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Abstract

In a world experiencing rapid urbanization, the phenomenon of land surface tempera-
ture (LST) variation has invited substantial attention due to its profound impact on the
environment and human well-being. Changes in land use and land cover (LULC) within
urban areas significantly influence the dynamics of LST and are a major driver of urban
eco-environmental change. The complex connections between LULC dynamics, LST, and
climate change are investigated in this systematic review, with a focus on the combined
effects of these variables and the use of Machine Learning (ML) techniques. The data in
this study, based on peer-reviewed publications from the past 25 years, were obtained
from Science Direct and Web of Science databases. Based on our findings, Landsat is
the most widely used dataset for analyzing the impacts of LULC on LST. Additionally,
built-up areas, vegetation, and population density had the biggest effects on LST values
based on focused studies. This systematic review reveals that Artificial Neural Networks
(ANNs), Cellular Automata-Markov (CA-Markov), and Random Forest (RF) are the most
used ML techniques in predicting LULC and LST. The study finds that NDBI and NDVI
are recognized as the key LULC indices that have strong correlations with LST. We also
highlight key LULC classes that have the most impact on LST variation. To validate the
results, these studies employ Pearson correlation, the NDVI and NDBI index, and other
linear regression methods. This review concludes by highlighting future research directions
and the current need for interdisciplinary efforts to address the intricate dynamics of LULC
and the Earth’s surface temperature.

Keywords: rapid urbanization; land use/cover; land surface temperature; urban heat
island; machine learning; environmental change; climate change

1. Introduction
Land Surface Temperature (LST) represents the thermal state of the Earth’s surface, as

detected primarily through thermal infrared satellite imagery. This parameter serves as a
valuable environmental indicator, providing insights into heat exchanges at the ground
level. Notably, LST is highly sensitive to alterations in land use and land cover (LULC), for
example, the transformation of vegetated areas into urban infrastructure. The proliferation
of impervious surfaces such as concrete and asphalt, which typically accompanies rapid
urbanization, leads to pronounced increases in surface temperature. This process underpins
the well-documented urban heat island (UHI) phenomenon, where urban regions exhibit
significantly higher temperatures than their rural surroundings [1].
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In urban settings, elevated LST can significantly influence local climate conditions,
energy demands, public health, and overall sustainability [2]. For instance, higher sur-
face temperatures can exacerbate heat-related illnesses, deteriorate air quality, and lead to
increased energy consumption for cooling buildings. Understanding the complex interac-
tions between LULC and LST is therefore crucial for effective urban planning and climate
adaptation strategies. The recent surge in Remote Sensing (RS) technologies and Machine
Learning (ML) methods has improved our ability to analyze these interactions accurately
and efficiently. ML approaches combined with high-resolution RS data allow detailed ex-
ploration of how urban expansion affects temperature patterns, providing valuable insights
that traditional methods often miss [3,4].

Although previous reviews have addressed aspects of LULC–LST relationships and
ML in Earth system modeling, none have provided an integrated, methodologically focused
analysis of ML applications for LULC-driven LST variation. For example, Pal and Sharma
reviewed ML applications in land surface modeling but focused on physical process im-
provements such as evapotranspiration and soil moisture simulation—within land surface
models—rather than urban-scale LULC changes or LST outcomes [5,6]. Meanwhile, Patel,
Indraganti, and Jawarneh conducted a comprehensive review of how LULC influences LST
and outdoor thermal comfort, identifying key datasets, comfort indices, and mitigation
strategies. However, their analysis focused on spatial trends, correlation measures, and
urban design implications, rather than classifying or critically evaluating ML algorithms or
validation techniques [7].

This systematic review aims to tackle these challenges by assessing recent develop-
ments in ML techniques for examining the relationship between LULC changes and LST.
It synthesizes findings from peer-reviewed studies over the past 25 years (2000–2025),
identifying commonly utilized satellite datasets, important indices like the normalized dif-
ference vegetation index (NDVI) and normalized difference built-up index (NDBI), as well
as key ML algorithms such as Cellular Automata-Markov (CA-Markov), Artificial Neural
Networks (ANNs), and Random Forest (RF). This review also points out geographical and
methodological gaps, discusses validation issues, and suggests future research directions
to enhance ML applications in urban climate studies.

The paper is organized as follows: Section 1.1 outlines factors influencing LST in
urban environments. Section 2 describes the systematic review methodology, including
databases, search queries, and screening processes. Section 3 presents key results, while
Section 4 discusses these findings and their implications. Section 5 concludes this review
by summarizing insights and suggesting priority areas for future research.

1.1. Factors Affecting LST in Urbanized Cities

Urban planners and climate scientists are keenly interested in understanding the
implications of rising LST, especially as it relates to changes in LULC [8]. The discernible
impact of LST is most prominent in densely urbanized areas, where the prevalence of
impermeable surfaces significantly contributes to this phenomenon [9]. Studies indicate
that elevated LSTs are caused by a number of variables, including impermeable surfaces,
less-than-ideal urban designs, darker building materials and colors, dense urban vegetation,
and the use of heat-absorbing building materials [10,11].

Urban landscapes, characterized by impervious surfaces, intensify the absorption of
solar radiation, leading to elevated temperatures [12]. Metropolitan cities are seeing an
increase in the “canyon effect” phenomenon. It happens when tall buildings artificially
create a canyon-like effect by flanking both sides of city streets [13]. It has been linked to
detrimental effects on air quality, temperature, light levels, wind patterns, and even mental
health outcomes [14]. Densely populated areas may encounter the ‘canyon effect,’ impeding



Urban Sci. 2025, 9, 234 3 of 25

airflow and trapping heat, thereby causing temperature spikes. The selection of dark build-
ing colors and non-reflective surfaces further accentuates temperature levels. Common
urban infrastructure materials, including bridges, parking areas, and pedestrian spaces,
contribute to heightened thermal conductivity, augmenting impervious surfaces [15]. The
transformation of natural surfaces into built structures due to urban development and
LULC alterations also plays a substantial role in temperature elevation [16]. Furthermore,
external factors that affect LST significantly include the natural environment and geo-
graphic locations. Low wind speed is one factor that can increase low LST, and coastal
hot and dry cities and regions with higher humidity show higher LST than their inland
counterparts [17].

UHIs refer to areas, typically found in urban environments, that exhibit elevated
temperatures compared to the surrounding rural areas [18–22]. Higher LSTs are experi-
enced in urban areas compared to surrounding rural areas due to the UHI effect [7–9].
The temperature variation between these areas can reach up to 5 ◦C, influenced by a
high ratio of impervious surfaces in urban environments [10]. LST is determined by the
balance of incoming and outgoing radiation at the land–atmosphere interface, which is
impacted by surface–atmosphere interactions like solar irradiance, wind conditions, and air
temperature [11]. The properties of the underlying LULC also affect heat absorption and
dissipation. For example, vegetated areas and wet soil tend to have lower temperatures
than bare ground or built-up urban surfaces with more heat-absorbing materials. Under-
standing the sophisticated interplay of these factors is essential for proactive planning to
mitigate increasing LST. This can help with sustainable urban development and reduce the
bad effects of climate change globally.

