
Multimodal Technologies 
and Interaction

Article

Multi-Domain Recognition of Hand-Drawn Diagrams
Using Hierarchical Parsing

Vincenzo Deufemia ∗ and Michele Risi

Dipartimento di Informatica, Università di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano(SA), Italy;
mrisi@unisa.it
* Correspondence: deufemia@unisa.it; Tel.: +39-089-96-3346

Received: 30 June 2020; Accepted: 12 August 2020; Published: 14 August 2020
����������
�������

Abstract: This paper presents an approach for the recognition of multi-domain hand-drawn diagrams,
which exploits Sketch Grammars (SkGs) to model the symbols’ shape and the abstract syntax of
diagrammatic notations. The recognition systems automatically generated from SkGs process the
input sketches according to the following phases: the user’ strokes are first segmented and interpreted
as primitive shapes, then by exploiting the domain context they are clustered into symbols of the
domain and, finally, an interpretation of whole diagram is given. The main contribution of this
paper is an efficient model of parsing suitable for both interactive and non-interactive sketch-based
interfaces, configurable to different domains, and able to exploit contextual information for improving
recognition accuracy and solving interpretation ambiguities. The proposed approach was evaluated
in the domain of UML class diagrams obtaining good results in terms of recognition accuracy
and usability.

Keywords: diagram understanding; freehand sketching; sketch recognition; multimodal interfaces;
visual language parsing; grammars

1. Introduction

Hand-drawn sketches allow users to quickly draw new technical solutions and effectively
communicate them to a variety of audiences. The diffusion of sketch-based hardware devices
has increased the interest in the creation of computer software that works exclusively on freehand
drawings [1–5], enhancing the efficiency and effectiveness of user interfaces [6,7]. Sketch recognition
can also capture the sketching component of a multimodal conversation about design. However,
the existing sketching systems have limited recognition capability for the input drawings, which makes
difficult the conversion of a sketch directly into formal, domain specific models for more powerful
design systems. This introduces redundancy and inefficiency when the systems are used as early phase
design tools, making sketching not a homogeneous part of the design process.

The sketchy graphic objects drawn using a digital pen are not usually easy for machines to
understand and process. Sketch recognition algorithms can simply clean up roughly drawn strokes [8],
in this case they are called sketch beautification algorithms [9,10], and/or solve the problem of
recognizing the symbols in the hand drawn user’s diagrams. This problem is particularly difficult,
since the symbols of a sketched diagram can be drawn by using a different stroke-order, -number,
and -direction. Several work concentrates on the recognition of symbols formed by a single-stroke
gesture [11], also named glyph, and on the recognition of gestures formed by multiple strokes [12].
The recognition of continuous sketches also involves the activities of segmentation and clustering of
the user’s strokes at the same time, where the segmentation has the goal of decomposing an input
sketch into several semantically meaningful components [13,14]. Because this problem may require
a considerable amount of time to be solved, the systems implementing such a type of recognition

Multimodal Technol. Interact. 2020, 4, 52; doi:10.3390/mti4030052 www.mdpi.com/journal/mti

http://www.mdpi.com/journal/mti
http://www.mdpi.com
https://orcid.org/0000-0002-6711-3590
https://orcid.org/0000-0003-1114-3480
http://dx.doi.org/10.3390/mti4030052
http://www.mdpi.com/journal/mti
https://www.mdpi.com/2414-4088/4/3/52?type=check_update&version=2


Multimodal Technol. Interact. 2020, 4, 52 2 of 30

work under some assumptions about how the sketches are drawn [15–17]. The difficulties in the
recognition process are also increased by the lack of precision and the presence of ambiguities in messy
hand-drawn sketches. Indeed, hand-sketched symbols are imprecise in nature such that corners are
not always sharp, lines are not perfectly straight, and curves are not necessarily smooth.

This paper presents a sketch recognition system for multi-domain hand-drawn diagrams based
on grammar formalisms and parsing technologies [18,19]. In particular, the approach exploits Sketch
Grammars to hierarchically define both the symbols’ shapes and the abstract syntax of diagrammatic
notations, and to automatically generate efficient LR-based parsers [20]. The latter are on the top
layer of the sketch recognition strategy, while the bottom layer consists of a domain-independent
primitive shape recognizer. Once integrated into a sketch editor, the proposed sketch recognition
system performs a fine-to-coarse, incremental, and unobtrusive interpretation of the sketches as
they are created. In particular, at a fine-grain level, the input strokes are decomposed and analyzed
as primitive shapes, and then grouped into domain symbols according to grammar-based symbol
recognizers; at a coarse-grain level, the best interpretation of the input drawings is determined using
the contextual information provided by the recognizer of the diagrammatic notation.

