on the MaSTr1325
dataset, which includes only three classes, underscoring its targeted focus. In scenarios
with notable class imbalance, a common feature of such datasets, the F1 score is often
a more suitable evaluation metric [67]. This score, balancing precision and recall, offers
a fairer assessment of performance, particularly for minority classes. WaSR is typically
evaluated using three metrics: precision (Pr), recall (Re), and F-score (F1) shown in Table 4.
To facilitate a more effective comparison with Panoptic DeepLab, we also recalculated
WaSR’s MIoU. The specific values for these metrics are outlined in the table below.

Table 4. WaSR performance on MaSTr1325.

Method Pr Re F1 MIoU

WaSR 94.60% 96.50% 95.50% 99.80%

The data in the table show that the MIoU values do not correlate with the Pr, Re, and
F1 values, which are generally determined based on different evaluation objectives. In this
study, we recalculated the MIoU values specifically to facilitate a comparison between the
outcomes of this experiment and the results from the initial experiments.

4.3. Fusion Model

We extracted the segmentation capability of WaSR, particularly for aquatic regions,
and integrated it with Panoptic DeepLab. This combination produced the following
MIoU results.

The MIoU for WaSR, when trained on the MaSTr1325 dataset, reached 99.80%. In
contrast, the original Panoptic DeepLab, trained with the Cityscapes dataset, achieved an
MIoU of 80.5%. However, as the Cityscapes dataset lacks aquatic categories, the MIoU
of Panoptic DeepLab decreased to 76.47% when processing images containing aquatic
regions. By integrating aquatic labels derived from WaSR training into the Cityscapes
dataset, we effectively extend its labeled categories. This extension results in a higher MIoU
for the newly added aquatic classification compared to the original Cityscapes labels. Thus,
our approach not only expands the classification range of the Cityscapes dataset but also
enhances the corresponding MIoU values.

This result shown in Table 5 is particularly significant as it confirms the successful
augmentation of the cityscape-based Panoptic DeepLab output with aquatic data without
necessitating any retraining of the model. The accuracy of the aquatic segmentation
is thus maintained, while the extensive terrestrial labeling from Panoptic DeepLab is
effectively incorporated, showcasing the efficacy of our fusion approach in enhancing
environmental segmentation.
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Table 5. Performance comparison.

Method MIoU Dataset

WaSR 99.80% MaSTr1325
Panoptic DeepLab 76.47% Cityscapes

Fusion Model (Ours) 81.46% Cityscapes

Table 6 illustrates the legend of our fusion model. As the model merges Panoptic
DeepLab with WaSR, we simply extract the aquatic label from WaSR and integrate it into
the Panoptic DeepLab results, which forms the basis of the legend.

Table 6. The Legend of the fusion model.

ID Name RGB Value Color Name

0 unlabeled 0, 0, 0 Black
1 ego vehicle 0, 0, 0 Black
2 rectification border 0, 0, 0 Black
3 out of roi 0, 0, 0 Black
4 static 0, 0, 0 Black
5 dynamic 111, 74, 0 Dark brown
6 ground 81, 0, 81 Purple
7 road 128, 64, 128 Medium purple
8 sidewalk 244, 35, 232 Bright pink
9 parking 250, 170, 160 Light salmon
10 rail track 230, 150, 140 Light taupe
11 building 70, 70, 70 Dim gray
12 wall 102, 102, 156 Slate gray
13 fence 190, 153, 153 Dusty rose
14 guard rail 180, 165, 180 Grayish-pink
15 bridge 150, 100, 100 Sienna
16 tunnel 150, 120, 90 Olive
17 pole 153, 153, 153 Gray
18 polegroup 153, 153, 153 Gray
19 traffic light 250, 170, 30 Yellow
20 traffic sign 220, 220, 0 Electric yellow
21 vegetation 107, 142, 35 Olive green
22 terrain 152, 251, 152 Pale green
23 sky 70, 130, 180 Steel blue
24 person 220, 20, 60 Crimson
25 rider 255, 0, 0 Red
26 car 0, 0, 142 Deep blue
27 truck 0, 0, 70 Navy blue
28 bus 0, 60, 100 Dark cerulean
29 caravan 0, 0, 90 Dark blue
30 trailer 0, 0, 110 Dark midnight blue
31 train 0, 80, 100 Dark teal
32 motorcycle 0, 0, 230 Blue
33 bicycle 119, 11, 32 Maroon
34 license plate 0, 0, 142 Deep blue
35 water 41, 167, 224 Dodger blue

5. Conclusions

This research introduces an innovative fusion model designed to seamlessly integrate
aquatic environment labels into a neural network initially trained on the Cityscapes dataset.
This model eliminates the need for additional training, a significant advancement in the
field of neural network application. Our strategy involved utilizing two cutting-edge
neural networks, Panoptic DeepLab and WaSR, each with its unique strengths. Panoptic
DeepLab excels in identifying a wide range of environmental features but falls short in
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aquatic environment recognition. Conversely, WaSR demonstrates exceptional proficiency
in aquatic region detection but lacks in-depth analysis of contemporary terrestrial features.

To bridge this gap, we developed a specialized finder tool for WaSR. This tool is
adept at locating specific aquatic areas based on their labels and creating an accurate mask.
This mask is then intricately fused with the output from Panoptic DeepLab, effectively
combining the capabilities of both networks. As a result, our fusion model not only
integrates aquatic labels into the Panoptic DeepLab’s cityscape results but also does so
without necessitating retraining of the network.

A significant advantage of our model is its compatibility with CPU processing. This
compatibility streamlines the implementation process, making it more accessible and
resource-efficient, particularly beneficial for applications at the edge. Running on a CPU
also ensures that the model can be easily integrated into various systems without the need
for specialized, high-end hardware.

We aim to refine our approach by incorporating a lighter neural network for the identi-
fication of aquatic regions. This development is expected to further simplify the implemen-
tation process and enhance deployability, particularly on edge hardware like FPGAs [68,69].
Such a lightweight network would not only retain the model’s effectiveness but also in-
crease its practicality for real-world applications, especially in edge-computing scenarios.
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