1.2. Exploring Worldwide Perspectives: Comprehensive Approaches and Case Analyses

The incorporation of ML methodologies has played a crucial role in understanding the
complex correlation between LULC and LST, hence enabling the development of predictive
modeling strategies for the effects of UHIs. For more than 70 years, there has been concern
about the rise in urban temperatures and the development of UHIs which highlights the
need for thorough research and intervention [23–28]. One study explored the relationship
between LST, LULC, and socioeconomic variables in Phoenix, Arizona [23]. The research
used satellite-derived LST data from ECOSTRESS and high-resolution land cover and
census data. The study found that socioeconomically vulnerable communities are more
likely to experience higher temperatures due to UHI effects. The research also aimed
to identify potential interventions to mitigate these effects. The Multi-Resolution Land
Characteristics (MRLC) dataset has been used in numerous research projects conducted in
the United States. The Multi-Resolution Land Characteristics (MRLC) dataset, a compre-
hensive resource gathered from ten federal agencies and evaluated by the Environmental
Protection Agency, provides detailed information on land cover patterns and impermeable
surface features [29–31]. This long-term view of land cover, spanning several years and
including cities across the US, is valuable for scholars studying the dynamics of changing
land cover over time [32–34]. Another study investigated LST changes in the Khulna City
Corporation area of Bangladesh between 1999 and 2019 using Landsat 5 and Landsat 8
data. The study predicted LST using CA-Markov algorithm and found that LST increased
significantly over this period, with the highest temperature zone expanding, indicating
the growth of urban areas [20]. Assaf and Hu developed a knowledge-based white-box
Bayesian network model to predict the severity of the UHI effect at the census tract level
in New Jersey, USA. The model uses 13 influencing factors as inputs, including LULC,
demographic, and meteorological variables [30]. The model allows estimating changes
in UHI severity under different urban growth or development scenarios [31]. Another
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research investigated the correlation between green space morphology and UHI intensity
using RF algorithm and MODIS data in Shenzhen, China. It uses LST data to identify UHI
intensity patterns and analyzes green space morphology. Results showed UHI intensity
is negatively correlated with core, perforation, and loop categories of green space mor-
phology, but positively correlated with green space islets. The study suggested that a few
large core green space areas are better for mitigating UHI and that fragmented patches
should be integrated for enhanced cooling capacity [35,36]. Furthermore, studies have
established a correlation between LULC, LST, and other variables using regression models,
the normalized difference vegetation index (NDVI), and the normalized difference built-up
index (NDBI) [37,38].

The increasing availability of diverse RS data sources, coupled with advances in
computational capacity, has enabled the development of sophisticated ML algorithms for
modeling LULC and LST dynamics [39–44]. However, current research exhibits several
critical gaps [45,46]. Most studies disproportionately focus on major urban centers in
Asia, North America, and parts of Europe, while regions such as Africa, South America,
and smaller or arid inland cities remain significantly underrepresented [47–50]. There
is also no clear consensus on the most effective ML models for different geographic or
climatic contexts, with performance outcomes varying across studies. While ML tools offer
substantial predictive power, few studies translate their findings into actionable, spatially
explicit urban planning or policy frameworks.

This systematic review of 81 peer-reviewed studies over the past 25 years addresses
these gaps by highlighting underexplored regions and variables, evaluating the contextual
strengths and limitations of commonly used ML models, and identifying key opportunities
for future research and policy translation. It aims to serve as a comprehensive reference for
researchers and policymakers involved in LULC planning and urban heat mitigation. This
review adopts a structured approach, assessing different satellite imagery data, as well
as various indices, modeling techniques, and validation methods used to predict LULC
and LST dynamics. Finally, the study discusses existing challenges and outlines future
directions to support the development of more accurate, scalable, and policy-relevant
modeling approaches in this interdisciplinary field.

2. Methodology
A thorough explanation of the methodology used for the selection, screening, clas-

sification, and analysis of relevant research is provided in this section. The procedure
comprised a detailed and systematic exploration of the ScienceDirect and Web of Sciences
databases with the goal of gathering a comprehensive set of data regarding various ap-
proaches applied to evaluate the impact of LULC on LST in urbanized regions around the
world, with a particular emphasis on the incorporation of ML approaches in the estimation
and prediction of LULC and LST. These databases are widely recognized for their rigorous
indexing criteria, multidisciplinary coverage, and high-quality peer-reviewed content. They
offer extensive resources across environmental science, RS, ML, and LST research fields,
making them ideal platforms for retrieving the relevant literature.

While Scopus is also a comprehensive database covering a broad range of scientific
publications, its structure often provides only metadata access for many articles, with full
texts being restricted behind publisher paywalls. In contrast, ScienceDirect was selected
because it offers direct full-text access to a large volume of peer-reviewed research, facili-
tating a more detailed review of methodologies, results, and discussions which maintain
a high level of methodological transparency and consistency in systematic review [33].
Therefore, the combination of Web of Science’s broad indexing and ScienceDirect’s full-
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text availability ensured comprehensive coverage, relevance, and accessibility of the
selected studies.

The search strategy included a set of targeted keywords, including “land use and land
cover”, “land surface temperature”, and a combination related to ML and LULC impact
on LST. The complete query was constructed as follows: (“land use” OR “land cover” OR
“land use change” OR “land cover change”) AND (“land surface temperature” OR “surface
temperature” OR “thermal RS”) AND (“machine learning” OR “artificial intelligence” OR
“predictive modeling”).

This review followed a rigorous and systematic process to identify and select relevant
studies for evaluation and data extraction. The inclusion criteria focused on peer-reviewed
articles written in English, published from the year 2000 onwards, to ensure linguistic
consistency and minimize potential inaccuracies introduced by translation. Only articles
that aligned with the research objectives, demonstrated methodological rigor, and were
sourced from reputable academic databases were considered to reduce selection bias.

The literature search was conducted across two major databases: Web of Science and
Science Direct. The search returned 73 articles from Web of Science and 125 articles from
Science Direct, resulting in a total of 198 records. After removing 19 duplicate records
and 22 records for other reasons, 157 records remained for screening. Title and abstract
screening were conducted manually to assess relevance to the research questions. Studies
were excluded if they did not focus on the relationship between LULC change and LST, or
if they lacked a clear integration of ML methods.

Following this initial screening, 84 full-text articles were retrieved for detailed review.
During full-text assessment, three articles were excluded for falling outside the defined
objectives and screening criteria. Ultimately, 81 studies were included in the final synthesis.
Throughout the selection process, a clear emphasis was placed on ensuring that the studies
incorporated robust ML approaches relevant to land use and LST dynamics.

This review includes peer-reviewed studies published between January 2000 and
March 2025, spanning a 25-year period. Studies published prior to 2000 were excluded to
ensure consistency with contemporary methodological standards and to focus on research
that reflects advancements in RS, ML, and LULC–LST modeling during this timeframe.
This timeframe was chosen strategically to capture the historical evolution of the field,
incorporating significant advancements while avoiding outdated information. Additionally,
it facilitates a robust basis for comparative analysis. Inclusion of studies that contain a
minimum of the four keywords mentioned in this paper, ensuring relevance to the thematic
focus and the integration of ML techniques in assessing the LULC impact on LST for current
and future scenarios. This selection process ensures the inclusion of relevant studies that
align with the objectives of this research, providing a robust foundation for a comprehensive
and insightful analysis.

Screening Criteria

In accordance with the guidelines outlined by the preferred reporting items for sys-
tematic reviews and meta-analyses (PRISMA), we conducted a comprehensive review
(Figure 1). PRISMA serves as a standardized framework for the identification, organization,
and analysis of databases, aiming to enhance quality and transparency, minimize bias,
and improve the evaluation process. The literature search for this examination utilized
resources from two reputable databases: Clarivate Analytics Web of Science Core Collection
and ScienceDirect, accessed through the University of Arkansas library. The final search
was completed on 14 March 2025. It is important to note that our review primarily used
ScienceDirect and Web of Science, databases that primarily index peer-reviewed journal
articles. Therefore, significant improvements in ML methodologies initially presented at
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conferences might be underrepresented. To address this, future systematic reviews could
consider integrating additional databases such as IEEE Xplore or ACM Digital Library,
which provide comprehensive analyses of conference proceedings. However, we have en-
sured inclusion of major methodological advancements initially introduced at conferences
and later published in peer-reviewed journals, thus maintaining methodological rigor and
comprehensiveness within our study’s context.
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Figure 1. PRISMA 2020 flow diagram for the systematic review of the impact of LULC change on LST
using ML techniques [45]. (* Consider reporting the number of records identified from each database
or register searched and ** Indicate how many records were excluded by a human and how many
were excluded by automation tools).

A pivotal step in systematic literature searching involves the definition of key concepts
and associated search keywords. Both Web of Science and ScienceDirect employ keywords
with Boolean operators and wildcards. Boolean syntax, incorporating operators like AND,
NOT, and OR, enables users to effectively combine keywords. Wildcards, represented by
an asterisk (*), facilitate the inclusion of spelling variations and derivatives without the
need for separate inputs.