The main contribution of this paper is an efficient model of parsing that (i) can be used both
in offline sketch recognition based on document image analysis and in on-line or interactive sketch
recognition based on the interpretation of digital ink strokes; (ii) can be configured to different domains;
and, (iii) is able to exploit contextual information for improving recognition accuracy and solving
interpretation ambiguities.

The proposed approach integrates a number of desirable features: generality, robustness,
and efficiency. In fact, Sketch Grammars allow users to construct recognizers of any diagrammatic or
iconic domain. These recognizers do not constrain users to a specific drawing style, since the symbols
of the diagrams can be drawn with a varying number of strokes and without a particular direction or
order. The diagrams can also be draw in interspersed fashion, i.e., new drawn symbols are recognized,
even though other symbols have not been completely drawn. The robustness of the approach resides
in the continuous interaction between the two top layers allowing for an extended recognition process.
In particular, a layer performs the recognition of symbols in isolation generating a number of possible
interpretations, while the top layer uses the domain knowledge to resolve inherent interpretation
ambiguities and/or to correct misrecognized or incomplete symbols. This is possible thanks to the
context in which the symbols appear, which influences the recognition of the other symbols. Moreover,
the proposed parsing technique includes error recovery techniques, as developed for programming
language compilers [21], to deal with the inaccuracy of hand-drawn symbols.

The efficiency of the proposed approach was tested in a variety of application domains. In this
paper, we present the results obtained on the domain of UML class diagrams. We also compare the
achieved results with those that were obtained by a non-hierarchical parser whose disambiguation
process is based on partial contextual information of the symbols. Moreover, we have evaluated in
the same domain the usability of the tool implementing the proposed recognition model, namely
SketchBench, obtaining better results in terms of easiness of use and pleasantness to use than traditional
WIMP (Windows, Icons, Menus, and Pointing) CASE tools.

The outline of the paper is as follows: Section 2 describes the challenges of recognizing real
world sketches. Section 3 discusses previous work. Section 4 illustrates the main challenges in the
construction of diagrammatic sketch recognizers and introduces the proposed approach. Section 5
describes the Sketch grammar formalism, whereas the recognition strategy is introduced in Section 6.
The evaluation of the recognition system and the usability study of SketchBench are presented in
Section 7. Finally, the conclusion and further research are outlined in Section 8.

2. Sketch Recognition Challenges

As opposed to traditional diagram editors, where the domain specific symbols are provided in
palettes, abstract shapes are imprecise and highly variable in hand-sketched diagrams. Thus, the first



Multimodal Technol. Interact. 2020, 4, 52 3 of 30

challenge in building a sketch-based system is recognizing the meaningful patterns that are implied by
a user’s pen stroke. This task is not trivial, because pattern matching must be flexible enough to allow
some tolerance in sketch recognition, but sufficiently constrained not to accept incorrect patterns and
sensitive to the fact that too much variation might change the identity of the pattern. As an example,
let us consider stroke s1 in Figure 1. By itself it is an arc, but in the recognition process it should also
be considered as a line segment, since these two primitive elements look very similar when drawn.
Moreover, sketching, as well as all other natural ways of conveying information, is an intrinsically
ambiguous process and varies greatly from person-to-person. As an example, a user-drawn square
might easily be misinterpreted as a circle if it is drawn with rounded corners. Furthermore, semantically
different objects might be graphically represented by identical or apparently similar symbols. As an
example, a square symbol in a class diagram might be both the border of a class symbol and the
diamond of the aggregation relationship, as shown by strokes s3 and s2 in Figure 1.