An advanced search has been conducted based on predefined keywords and concepts
to find relevant papers on the study objectives. Keywords were systematically selected to
align with the research focus, incorporating terms like ‘LST,’ machine learning,’ and ‘RS.’
Boolean operators and database filters ensured relevance and precision in article selection.
The refinement of several search strings through trial-and-error ensured the identification
of relevant papers during database searching. The selected keywords were the outcome of
a thorough literature search on LULC/LST prediction and ML.
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It is crucial to acknowledge that, depending on the research goals, different search
strategies using varied keywords and inclusion/exclusion criteria may yield different
article numbers. Despite our best efforts to encompass all relevant studies and document
data accurately, certain articles may not have been chosen due to the above-mentioned
restrictions. The study question directing methodological investigation to understand
the relationship between changes in LULC and LST is as follows: What specific methods,
techniques, and indices are employed in investigating the relationship between changes in
LULC and LST through RS and ML?

Following rigorous stages of research study selection, filtering, and examination, 81
studies were included. The selection of 81 studies reflects a rigorous process adhering
to PRISMA guidelines, emphasizing relevance, quality, and recent advancements. While
this may appear limited, it ensures focused analysis of impactful studies, minimizing
redundancy and prioritizing methodological insights. These papers were further condensed
based on parameters such as the year of publication, abstract, methodology, conclusions,
and restrictions.

Based on Figure 2 results, the year-wise distribution of the conducted research re-
vealed a significant increase in relevant studies from 2017 onwards, with a sharp rise in
publications during the past three years (2021–2023). Notably, 61 (75.3%) of the 81 studies
were published during this period, highlighting a growing interest and awareness of the
escalating impact of LULC on LST. Figure 3 depicts the geographical distribution of the
selected studies across continents, showing that a substantial proportion of the research
was conducted in Asia, with a particular focus on countries such as Bangladesh and India.
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Figure 2. Trend of publication percentage by year.

There is a noticeable geographical imbalance in the distribution of studies across
continents. The majority of LULC–LST research has been conducted in Asia and North
America, while Africa, South America, and parts of Southeast Asia remain significantly
underrepresented. For example, the current literature barely mentions nations like Laos,
Cambodia, and the inland areas of Indonesia in Southeast Asia; Bolivia, Paraguay, and
Peru in South America; and Nigeria, Ethiopia, Kenya, and Uganda in Africa.

The generalizability of current ML-based models is limited by this lack of geographic
diversity, and they might not function well in situations with varying climatic, socioe-
conomic, or urban development conditions. Future research should give priority to
these underrepresented regions in order to increase the LULC–LST study’s global rel-
evance. Focused efforts in these areas—data collection, model calibration, and contextual
analysis—may yield more inclusive insights and help develop more informed climate
resilience plans that are suited to local requirements.
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Figure 3. Regional representation of articles included in the systematic review.

3. Results
With advancements in methodologies, there has been a significant improvement in

understanding the dynamic relationships between LULC and LST. RS and ML techniques
have played a critical role in uncovering the connections between land-use changes and
the emergence of UHIs, which, in turn, contribute to broader climate change effects. The
following section delves into key findings and trends, emphasizing the interplay between
datasets, analytical techniques, and scientific progress.

3.1. Approaches to Land Use and Land Cover Data Collection and Processing

Landsat imagery is the most widely used satellite data source in the reviewed studies
(Figure 4). Its popularity can be attributed to its long historical record, consistent 30 m
spatial resolution, and frequent temporal coverage, making it highly suitable for long-term
monitoring of LULC changes. Studies often combine data from multiple Landsat missions
(such as Landsat 5 TM, Landsat 7 ETM, and Landsat 8 OLI/TIRS) to enhance temporal
consistency and address potential gaps due to cloud cover or sensor limitations.

Figure 4. Various remotely sensed data sources used in the selected studies.

Recent approaches also integrate newer high-resolution sensors like Sentinel-2 MSI
alongside Landsat data to improve the accuracy of classification and change detection
tasks. In addition to optical datasets, some studies incorporate multi-source data, such as
ECOSTRESS thermal observations, socio-economic layers, and MODIS products, to enrich
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analyses related to LST estimation. The selection of satellite sources across the studies
reflects a preference for datasets that offer global coverage, free public access, moderate to
high spatial resolution, and a long archive period, all of which are essential for studying
dynamic urban and environmental processes over time.

The findings highlight a significant concentration of spatial resolution values, with
30 m accounting for 89.19% of the dataset (Figure 5). This prominence underscores the
305 common use or preference for images with a spatial resolution of 30 m, primarily
306 attributed to Landsat data.

Figure 5. Usage count and average spatial resolution (m) used in the selected studies.

In the analysis of LULC classes across the reviewed studies, as depicted in Figure 6,
distinct patterns emerge, highlighting the dominance of specific categories in LULC classi-
fication efforts. The built-up and vegetation area takes precedence, featured in 38 studies,
reflecting a significant emphasis on urban development and infrastructure changes and
anticipating changes in natural ecosystems. Bare land is considered in 36 studies, indicating
a concerted effort to understand the dynamics of open spaces and land devoid of vegetation.
Water bodies rank as the third most frequently employed category, appearing in 34 studies,
emphasizing the attention given to aquatic environments and associated transformations.
This thorough examination of several LULC classes highlights the complex character of
land-use studies by capturing the unique characteristics of both natural and man-made
changes in various types of landscapes.
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Figure 6. Distribution of LULC classes in the selected studies.
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3.2. Techniques Used for Estimating LST

Single-channel methods are widely used to derive LST values (Figure 7), as evidenced
by the 24 studies that employed them. These methods are favored for their simplicity and
computational efficiency, offering a straightforward approach that minimizes complexity
while yielding reliable temperature estimations. Their emphasis on utilizing information
from a single channel simplifies the estimation process, making them an attractive choice
when computational resources are limited or when a simple, yet effective solution is required.
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Figure 7. Distribution of different types of ML techniques used in the selected publications for
estimating LST.

Mono-Window and Split-Window algorithms are each employed in four studies,
demonstrating their value in specific thermal data processing scenarios. Similarly, the
RF method is used in four studies, underscoring its robustness for both classification and
regression tasks. Less frequently applied methods include the Radiative Transfer Equation
and the Conversion from Digital Number (DN) to Radiance and Temperature, each appear-
ing in only two studies. Additionally, SVM is employed in two studies, indicating its niche
role in LST estimation.

Overall, this distribution of methods highlights the methodological diversity in LST
research, with traditional techniques like Single-Channel and Split-Window approaches
coexisting alongside modern ML methods such as ANN and RF. The choice of method
often depends on the type of satellite data, the study’s objectives, and the complexity of the
landscape under investigation.

3.3. Overview of Machine Learning Approaches for LULC and LST Prediction

The LST estimation results obtained from the systematic review demonstrate a wide
range of approaches used in the examined studies (Table 1). The selected papers in this
review encompass a wide range of ML algorithms applied to LULC and LST prediction.
CA-Markov and RF appear as the most frequently utilized techniques due to their robust
capabilities in modeling spatial patterns and handling complex datasets. CA-Markov, by
combining CA with Markov chain analysis, effectively captures both spatial dependencies
and temporal dynamics in LULC transitions. Similarly, RF is valued for its ensemble
learning ability, providing high accuracy and resilience against overfitting across diverse
environmental datasets.

ANN, including their hybrid form with ANN-CA, are also prominently applied for
both LULC and LST modeling. ANN techniques excel in learning complex nonlinear
relationships, making them particularly effective in areas with intricate land transformation
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dynamics. SVM, sometimes enhanced with tools like the MOLUSCE plugin, are noted for
their strong performance in high-dimensional classification tasks, although their sensitivity
to parameter selection is acknowledged.

Table 1. ML techniques used in the selected papers.