Sketch recognition systems should also not place constraints on how the users can draw a
symbol. Indeed, they should be able to draw without having to worry about where to start a stroke,
how many strokes to use, in what order to draw the strokes, and so on. Thus, the recognition should
be independent of stroke-order, stroke-number, and stroke-direction, as well as invariant to rotation,
scaling, and reflection of symbols. The independence of the sketch recognition process from the
number of strokes is achieved by ink parsing whose goal is to establish which strokes are part of which
shapes by grouping and segmenting the user’s strokes into clusters of intended symbols [22]. This is a
particularly challenging problem, since the same shape can be drawn by varying the number of pen
strokes. For example, the border of a class symbol can be drawn as a single pen stroke (see stroke s3

in Figure 1), or as two or more separate strokes (such as strokes s4 and s5 in Figure 1). Alternatively,
a single pen stroke can contain multiple shapes, such as stroke s6 in Figure 1 representing an association
symbol (the horizontal arrow) and the border of a class symbol. This variation in drawing style together
with the inherent ambiguities increase the difficulties in the segmentation and clustering tasks because
a recognizer cannot know a priori how many strokes will be used to draw each object, or the order in
which the parts of a shape will appear.

Figure 1. A sketched class diagram.

Another issue is the presence of overtraced strokes in the input sketches. They are created when
users draw on top of previous strokes in order to emphasize an aspect of the drawing, tidying up a
previous stroke, making a faint stroke darker, and so on [23]. The sketch recognizers must attempt
to remove or join these strokes together to recognize the shape correctly. This, in turn, requires the
system to determine whether two strokes are intentionally overtraced or simply drawn close together.

In the case of offline sketch recognition, whose process is based on the information extracted from
scanned images only, further challenges have to be considered. In particular, the input images
have to accurately smoothed and segmented into primitive shapes without take advantage of
temporal information.



Multimodal Technol. Interact. 2020, 4, 52 4 of 30

3. Related Work

In the last decades a considerable amount of work has been devoted to sketch recognition.
They can be categorized in different ways, such as based on the information used for the recognition
(stroke features, stroke appearance, stroke role), on the modality of recognition (eager vs. lazy) and the
kind of feedback, on the imposed restrictions (single stroke vs. multi-stroke vs. multi-symbol), and so
on. Three main categories can be identified if we consider the information used for the recognition
process: stroke-based, global shape properties, and visual appearance. The recognition that is based
on strokes is founded on the assumption that each stroke has a specific role in representing a sketch,
thus the recognition methods consider each stroke to determine what role it plays. On the contrary,
by using the general properties of shapes and their underlying strokes the assumption that each stroke
plays a specific role is relaxed [24–26]. Finally, appearance based methods disregard the individual
strokes and focus on the appearance that those strokes represent [27]. These approaches follow the
strategy used for image recognition, which is, using hand-crafted features, such as GF-HOG [28] and
Fisher Vector [29]. However, they still have a gap in recognition accuracy compared with human
performance. Other approaches apply discriminative graphical models to the problem of sketched
symbol recognition [30]. Recently, deep convolutional neural networks (DCNNs) have been effectively
explored for recognizing sketch objects [31–33].

Other relevant studies, which are complementary to sketch recognition systems, regard the work
on perception in sketching interfaces. In particular, the system proposed in [34] determines objects in
a sketch grouping the strokes according to the Gestalt principles. In [35], Lank and Saund present a
model of users’ pen-based selection gestures to inform the design of a faster, more accurate selection
mechanism. The approach that is presented in [36] clusters the strokes into sensible groupings aiming
to facilitate the editing of sketched content. Because we are mainly interested in sketch recognition for
interactive interfaces, in the following we consider stroke-based approaches that are well suited to
this kind of interfaces because they enable systems to display sketch interpretations after each stroke
or each group of strokes is drawn. Moreover, we discuss the sketch description languages used by
multi-domain approaches for a flexible specification of sketch domains.

3.1. Stroke-Based Sketch Recognition Methods

The Rubine recognition engine is a trainable recognizer for single stroke gestures [11], which does
not segment the stroke into primitive shapes preventing the construction of a hierarchical multi-stroke
recognition system. Moreover, the set of features used by the recognizer makes the systems user- and
style-dependent. This means that the strokes must be drawn as in the training phase. The use of linear
classification algorithms also requires extensive training to produce an accurate system.