Machine Learning Technique Application Reference

Multi-Layer Perceptron–Markov Chain (MLP-MC) LULC Prediction [36]
Support Vector Machine (SVM) + MOLUSCE Plugin + CA LULC Prediction [32]
Support Vector Machine (SVM) LULC Prediction [38,39]
Artificial Neural Network (ANN) LULC Prediction [31,40–45]
Random Forest (RF) Both (LULC and LST) [2,44–47,50–63]
CA-Markov Both (LULC and LST) [50,64–92]
Artificial Neural Network with Cellular Automata (ANN-CA) Both (LULC and LST) [30,39–42,45,93–105]
Extreme Gradient Boosting (GB) Regression LST Prediction [52,61,105–116]
Gene Expression Programming (GEP) LST Prediction [38,105]
Kernel Ridge Regression LST Prediction [114]

Emerging techniques such as Extreme Gradient Boosting (XGB) and Gene Expression
Programming (GEP) are increasingly adopted for LST estimation, reflecting a growing trend
towards more sophisticated predictive models. Regression-based methods, including Mul-
tiple Linear Regression and Kernel Ridge Regression, continue to play a role, particularly
in studies prioritizing interpretability and computational simplicity.

Overall, the wide variety of ML algorithms employed across LULC and LST prediction
studies highlights the adaptability and methodological richness of the field. The choice of
techniques is influenced largely by study objectives, data characteristics, and the desired
balance between model complexity, accuracy, and interpretability (Table 1).

Among the various indices analyzed (Figure 8), NDVI in 50 studies and NDBI in
30 studies were the most employed, underscoring their importance in vegetation and urban
land assessment, respectively. The high use of NDVI highlights the continued reliance
on vegetation indices to monitor ecosystem health, detect deforestation, and assess urban
expansion’s effects on green spaces. In contrast, NDBI’s extensive application reflects the
increasing focus on built-up area detection, which is needed for understanding the rate and
patterns of urbanization.

Water and moisture indices such as NDWI (twenty occurrences) and NDMI (four
occurrences) offer further understandings into hydrological changes associated with urban
growth. As impervious surfaces expand, water bodies and soil moisture levels are affected,
influencing local climate patterns and increasing surface runoff. The moderate use of
SAVI and EVI emphasizes the need for vegetation indices that minimize soil background
influence, particularly in semi-arid and rapidly urbanizing regions.

The interaction between urban expansion and surface temperature is directly linked to
indices such as NDBI, UI (eight occurrences), and LST-related indices, which help measure
the UHI effect. Increased built-up areas contribute to rising LST, altering local climate
conditions and exacerbating heat stress in densely populated areas. The combination of
vegetation, built-up, and moisture indices allows researchers to analyze how urbaniza-
tion affects land–atmosphere interactions, providing crucial awareness for sustainable
urban planning.



Urban Sci. 2025, 9, 234 12 of 25

 

2

2

2

2

2

2

2

4

4

6

6

8

8

8

10

10

20

30

50

MBI (Modified Bare Soil Index)

IBI (Index-Based Built-up Index)

EBBI (Enhanced Built-up and Bareness Index)

NBI (Normalized Difference Bareness Index)

MNDVI (Modified Normalized Difference Vegetation Index)

MNDBI (Modified Normalized Difference Built-up Index)

DBSI (Difference Bare Soil Index)

NDMI (Normalized Difference Moisture Index)

FVG (Fractional Vegetation Cover)

NDBSI (Normalized Difference Bare Soil Index)

BI (Bare Soil Index)

EVI (Enhanced Vegetation Index)

NDBaI (Normalized Difference Bareness Index)

UI (Urban Index)

MNDWI (Modified Normalized Difference Water Index)

SAVI (Soil Adjusted Vegetation Index)

NDWI (Normalized Difference Water Index)

NDBI (Normalized Difference Built-up Index)

NDVI (Normalized Difference Vegetation Index)

Figure 8. Distribution of land cover indices in the selected studies.

4. Discussions
4.1. Data Sources

RS systems have played a key role in the effective monitoring of spatiotemporal
ecosystem change, biodiversity, and changes in climatic conditions at the local, regional,
and global scales [46,47]. The reviews highlight that scientists have utilized a range of
satellite sensors and datasets to enhance their understanding of Earth’s changes. Among
these, the widespread use of Landsat 5 TM and Landsat 8 OLI/TIRS highlights their
continued importance in contemporary environmental studies [48,49].

The mix of old and new data such as Landsat 4 TM/TIR, 5 TM/TIR, and 8 OLI/TIRS
helps researchers obtain a complete picture of how our environment is changing [50,51].
There is also a trend of using different sensors together, like Landsat 7 ETM with Landsat 8
OLI/TIRS, or just Landsat 8 OLI/TIRS alone in two studies [52]. It suggests that these
sensors have unique features that make them useful on their own or combined. Therefore,
choosing between resolution and coverage is a key consideration when selecting satel-
lite data. The findings confirm a common observation: high-resolution images provide
rich detail, while moderate-resolution sensors offer broader spatial coverage and higher
temporal frequency.

Looking beyond Landsat, researchers are getting creative with data. Some studies
combine microwave and optical sensors, such as AMSR-E/AMSR2 and MODIS, to obtain
a high-resolution result. Also, reviewed results show the combination of meteorological,
LULC data together to find the relationship between LULC and LST [53]. However, many
studies used meteorological data for validation of estimated LST. This mix-and-match trend
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extends to fusing Landsat 8 OLI/TIRS with Sentinel-2 MSI in one study. Based on the
diversity of the used tools, researchers are interested in using data from different satellites
to obtain better observations [54]. Despite certain sensors’ limitations, such as those of
Landsat 7 ETM, researchers manage to get the most out of them. Even a study that employs
Landsat 7 ETM + SLC-Off demonstrates how researchers creatively overcome obstacles [55].
Overall, the mix of satellite sensors and datasets used in environmental research shows a
changing landscape in how we study our planet. Scientists are using a variety of tools and
approaches to obtain a deeper understanding of Earth’s complex systems.

In addition, the prominence of 30 m resolution images highlights the common pref-
erence for images with a spatial resolution of 30 m, primarily attributed to Landsat data.
Higher spatial resolutions are often associated with thermal images from MODIS, where
spatial resolution is less critical and has minimal impact on LST estimation outcomes [56].
Landsat’s high-resolution images (30 m) enable detailed land cover examination and pro-
vide extensive historical data for morphological research on LULC. However, the 16-day
revisit interval of Landsat imagery limits the availability of daily data [57]. In contrast,
MODIS offers continuous imagery at coarser resolutions (250–1000 m), facilitating regional
and national-scale analyses. Notably, Landsat data, despite being launched earlier than
some satellites, spans a longer period, covering additional years compared to its counter-
parts [35]. The dataset also includes other satellite types, such as Sentinel-2 MSI, Sentinel-3
SLSTR, and AMSR-E/AMSR2, though their representation is relatively limited, with only a
few studies utilizing these sources [106]. This distribution reflects the widespread prefer-
ence for Landsat due to its balance of spatial resolution, temporal coverage, and accessibility,
while MODIS and other satellites are employed for specific applications requiring broader
spatial or temporal scales [58].

The preference for older sensors, such as Landsat 5 TM and Landsat 7 ETM, persists
in environmental research due to their ability to provide long-term datasets essential for
detecting historical changes and understanding past trends in LULC and LST [115]. These
sensors offer decades of consistent imagery, enabling researchers to compare historical and
contemporary landscapes and identify clear patterns of variation over time. Such stability
is vital for studies focused on long-term change detection, as it allows for a more robust
analysis of environmental trends and the impacts of urbanization and other anthropogenic
activities [27]. Additionally, by incorporating meteorological datasets, researchers can
examine the correlation between climatic factors such as temperature, precipitation, and
humidity, and changes in land cover and surface temperature [116–119]. This fusion of
data sources with advancements in ML enhances the precision and scalability of environ-
mental studies, while open-access datasets like Sentinel-1 democratize research, advancing
innovation and reproducibility [120].

4.2. Variable Selection and Accuracy Assesment

The selection of land cover indices in LULC studies plays a vital role in assessing the
impact of urbanization, population growth, and climate on land surface characteristics [121].
Water bodies, vegetation, barren ground, and built-up regions are key LULC classifications
frequently found to significantly influence LST dynamics, and the findings completely
support it [122,123]. The findings of this review emphasize that the careful selection of
a few key spectral indices significantly enhances the ability to detect LULC changes and
understand their impact on LST dynamics. Among the numerous indices employed, five
stood out for their critical roles: NDVI, NDBI, NDWI, SAVI, and EVI [124–127].

One of the most effective mitigating factors for high LST is vegetation cover, often
measured using the NDVI. Numerous studies have demonstrated a negative correlation
between LST and NDVI, highlighting the critical role of vegetation in cooling urban areas
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and mitigating the UHI effect [2]. Similarly, indices like the NDWI and NDBI illustrate
how water bodies and urban infrastructure, respectively, contribute to spatial temperature
changes. These findings highlight the importance of preserving and expanding green
spaces in urban planning to combat rising LST effectively [6].

The combination of these results emphasizes the importance of considering both natu-
ral and human factors when examining the impact of climate change on LST from a LULC
change perspective [58]. The complex interplay between these factors, including urbaniza-
tion, changes in water bodies, and shifts in vegetation patterns, determines the dynamics
of the local climate [55]. Utilizing ML techniques provides valuable insights for land-use
planners and policymakers to mitigate the effects of climate change on local temperature
patterns [108]. The complete approach taken in these studies advances our understanding
of the complex interactions among climate change, LULC, and LST, facilitating informed
decision-making in sustainable environmental management [113].

The correlations shown in Table 2 in numerous studies reveal interconnected dynamics
between LST, LULC changes, and climate patterns. Urbanization emerges as a crucial factor
influencing LST variations, with elevated temperatures correlating with increased built-up
areas, indicating the impact of human activity on local temperature landscapes. The positive
correlation between socioeconomic disparities and the spatial distribution of LST further
complicates the socio-environmental fabric influencing urban temperature patterns [128].

Climate change increases the effects of LULC changes on LST, as seen in the influence
of variations in built-up areas and green space density on UHI intensity. The consistent
negative correlation between LST and green spaces or NDVI draws attention to the role
of vegetation in mitigating temperature. Negative relationships between LST and various
indices, including NDVI, NDWI, and NDBa, highlight the sensitivity of temperature
patterns to variations in land cover [22,113,129]. This synthesis emphasizes the intricate
interactions among LST, LULC changes, and climate change, underscoring the necessity of
a comprehensive knowledge base for well-informed urban planning and climate resilience
strategies. Urban planners should prioritize green-blue infrastructure (e.g., urban parks,
permeable pavements) in high-NDBI zones to offset temperature rises.

The accuracy assessment methodologies employed across these LULC–LST studies
reveal both strengths and limitations in current validation approaches. While correlation
analyses (particularly Pearson) dominate the field—appearing in over 60% of examined
studies—their reliance on linear assumptions may obscure important non-linear relation-
ships that ML models are capable of detecting [12]. The consistently strong negative correla-
tions between NDVI and LST (reaching −0.95 in some cases) robustly confirm vegetation’s
cooling effects, yet the moderate explanatory power of even the best-performing indices
(like NDBI’s 36–38% LST variance explanation) suggests significant missing variables in
current models [116].

Several critical gaps emerge when examining these validation approaches. First,
despite the gradual nature of urbanization impacts, only about one-quarter of studies
incorporated multi-decadal validation timelines. Second, pixel-based analyses reveal
substantial microclimate variability (2–35% in NDVI-LST relationships) that aggregate
metrics often mask. Third, the fundamentally different index-LST relationships observed in
arid versus coastal cities highlight the context-dependent nature of these thermal patterns
that generic models frequently overlook [36].

The exceptional performance of hybrid models like CA-Markov (achieving Kappa = 0.92
in Lahore) points toward promising solutions [74]. These approaches combine the spatial
explicitness needed for urban planning with the statistical rigor required for scientific vali-
dation. Such advancements will be crucial for creating validation protocols that match the
complexity of modern urban thermal environments. To address current limitations associated
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with heavy reliance on Pearson correlation analyses and improve ML model interpretability,
we recommend adopting more advanced interpretability techniques such as SHapley Ad-
ditive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME).
SHAP provides valuable insights by quantifying each feature’s contribution to model pre-
dictions, enhancing transparency and enabling urban planners to better understand model
outcomes. For instance, recent studies such as Gavade and Gavade and Zheng, Meninti
and Hu successfully demonstrated SHAP’s and LIME effectiveness in interpreting complex
LST predictions, significantly improving policy-making relevance [128,130]. Similarly, LIME
offers localized explanations of predictions, enabling clearer insights into model behavior at
specific geographic or demographic scales. Incorporating these interpretability methods in
future validation strategies could substantially enhance both the transparency and practical
utility of ML-based environmental models.

4.3. Machine Learning for Assessing Land Use Impacts on LSTs

As ML refines our understanding of the complex relationships between climate change,
land use dynamics, and LST, it becomes a valuable tool for shaping evidence-based
policies [27]. The integration of ML-driven insights into urban planning strategies en-
hances our capacity to formulate proactive measures that mitigate rising temperatures,
foster sustainable land use practices, and support climate resilience [22]. The systematic
review highlights the extensive and diverse application of ML algorithms in modeling
LULC dynamics and estimating LST. The findings emphasize that model selection in LULC–
LST studies is closely aligned with the complexity of landscape transformations, data
availability, and the trade-off between model accuracy and interpretability.

CA-Markov and RF emerged as the most widely adopted algorithms. CA-Markov
excels in simulating spatially explicit land transitions by combining cellular automata’s
spatial rules with Markov chains’ temporal dynamics, making it ideal for gradual urban
expansion scenarios. However, its assumption of stationary transition probabilities limits
its ability to capture abrupt changes from extreme events or policy shifts. RF, on the other
hand, demonstrates strong predictive power across diverse environmental datasets due to
its ensemble learning structure. Its robustness to noise, ability to model complex nonlinear
relationships, and resistance to overfitting make it highly suitable for integrated LULC–
LST studies [130]. Nevertheless, while RF offers excellent performance metrics, its “black
box” nature often limits interpretability, posing challenges for policy-oriented applications
where model transparency is essential. For example, Zhang et al. (2023) demonstrated that
ANN-based LST predictions in Baghdad lacked transparency in identifying which urban
features most influenced results, limiting their utility for zoning decisions [49]. Similarly,
RF models in Dhaka showed high R2 accuracy but could not explain why certain informal
settlements exhibited higher LST variability than others [131].

ANN and their hybrid versions such as ANN-CA were also prominent among the
reviewed techniques [42,95]. ANN models excel in learning complex, nonlinear spatial
patterns, making them particularly effective in heterogeneous landscapes with intricate
land transformation dynamics [96]. The hybrid ANN-CA models leverage the pattern
recognition capabilities of neural networks alongside CA’s spatial simulation strength,
offering improved spatial realism in LULC predictions [95,97,100]. However, the need
for large, well-labeled training datasets and the difficulty in interpreting model decisions
remain notable limitations of ANN-based approaches.

SVM, sometimes combined with spatial simulation tools like the MOLUSCE plugin,
also featured prominently in LULC classification tasks [36]. SVM models are effective in
handling high-dimensional data and small sample sizes, providing competitive classifica-
tion accuracy [57]. However, SVMs are sensitive to kernel and parameter selection, which



Urban Sci. 2025, 9, 234 16 of 25

can complicate their deployment, particularly when working with highly heterogeneous or
noisy datasets [37].