The approach that is proposed in [37] exploits Hidden Markov Models (HMM) to capture the
drawing regularities, which allow to segment and recognize the input sketch efficiently. However,
the recognizer requires each symbol to be completed before the next one is drawn. Recently, the same
authors have extended their HMM-based approach for recognizing sketches also drawn in an
interspersed fashion [16]. However, the recognition process does not take into account spatial or
geometric constraints beyond those used to encode stroke sequences. Therefore a sequence of strokes
that has the right temporal character but the wrong shape can be classified incorrectly. This is also the
limitation of the approach proposed in [38]. Here, the authors reduce the sketch recognition problem
to a combinatorial optimization problem by heuristically defining an appropriate objective function.

The symbol recognizer that is presented in [22] is capable of learning new definitions from
single prototype examples, and allows users to continuously sketch thanks to a multi-level parsing
scheme. Contextual information are used to improve accuracy and reduce recognition times. However,
the recognition process is driven by easy to recognize symbols, that they assume to exist always in the
sketch. Another recognition approach driven by symbol candidates, arrows in the case of diagrams,
has been presented in [39].



Multimodal Technol. Interact. 2020, 4, 52 5 of 30

The parsing approach presented in [40] uses Bayesian networks combining bottom-up and
top-down recognition algorithm. In particular, input strokes are used to generate symbol hypotheses
within a Bayesian network. Subsequently, the algorithm actively seeks out parts of those hypotheses
that are still missing and fixes the interpretation errors by using context. Unfortunately, the high
computational cost of the approach makes it unsuitable for real-time recognition. Similarly, the sketch
recognizer that is proposed in [41] is built upon the rule-based system Jess, which requires exponential
running time and space in the worst case.

The approach that is proposed in this paper is most related to [40] in the sense that hierarchically
arranged parsers and symbol reinterpretation based on contextual information are used. However,
the recognition model proposed here is considerably different. Alvarado and Davis represent the
possible interpretations of the input sketch with a Bayesian network whose nodes are generated with
an exhaustive bottom-up approach that employs several heuristics to reduce their number. Moreover,
they use a greedy algorithm to select the best interpretation for the sketch. In our approach, we consider
an efficient visual language parsing technique for recognizing both symbols and sketch scenes, which
linearizes the input information during the recognition. Conversely from Bayesian networks, the parse
trees constructed during the recognition process are effectively updatable during the editing process.

3.2. Sketch Description Languages

In recent years several symbol description formalisms and languages have been introduced to
enable a flexible specification of sketch domains.

Shape grammars have been the first grammar formalism for describing shape languages [42],
but do not consider several stroke information that may be helpful in their recognition.
The non-hierarchical language presented in [43] is capable of describing and recognizing stick figures,
but it is not suitable to describe large shapes. A similar description language has been proposed by
Pasternak in [44] for recognizing CAD-drawings.

The sketch recognition systems described in [45,46] use variants of visual language grammars to
provide contextual information in order to face the inherent ambiguity of sketched drawings. However,
these early solutions focused on finding a concise way to specify valid visual structures without
considering the ambiguity issue.

LADDER is a language that allows designers to specify how shapes are drawn, displayed, and
edited in a certain domain [41]. The language consists of a set of predefined shapes, constraints,
editing behaviors and a syntax for combining them. New domain objects are created by specifying
the shape descriptions. They do not consider the problem of stroke segmentation in case of
multi-symbol strokes.

A statistical visual language model for ink parsing has been introduced in [47]. The approach
combines a visual language formalism with a statistical model for disambiguation. A new recognizer
is created by writing a declarative context-free grammar for the language, generating a model from the
grammar, and training the model on drawing examples. The approach is designed to parse the single
components of a composite symbol, rather than parsing entire sketches, and it assumes that shapes are
drawn in certain preferred orientations.

In [48], an extension of Stochastic Context Free Grammar (SCFG) is used for mathematical
expressions analysis. In particular, HMMs are used to recognize mathematical symbols capturing
many variability of handwritten mathematical expressions, whereas a SCFG is used to model the
relation between the recognized symbols taking into account only stochastic information.

The Context Driven Constraints Multi-set Grammar (CD-CMG) formalism is designed for eager
interpretation of hand-drawn documents [49], providing a statistical approach to locally recognize
a shape, and a structural approach to model the spatial relations and the global document structure.
To deal with the real-time recognition of more complex sketches, CD-CMG was extended by defining
a hierarchy between different layers of interpretation, which allows having alternative exploration
strategies [50].