Emerging methods such as XGB and GEP are gaining traction for LST modeling. Their
adoption reflects a broader shift towards more sophisticated, high-performance predictive
models capable of capturing subtle nonlinear interactions among variables [110]. XGB
models offer advantages in computational efficiency and feature importance estimation,
addressing some of the interpretability concerns associated with ensemble techniques like
RF [108]. GEP, a form of evolutionary algorithm, provides flexible model structures that can
uncover hidden relationships in environmental data, although it remains relatively under-
explored in LULC–LST studies [103]. XGB and GEP provide significant improvements over
traditional models such as CA-Markov and ANN. XGB, for example, significantly improves
computational efficiency, accuracy, and interpretability due to its built-in feature impor-
tance metrics, making it ideal for dealing with large datasets with missing values [100,109].
GEP, on the other hand, provides flexible modeling capabilities thanks to its evolutionary
algorithm structure, which effectively uncovers complex nonlinear relationships in environ-
mental datasets. However, unlike CA-Markov, these emerging techniques may lack explicit
spatial-temporal modeling capabilities, limiting their applicability in scenarios requiring
detailed spatial predictions [110]. While ANN methods are still effective at modeling
complex nonlinearities, their high data demands and computational costs often make XGB
and GEP more practical in situations with limited resources or large datasets [96].

Regression-based approaches such as Multiple Linear Regression and Kernel Ridge
Regression continue to play roles in LST modeling, particularly in studies prioritizing sim-
plicity, interpretability, and low computational cost [59]. While these models offer ease of
use and clear variable effect interpretations, their limited capacity to capture nonlinear and
complex spatial interactions restricts their suitability for dynamic urban environments [64].

The diversity of ML techniques employed in LULC–LST research highlights the field’s
methodological adaptability and richness. Model selection typically depends on research
priorities, whether accuracy, interpretability, spatial realism, or computational efficiency.
However, key challenges persist, including (1) the need for improved model interpretability
to enhance utility for urban management; (2) hybrid approaches (e.g., integrating ANN’s
nonlinear modeling with CA’s spatial explicitness) to leverage complementary strengths;
and (3) automated parameter tuning and feature selection to minimize user bias and
improve regional generalizability [96]. Future work should prioritize explainable ML
frameworks, incorporate climate and socioeconomic variables into predictive models,
and expand comparative studies across diverse urban and ecological settings to refine
context-specific solutions.

While ML models like RF and ANN offer robust predictive capabilities, limitations
remain. The “black-box” nature of ANN, for instance, hinders interpretability, and en-
semble methods like RF may require substantial computational resources [39]. Models
trained on imbalanced or noisy datasets may produce biased outputs, as found in Anil and
Priyanka when predicting LULC changes across heterogeneous urban landscapes [129].
Similarly, another study found that while RF models effectively predicted temperature
hotspots in Dhaka, they offered limited insight into why certain informal settlements con-
sistently showed higher LST, limiting their application for climate justice analysis [88].
Such interpretability gaps can hinder the translation of ML outputs into actionable urban
strategies. Furthermore, ensemble models like RF, while reducing overfitting, often de-
mand substantial computational resources, particularly for high-dimensional RS datasets,
as discussed by Gasirabo et al. [130]. Moreover, another study noted that ANN-based
predictions of LST in Baghdad could not clearly explain the contribution of different
urban features (e.g., vegetation vs. building materials), limiting their utility for zoning
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regulation [132]. Addressing these limitations requires a shift toward explainable ML
models, such as explainable artificial intelligence techniques, and the integration of feature
importance analyses to make models more transparent and actionable. Additionally, the
accuracy of ML models in calculating LULC changes and their impact on LST is greatly
subject to the quality and quantity of input data [132–135]. These cases exemplify how
black-box models, despite their predictive power, may not translate well into actionable
strategies without supplementary interpretability techniques or post hoc analysis [136–139].

In regions with limited field data or persisted cloud cover in satellite images, regular
LULC mapping faces challenges that can affect model performance [140–142]. Further-
more, the spatial and temporal resolution of available satellite imagery may not always
align with the specific requirements of a study area, potentially leading to less accurate
predictions [143]. Addressing these limitations requires integrating multiple data sources,
employing advanced preprocessing techniques, and selecting appropriate model design to
enhance the reliability of ML applications in this domain [144].

Overall, while ML models have significantly advanced our understanding of the
LULC–LST nexus, future research must continue addressing challenges related to model
transparency, data integration, and regional generalizability. By prioritizing explainable,
hybrid, and climate-aware modeling approaches, researchers can better translate predictive
insights into practical strategies for sustainable urban planning and climate adaptation.

Table 2. Summary of publications quantifying the correlation between LULC and LST.

Technique Quantitative Relationship Location Ref.

linear regression analysis

A strong negative correlation between LST and
vegetation cover and strong positive correlation
between socioeconomic disparities and spatial
distribution of summer daytime and nighttime
LST (Mean LST across Phoenix (28.86 ◦C) was

lower than the urban core (29.14 ◦C).

Phoenix, AZ, USA [29]

Pearson correlation
coefficient

The UHI intensity was negatively related to the
density of green space, aquatic area, NDVI,

altitude, and sky view factor (p < 0.01), and the
UHI intensity was positively related to the

density of built-up areas, population density, and
mean building height (p < 0.01).

Shenzhen, China [80]

Pearson correlation

In 1995, a strong positive association was found
between LST and NDBI and NDBSI, with a

negative correlation to NDVI and NDWI. High
temperature differences led to decreased water
content and green cover, while excessive bear

soil and buildup increased LST values.

Dhaka, Bangladesh [136]

Pearson correlation
coefficient

There is a strong negative correlation between
LST and the NDVI each year with the mean LST

increase of 0.19 ◦C.
Rajshahi, Bangladesh [135]

Pearson correlation
coefficient

Strong positive correlation between NDBI and
LST (36.38% and 38.44% of the NDBI variability
can be ascribed to LST during 2000, 2014, and

2022), a negative relationship between LST and
NDVI (22.86% and 23.46% of the NDVI

variability can be ascribed to LST during 2000,
2014, and 2022).

Kamrup, India [134]
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Table 2. Cont.

Technique Quantitative Relationship Location Ref.

pixel-based correlation
analysis

The study found a correlation between LST and
NDVI, showing 2% to 35% variability in NDVI.

The correlation between LST and NDBI was also
low, showing 5% to 26% variability.

Irbid governorate,
Jordan [66]

NDBI index

The NDBI-LST relationship shows the
significance of the built-up zone on the final
surface temperature increase (LST). As the

built-up area increases, the impervious layers
rise in elevation, leading to higher LST.

Kuwait [40]

Pearson correlation
coefficient

Positive correlations between built-up areas and
SUHII (0.82), and negative correlations between

vegetation cover and SUHII (−0.73).
Bangkok, Thailand [68]

Linear regression

LST represents strong and positive correlation
with NDBI (29.36 ◦C in 1999, 29.69 ◦C in 2009,

39.52 ◦C in 2019) and strongly negative
correlation with NDVI, NDWI, and NDBa.

Rajshahi, Bangeladesh [135]

Pearson correlation
coefficient

Strong negative correlation between NDVI and
LST, with a correlation coefficient of −0.935.

Dhaka’s core urban area experienced LST around
34 ◦C in 2000, increasing to over 35 ◦C as

urbanization increased. Greener areas with more
vegetation had lower LST.

Dhaka, Bangeladesh [136]

NDBI index

From 1999 to 2019, urban areas increased from
20.45 km2 to 26.31 km2, while vegetation and

water bodies decreased. Bare land area increased
from 3.52 km2 to 12.48%, with the highest

positive net changes for urban area and bare
land.

Cumilla, Bangladesh [125]

Pearson correlation

Strong negative correlation between LST and
various indices in 2010 (0.93) and a strong

negative relationship with the NDVI and NDWI
(−0.95 in 2020).

Al Kut, Iraq [37]

Linear analysis

Urban index (UI) was the most influential
parameter contributing 30.16% to LST, followed
by Normalized Difference Built-up Index (NDBI)

at 27.5%, Normalized Difference Vegetation
Index (NDVI) at 24.73%, and Normalized
Difference Water Index (NDWI) at 18.04%.

Freetown, Sierra-Leon [41]

Kapa Coefficient

The study revealed significant urbanization in
Lahore, with built-up areas increasing by

359.8 km2 from 1994 to 2024, while vegetation
decreased by 198.7 km2 and barren land by

158.5 km2. Water bodies continued to be
relatively stable. Future projections for 2034 and
2044 indicate continued urban expansion at the

expense of vegetation and barren land. The
CA-Markov model achieved a high prediction

accuracy with a Kappa coefficient of 0.92.

Lahore, Pakistan [141]

5. Conclusions
This systematic review focused on ML techniques to investigate how LULC changes

affect LST. For LULC and LST dynamics prediction, the most popular models were CA-
Markov, ANN, and RF. It was discovered that among the LULC classes, bare land, water



Urban Sci. 2025, 9, 234 19 of 25

bodies, vegetation cover, and built-up areas all had a significant impact on LST variation. It
was common practice to quantify these effects using indicators like the NDVI and NDBI.
Green spaces play a critical cooling role, as evidenced by the consistent negative correlation
between vegetation cover and LST across global case studies. ML models, particularly
hybrid and ensemble approaches, have demonstrated strong performance in simulating
the intricate relationships between surface temperature and land cover. Nonetheless,
problems such as model interpretability, computational complexity, and data quality persist
as challenges.

To advance this field, future research should incorporate real-time climate variables
into LULC–LST modeling frameworks and investigate emerging deep learning archi-
tectures, such as transformer-based models, to improve scalability and generalization.
Improving interdisciplinary collaboration among experts in geography, climatology, RS,
and ML will be critical for developing interpretable and actionable insights to support
sustainable urban development and climate resilience.
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58. Avcı, C.; Budak, M.; Yağmur, N.; Balçık, F. Comparison between random forest and support vector machine algorithms for LULC
classification. Int. J. Eng. Geosci. 2023, 8, 1–10. [CrossRef]

https://doi.org/10.1007/s12518-021-00390-3
https://doi.org/10.1016/j.pce.2021.103012
https://doi.org/10.22034/hyd.2023.56988.1699
https://doi.org/10.1016/j.heliyon.2024.e39146
https://doi.org/10.1016/j.scs.2022.104107
https://doi.org/10.1080/17538947.2022.2099022
https://doi.org/10.1016/j.ejrs.2023.05.003
https://doi.org/10.1007/s11769-023-1370-0
https://doi.org/10.3390/w13162286
https://doi.org/10.3390/rs15041148
https://doi.org/10.3390/land12061159
https://doi.org/10.3389/frsen.2023.1221757
https://doi.org/10.1016/j.rse.2015.07.015
https://doi.org/10.3390/rs13040580
https://doi.org/10.3390/rs15082128
https://doi.org/10.1016/j.compag.2022.107113
https://doi.org/10.1016/j.atmosres.2022.106398
https://doi.org/10.1016/j.envres.2021.111960
https://www.ncbi.nlm.nih.gov/pubmed/34464620
https://doi.org/10.1016/j.jag.2017.07.006
https://doi.org/10.1016/j.landurbplan.2017.09.019
https://doi.org/10.3390/s24175648
https://doi.org/10.1186/s12302-024-00901-0
https://doi.org/10.26833/ijeg.987605


Urban Sci. 2025, 9, 234 22 of 25

59. Liao, J.; Tang, L.; Shao, G. Coupling Random Forest, Allometric Scaling, and Cellular Automata to Predict the Evolution of LULC
under Various Shared Socioeconomic Pathways. Remote Sens. 2023, 15, 2142. [CrossRef]

60. Ouma, Y.O.; Nkwae, B.; Odirile, P.; Moalafhi, D.B.; Anderson, G.; Parida, B.; Qi, J. Land-Use Change Prediction in Dam Catchment
Using Logistic Regression-CA, ANN-CA and Random Forest Regression and Implications for Sustainable Land–Water Nexus.
Sustainability 2024, 16, 1699. [CrossRef]

61. Cotugno, A.; Smith, V.; Baker, T.; Srinivasan, R. A Framework for Calculating Peak Discharge and Flood Inundation in Ungauged
Urban Watersheds Using Remotely Sensed Precipitation Data: A Case Study in Freetown, Sierra Leone. Remote Sens. 2021,
13, 3806. [CrossRef]

62. Arunab, K.S.; Mathew, A. Exploring spatial machine learning techniques for improving land surface temperature prediction.
Kuwait J. Sci. 2024, 51, 100242. [CrossRef]

63. Al-Hameedi, W.M.M.; Chen, J.; Faichia, C.; Nath, B.; Al-Shaibah, B.; Al-Aizari, A. Geospatial Analysis of Land Use/Cover Change
and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and
ANN Models. Sustainability 2022, 14, 8568. [CrossRef]

64. Huang, Y.; Yang, B.; Wang, M.; Liu, B.; Yang, X. Analysis of the future land cover change in Beijing using CA-Markov chain model.
Environ. Earth Sci. 2020, 79, 60. [CrossRef]

65. Hua, A. Spatial-Temporal Analysis of Pattern Changes and Prediction in Penang Island, Malaysia Using Lulc and CA-Markov
Model. Appl. Ecol. Environ. Res. 2018, 16, 4619–4635. [CrossRef]

66. Khawaldah, H.; Farhan, I.; Alzboun, N. Simulation and prediction of land use and land cover change using GIS, remote sensing
and CA-Markov model. Glob. J. Environ. Sci. Manag. GJESM 2020, 6, 215–232. [CrossRef]

67. Jawarneh, R.; Abulibdeh, A.; Hashem, N.; Awawdeh, M.; Al-Awadhi, T.; Abdullah, M.; Kenawy, A. Assessing and predicting
land cover dynamics for environmental sustainability in Jordan’s arid ecosystems using CA-Markov model. Remote Sens. Appl.
Soc. Environ. 2024, 35, 101262. [CrossRef]

68. Tariq, A.; Shu, H. CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Land Cover Change Using
Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sens. 2020, 12, 3402. [CrossRef]

69. Selmy, S.A.H.; Kucher, D.E.; Mozgeris, G.; Moursy, A.R.A.; Jimenez-Ballesta, R.; Kucher, O.D.; Fadl, M.E.; Mustafa, A.-r.A.
Detecting, Analyzing, and Predicting Land Use/Land Cover (LULC) Changes in Arid Regions Using Landsat Images, CA-
Markov Hybrid Model, and GIS Techniques. Remote Sens. 2023, 15, 5522. [CrossRef]

70. Das, S.; Shit, P.; Patel, P. Ecosystem services value assessment and forecasting using integrated machine learning algorithm and
CA-Markov model: An empirical investigation of an Asian megacity. Geocarto Int. 2022, 37, 8417–8439. [CrossRef]

71. Da Cunha, E.R.; Santos, C.A.G.; da Silva, R.M.; Bacani, V.M.; Pott, A. Future scenarios based on a CA-Markov land use and
land cover simulation model for a tropical humid basin in the Cerrado/Atlantic forest ecotone of Brazil. Land Use Policy 2021,
101, 105141. [CrossRef]

72. Tariq, A.; Yan, J.; Mumtaz, F. Land change modeler and CA-Markov chain analysis for land use land cover change using satellite
data of Peshawar, Pakistan. Phys. Chem. Earth 2022, 128, 103286. [CrossRef]

73. Taloor, A.K.; Sharma, S.; Parsad, G.; Jasrotia, R. Land use land cover simulations using integrated CA-Markov model in the Tawi
Basin of Jammu and Kashmir India. Geosyst. Geoenviron. 2024, 3, 100268. [CrossRef]

74. Weslati, O.; Bouaziz, S.; Sarbeji, M. Modelling and Assessing the Spatiotemporal Changes to Future Land Use Change Scenarios
Using Remote Sensing and CA-Markov Model in the Mellegue Catchment. J. Indian Soc. Remote Sens. 2023, 51, 9–29. [CrossRef]

75. Tahir, Z.; Haseeb, M.; Mahmood, S.A.; Batool, S.; Abdullah-Al-Wadud, M.; Ullah, S.; Tariq, A. Predicting land use and land cover
changes for sustainable land management using CA-Markov modelling and GIS techniques. Sci. Rep. 2025, 15, 3271. [CrossRef]

76. Hamad, R.; Balzter, H.; Kolo, K. Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different
Scenarios. Sustainability 2018, 10, 3421. [CrossRef]