Multimodal Technol. Interact. 2020, 4, 52 6 of 30

The grammar formalism proposed in this paper allows to construct recognizers for a variety of
domains by providing structural descriptions of domain symbols and syntactic information of the
domain language. The descriptions of the symbol’s shapes include tolerances and discriminant values.
The first are used to handle the unintentional deviations that are introduced into the shape caused by
the imprecision of hand control, whereas the latter are used both for recognizing incomplete symbols
and for aiding the disambiguation process of symbols having a similar shape. The effectiveness of the
parser strategy is inherited by LR parsing [20].

4. Overview of Our Approach

Based on the issues that were introduced in Section 2, the implementation of a sketch recognition
system requires the application of intelligent techniques for their resolution. For instance, symbol
recognition from hand-drawn gestures strongly dependents from the structure in which they are
recognized, i.e., its surrounding objects. As a consequence, the ambiguities in the sketches can be
solved by exploiting the contextual information around the ambiguous parts.

The approach that is proposed in this paper uses contextual information provided by grammars
during sketch recognition. In other words, the symbols that are unique to a context are used to solve
pending symbol recognition ambiguities. Moreover, the recognition process considers only the stroke’
shape as recognition features, ignoring other information, such as drawing speed and size. This allows
users to draw the symbols as they would naturally.

A sketch recognition system is defined by specifying a grammar for each symbol of the domain
language, and a grammar modeling the abstract syntax of the language, i.e., the possible relations
among the symbols (see Figure 2). For instance, the definition of a state transition diagram (STD)
sketch recognizer requires a STD grammar and a grammar for each one of the following symbols:
state, initial state, final state, initial and final state, and transition. The Parser Generator produces the
recognizers for each of these grammar specifications.

Figure 2. The process of generation of the sketch recognition system.

The input sketches are recognized according to a three-phase process. A domain-independent
recognizer at Layer 1 interprets the strokes as primitive objects, such as lines, arcs, ellipses, and so on.



Multimodal Technol. Interact. 2020, 4, 52 7 of 30

Moreover, the strokes are split by exploiting stroke information such as curvature, speed, and direction,
aiming to recognize multi-stroke symbols.

Successively, the symbol recognizers at Layer 2 try to identify possible domain symbols by
grouping the primitive objects. In particular, when a symbol recognizer is able to parse a new stroke,
it gives as output the new status of the symbol, which can be partially or completely recognized.
The unparsed strokes are temporarily stored in unmatched strokes repository of the symbol recognizer,
which contains both graphical and classification information.

Finally, the language recognizer at Layer 3 receives the candidate symbols produced by the
symbol recognizers, removes some of them based on context, interacts with the symbol recognizers to
force the recognition of incomplete symbols, and selects the most suitable interpretation.

The system also works for offline sketch recognition. In this case, the first phase takes an image
bitmap as the input sketch. Thus, the domain independent recognizer has to smooth, segment,
and convert the image in a set of primitive objects.

This paper considers UML class diagrams as running example [51]. Such diagrams consist of six
symbols: class symbol, package symbol, association links, aggregation, composition, and inheritance
arrows, which are depicted in Figure 3.

Figure 3. The graphical symbols of UML class diagrams.

5. Describing Diagrammatic Sketches

Sketch Grammars (SkGs, for short) is the formalism used for modeling both the shape of the
domain symbols and the abstract syntax of the sketch languages [18].

5.1. Preliminary Definitions

Informally, a sketch language consists of a set of sketch diagrams over a set of domain-specific
shapes. The latter can be drawn by varying the number of pen strokes or a single pen stroke can
contain multiple shapes. Thus, a sketch sentence of a language L is a set of pen strokes that can be
grouped or segmented into shapes that are similar to those in the alphabet, and such that their spatial
arrangement complies to the abstract syntax of L. The segmentation process splits pen strokes into
primitive shapes, such as line segments and elliptical arcs.

A primitive shape is composed of a graphical representation and a type.The latter has associated
a distance function evaluating the similarity of a stroke to the primitive shape, and a set of attributes
used to specify relations between primitive shapes. As an example, the type of a line shape may have
the least square fitting function as distance function [52], and the position of its end points as attributes.