77. Luan, C.; Liu, R. A Comparative Study of Various Land Use and Land Cover Change Models to Predict Ecosystem Service Value.
Int. J. Environ. Res. Public Health 2022, 19, 6484. [CrossRef]

78. Gao, Y.; Chen, J.; Luo, H.; Wang, H. Prediction of hydrological responses to land use change. Sci. Total Environ. 2020, 708, 134998.
[CrossRef]

79. Arfasa, G.F.; Owusu-Sekyere, E.; Doke, D.A. Predictions of land use/land cover change, drivers, and their implications on water
availability for irrigation in the Vea catchment, Ghana. Geocarto Int. 2023, 38, 2243093. [CrossRef]

80. Feng, Y.; Li, H.; Tong, X.; Chen, L.; Liu, Y. Projection of land surface temperature considering the effects of future land change in
the Taihu Lake Basin of China. Glob. Planet. Change 2018, 167, 24–34. [CrossRef]

81. Rimal, B.; Zhang, L.; Keshtkar, H.; Sun, X.; Rijal, S. Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and
Risk Area Identification in the Kaski District of Nepal. Land 2018, 7, 37. [CrossRef]

82. Wang, Q.; Guan, Q.; Lin, J.; Luo, H.; Tan, Z.; Ma, Y. Simulating land use/land cover change in an arid region with the coupling
models. Ecol. Indic. 2021, 122, 107231. [CrossRef]

https://doi.org/10.3390/rs15082142
https://doi.org/10.3390/su16041699
https://doi.org/10.3390/rs13193806
https://doi.org/10.1016/j.kjs.2024.100242
https://doi.org/10.3390/su14148568
https://doi.org/10.1007/s12665-019-8785-z
https://doi.org/10.15666/aeer/1604_46194635
https://doi.org/10.22034/gjesm.2020.02.07
https://doi.org/10.1016/j.rsase.2024.101262
https://doi.org/10.3390/rs12203402
https://doi.org/10.3390/rs15235522
https://doi.org/10.1080/10106049.2021.2002424
https://doi.org/10.1016/j.landusepol.2020.105141
https://doi.org/10.1016/j.pce.2022.103286
https://doi.org/10.1016/j.geogeo.2024.100268
https://doi.org/10.1007/s12524-022-01618-4
https://doi.org/10.1038/s41598-025-87796-w
https://doi.org/10.3390/su10103421
https://doi.org/10.3390/ijerph192416484
https://doi.org/10.1016/j.scitotenv.2019.134998
https://doi.org/10.1080/10106049.2023.2243093
https://doi.org/10.1016/j.gloplacha.2018.05.007
https://doi.org/10.3390/land7010037
https://doi.org/10.1016/j.ecolind.2020.107231


Urban Sci. 2025, 9, 234 23 of 25

83. Wang, Q.; Wang, H.; Chang, R.; Zeng, H.; Bai, X. Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover
changes in the Wuhan metropolitan area, China. Ecol. Model. 2022, 464, 109850. [CrossRef]

84. Lu, Y.; Wu, P.; Ma, X.; Li, X. Detection and prediction of land use/land cover change using spatiotemporal data fusion and the
Cellular Automata-Markov model. Environ. Monit. Assess. 2019, 191, 68. [CrossRef] [PubMed]

85. Lin, Z.; Peng, S. Comparison of multimodel simulations of land use and land cover change considering integrated constraints—A
case study of the Fuxian Lake basin. Ecol. Indic. 2022, 142, 109254. [CrossRef]

86. Kondum, F.A.; Rowshon, M.K.; Luqman, C.A.; Hasfalina, C.M.; Zakari, M.D. Change analyses and prediction of land use and
land cover changes in Bernam River Basin, Malaysia. Remote Sens. Appl. Soc. Environ. 2024, 36, 101281. [CrossRef]

87. Dinda, S.; Das Chatterjee, N.; Ghosh, S. An integrated simulation approach to the assessment of urban growth pattern and loss in
urban green space in Kolkata, India: A GIS-based analysis. Ecol. Indic. 2021, 121, 107178. [CrossRef]

88. Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.K.; Ghosh, S.; Mitra, D.; Ghosh, T.;
et al. Application of Cellular automata and Markov-chain model in geospatial environmental modeling—A review. Remote Sens.
Appl. Soc. Environ. 2017, 5, 64–77. [CrossRef]

89. Amir Siddique, M.; Wang, Y.; Xu, N.; Ullah, N.; Zeng, P. The Spatiotemporal Implications of Urbanization for Urban Heat Islands
in Beijing: A Predictive Approach Based on CA–Markov Modeling (2004–2050). Remote Sens. 2021, 13, 4697. [CrossRef]

90. Farhan, M.; Wu, T.; Anwar, S.; Yang, J.; Naqvi, S.A.A.; Soufan, W.; Tariq, A. Predicting Land Use Land Cover Dynamics and Land
Surface Temperature Changes Using CA-Markov-Chain Models in Islamabad, Pakistan (1992–2042). IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2024, 17, 16255–16271. Available online: https://ieeexplore.ieee.org/abstract/document/10632614 (accessed on
27 April 2025). [CrossRef]

91. Meng, X.; Meng, F.; Zhao, Z.; Yin, C. Prediction of Urban Heat Island Effect over Jinan City Using the Markov-Cellular Automata
Model Combined with Urban Biophysical Descriptors. J. Indian Soc. Remote Sens. 2021, 49, 997–1009. [CrossRef]

92. Gemitzi, A. Predicting land cover changes using a CA Markov model under different shared socioeconomic pathways in Greece.
GISci. Remote Sens. 2021, 58, 425–441. [CrossRef]

93. Yadav, V.; Ghosh, S.K. Assessment and prediction of urban growth for a mega-city using CA-Markov model. Geocarto Int. 2021,
36, 1960–1992. [CrossRef]

94. Sisay, G.; Gessesse, B.; Fürst, C.; Kassie, M.; Kebede, B. Modeling of land use/land cover dynamics using artificial neural network
and cellular automata Markov chain algorithms in Goang watershed, Ethiopia. Heliyon 2023, 9, e20088. [CrossRef] [PubMed]

95. Pandey, S.; Kumari, N. Prediction and monitoring of LULC shift using cellular automata-artificial neural network in Jumar
watershed of Ranchi District, Jharkhand. Environ. Monit. Assess. 2023, 195, 130. [CrossRef]

96. Rahman, M.T.U.; Esha, E.J. Prediction of land cover change based on CA-ANN model to assess its local impacts on Bagerhat,
southwestern coastal Bangladesh. Geocarto Int. 2022, 37, 2604–2626. [CrossRef]

97. Roy, S.; Chintalacheruvu, M.R. LULC Dynamics Study and Modeling of Urban Land Expansion Using CA-ANN. In Recent
Advances in Civil Engineering; Swain, B.P., Dixit, U.S., Eds.; Springer Nature: Singapore, 2024; pp. 79–90.

98. Abbas, Z.; Yang, G.; Zhong, Y.; Zhao, Y. Spatiotemporal Change Analysis and Future Scenario of LULC Using the CA-ANN
Approach: A Case Study of the Greater Bay Area, China. Land 2021, 10, 584. [CrossRef]

99. Dede, M.; Asdak, C.; Setiawan, I. Spatial dynamics model of land use and land cover changes: A comparison of CA, ANN, and
ANN-CA. Regist. J. Ilm. Teknol. Sist. Inf. 2021, 8, 38–49. [CrossRef]

100. Uddin, M.S.; Mahalder, B.; Mahalder, D. Assessment of Land Use Land Cover Changes and Future Predictions Using CA-ANN
Simulation for Gazipur City Corporation, Bangladesh. Sustainability 2023, 15, 12329. [CrossRef]

101. Baig, M.F.; Mustafa, M.R.U.; Baig, I.; Takaijudin, H.B.; Zeshan, M.T. Assessment of Land Use Land Cover Changes and Future
Predictions Using CA-ANN Simulation for Selangor, Malaysia. Water 2022, 14, 402. [CrossRef]
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