Let B be a set of primitive shape types with cardinality n. A stroke s is a pair (v, t) where v is a
sequence of timed-ordered points {p1, p2,. . ., pM}, and t is a sequence of n distance values fi(v, bi) with
bi ∈ B, with fi is the distance function on bi, and 1 ≤ i ≤ n. For brevity, we denote the sequence t
with F(v, B).

Two (or more) strokes can be grouped together according to a function cluster defined as cluster
(s1, s2) = (v1 ∪ v2, F(v1 ∪ v2, B)) where s1 = (v1, t1) and s2 = (v2, t2). Whereas, a stroke s = (v, t) can be
segmented into k > 0 strokes by using an algorithm seg(s) = (s1, s2,. . ., sk) where si = (vi, ti), v =

⋃
i

vi

and ti = F(vi, B) with 1 ≤ i ≤ k (notice that the definition of stroke may require to be extended in order
to include the information required by the considered segmentation algorithm).

The shapes of a domain-specific language can be defined generalizing the definition of primitive
shape, i.e., a shape is a pair: a graphical representation and a type. The former is given in terms of
primitive shape composition, whereas the latter has associated a set of attributes, which are used



Multimodal Technol. Interact. 2020, 4, 52 8 of 30

to relate a shape to others, and their values depend on the “position” of the shape in the sentence.
For instance, the graphical representation of the class of a UML class diagram is shown in Figure 3,
whereas the type is CLASS and the attributes associated to it (attaching points) store the connections
to the border of the shape.

A sketch alphabet Σ is defined by a set of shape types. Given the set of primitive shape types B,
a sketch sentence on Σ is a sequence of strokes SB = {s1, s2,. . ., sn}, with si = (vi, F(vi, B)) and 1 ≤ i ≤ n,
such that there exists a clustering and segmentation process that from SB produces the set of shapes
{x1, x2,. . ., xm} whose types are in Σ. For instance, let us consider the strokes depicted in Figure 4b,
which represents the class diagram of Figure 1. Figure 4b shows the shapes that are produced by a
clustering and segmentation process.

(a) (b)

Figure 4. A sketched class diagram (a) and the shapes forming it (b).

5.2. Sketch Grammars

Grammar productions of sketch grammars define how pen strokes of the input sketches have to
be clustered into domain language shapes, and among all possible symbol interpretations to select
the most probable ones. The productions embed actions that can be used to visualize the recognized
shapes, to specify the editing gesture operations, in order to verify properties on the sketches.

An SkG G can be seen as a particular type of context-free string attributed grammar (N, T ∪ POS,
S, P), where:

• N is a finite non-empty set of non-terminal shape types;
• T is a finite non-empty set of terminal shape types, with N ∩ T = ∅; (it corresponds to the set B

introduced in the previous subsection);
• POS is a finite set of binary spatial and temporal relation identifiers, with POS ∩ N = ∅ and

POS ∩ T = ∅;
• S ∈ N denotes the starting non-terminal shape type;
• P is a finite non-empty set of productions of the following format:

(AΓ −→ x1(p1)R1x2(p2)R2 . . . xm−1(pm−1)Rm−1xm(pm), Action)

where

– A is a non-terminal shape type,
– Γ is a set of triples {(NTj, Condj, ∆j)}j=1...k, k ≥ 0, used to dynamically insert new terminal

shape in the input during the parsing process, enhancing the expressive power of the
formalism. In particular, NTj is a terminal shape type to be inserted in the input sentence;
Condj is a pre-condition to be verified in order to insert NTj; ∆j is the rule used to compute
the values of the attributes of NTj from those of x1, . . . , xm.



Multimodal Technol. Interact. 2020, 4, 52 9 of 30

– x1(p1)R1x2(p2)R2. . .xm−1(pm−1)Rm−1xm(pm) is a linear representation with respect to POS
where each xi is a shape type in N∪ T, each pi is an optional value, named discriminant value,
between 0 and 100 indicating the relevance of shape xi in the modeled symbol, and each
Rj is a sequence 〈RELh1

j1
(t1), . . . , RELhk

jk
(tk)〉; 〈RELhk+1

jk+1
(tk+1), . . . , RELhn

jn (tn)〉 with 1 ≤ k ≤ n.

Each RELhi
ji
(ti) relates attributes of xj+1 with attributes of xj−hi

, with 0 ≤ hi < j, by means

of a threshold ti. Notice that we denote REL0
1(0) simply as REL1. Each RELhi

ji
(ti) may also

be a temporal relation, in this case ti represents the time interval value that relates the two
shape types.

– Action specifies the actions that have to be executed when the production is reduced during
the parsing process. The actions are enclosed into the brackets { }.

A SkG sentence combines symbols with spatial and temporal relations. As we will show in the
following section, the discriminant values associated to the shapes of the productions help to recognize
messy or incomplete symbols. Indeed, high discriminant values are associated to the shapes that can
be used tp distinguish a symbol from the others with a high degree of certainty. As an example, class
diagrams include Aggregation and Composition symbols, which have a very similar shape, as shown
in Figure 3. When these symbols are sketched, the strokes composing the Aggregation symbol are
also part of the Composition symbol as depicted in Figure 5a. As a consequence, the shapes of the
Composition production that allow to distinguish a Composition from an Aggregation, i.e., the strokes
that fill the diamond, will have associated a high discriminant value.

(a) (b) (c)

Figure 5. A sketched version of Aggregation and Composition symbols (a), Association symbol (b),
and a temporal gesture (c) as described by the SkG grammar productions.

The following production specifies the Association symbol of class diagrams:

The Association symbol is composed by three lines, as shown in Figure 5b (the attributes are
represented with bullets). The attribute 2 of LINE1 is joined to the attributes 1 of LINE2 and LINE3

(due to relations joint2_1 and joint1
2_1, respectively), and the latter are rotated with respect to the former

of 45 and−45 degrees, respectively. The values t1, t2, and t3 specify the error margins in the satisfaction
of the relations. Attributes 1 and 2 of Association are calculated from the attribute values of the three
lines. Finally, the discriminant values indicate that the shaft of the Association symbol has a greater
weight with respect to the other segments for discriminating an incomplete arrow symbol.

The following productions specify the Class, Composition, and Aggregation symbols of the
class diagrams:



Multimodal Technol. Interact. 2020, 4, 52 10 of 30

The Composition symbol is composed of a line joined with a diamond shape containing a scribble
of at least two primitive shapes, whereas the Aggregation is a line joined with a diamond shape.
Thus, the existence of the scribble allows us to distinguish a Composition from an Aggregation
symbol. For this reason, the discriminant values associated to the strokes forming the scribble of the
Composition symbol have a weight greater than the other shapes.

Temporal relations are particularly useful for defining multi-stroke editing gestures such as
deleting, moving, copying, because they constrain users to draw the sequence of strokes forming such
gestures within a fixed time. As an example, the following production defines an editing gesture
formed by a circle with a line inside of it, which logically selects the set of strokes inside the circle.



Multimodal Technol. Interact. 2020, 4, 52 11 of 30

Notice that the line must be drawn within t3 milliseconds after the circle has been drawn.
The Selection gesture is composed by a circle and a line, as shown in Figure 5c. The action associated to
the production computes the strokes of the drawings which are contained in the circle gesture except
the line gesture. These strokes are highlighted and then the circle and line gestures are removed from
the sketch interface.

SkG grammars allow to specify both the symbol grammars, which define the graphical
representation of symbol shapes of a language as geometric compositions of primitive shape, and the
language grammars, which specify the possible sentences of the language as composition of the
shapes defined by symbol grammars through spatial relations. For example, the previous grammar
describing the Association symbol is used to recognize the ASSOCIATION links of class diagrams,
whereas the following productions define the complete language grammar for UML class diagrams:

This grammar defines a class diagram as an Iterator (production 1), which describes a set of
classes related through Link symbols (productions 2, 4, 5, and 6), and eventually packages containing
them (productions 3, 7). Iterator is recursive and might be not connected through Link (productions 8,
9, and 10).

6. The Sketch Recognition System

In the following, we describe the proposed sketch recognition system. The description of the
system will mainly focus on the online recognition, whereas the application of the proposed approach
to the offline case is discussed at the end of the section. The lower layer recognizer (see Figure 2) is
invoked upon stroke editing, whereas the recognition result is provided by the higher level recognizer
to the sketch editor on demand.

6.1. The Primitive Shape Recognizer

As shown in Figure 2, the primitive shape recognizer aims to classify the stroke pixels into
primitive geometric objects, such as lines, arcs, ellipses, and so on. Figure 6 shows the three phases of
the primitive shape recognition process.



Multimodal Technol. Interact. 2020, 4, 52 12 of 30

Figure 6. The three phases of the primitive shape recognition process.

The strokes are suitably split into single-stroke segments aiming to recognize multi-stroke symbols.
Segmentation is a well-studied problem and powerful approaches have been presented in the literature,
see, e.g., [53,54]. In the current implementation of the proposed approach, the segmentation is
accomplished by the algorithm that is proposed in [55]. In particular, the algorithm splits a free-hand
stroke into line segments and elliptical arcs by using a dynamic programming technique. The generated
segments are classified by using suitable fitting functions: least-square fitting to fit a fragment into a line
segment [56] or an elliptical arc [57]. The post-process phase aims to eliminate possible redundancies,
such as overtracing, by merging primitive shapes satisfying particular conditions.

The output of the primitive shape recognizer on a shape S is a set of interpretations for each
segmented stroke identified in S. This information is stored in a Dictionary.

6.2. The Symbol Recognizer

Symbol recognizers cluster the segment classifications produced by the primitive shape recognizer
into symbols of the domain language. Each recognizer is automatically generated by the parser
generator starting from a symbol grammar and uses a parsing technique that extends the approaches
that were proposed in [58,59]. In particular, the recognizers scan the input in an incremental and
non-sequential way, driven by the spatial relations specified in the grammar productions. Figure 7
shows the architecture of a symbol recognizer.

Figure 7. The architecture of a symbol recognizer.

The parsing table for a symbol grammar G is built by giving in input G to the parser generator.
The incremental parser takes in input:

• the new shapes identified by the primitive shape recognizer, which are saved in the Dictionary;
• a parse tree, which represents the recognized strokes; and,
• an internal stack, which is built on the input analyzed so far.

The parsing program updates the parse tree and the stack based on the new strokes. The nodes
of the tree have associated the discriminant rate of the strokes associated to the leaves of its subtree.
The symbol recognizer outputs the name of the symbol, the stroke sequence analyzed by the parser,
and the discriminant rate.

The parsing table, generated from a grammar, is composed of a set of rows divided into three
sections: Action, Goto, and Next. Each row is composed of a set of one or more sub-rows each
corresponding to a parser state. The Action and Goto sections are similar to the ones used in the
LR parsing tables for string languages [20], while the Next section is used by the parser to select
the next symbol to be processed. An entry Next[k] for a state k contains the triple (relations, x, DV),
which drives the parser in selecting a symbol x with a discriminant value DV satisfying relations [60].
The special entry (start, S) is used to retrieve the first symbol to be parsed.



Multimodal Technol. Interact. 2020, 4, 52 13 of 30

As an example, Table 1 shows the parsing table for the Composition grammar. Note that the
special next entry (any, *) returns any terminal present in the input.

Table 1. Parsing table for Composition grammar.

State Action Goto NextLINE ARC Composition Head Diamond Scribble
0 :sh1 :10 (start, LINE, 30)
1 :sh2 :3 :4 (joint2_1(t1), LINE, 10)
2 :sh5 (joint2_1(t1), rotate(90,t3), LINE, 5)

3
1 :sh_r5 :r3 (contain(t2), LINE)
2 :sh_r5 :r3 (contain(t2), ARC)
3 r1 (any, ?)

4 1 :sh_r5 :6 (contain(t2), LINE, 20)
2 :sh_r5 :6 (contain(t2), ARC, 20)

5 :sh7 (joint2_1(t1), rotate(90,t3), LINE, 5)

6 :sh_r6 :r2 (contain1(t2), LINE, 20)
:sh_r6 :r2 (contain1(t2), ARC, 20)

7 :sh_r4 (joint2_1(t1), rotate(90,t3), joint2
1_2(t1), LINE, 10)

10 accept –

Note: sh = shift, r = reduce, sh_r = shift reduce.

The parsing algorithm associated to a symbol recognizer is described in Appendix A. Figure 8
shows the recognition performed by the aggregation symbol recognizer generated from the productions
that are described in the previous section.

Figure 8. Incremental recognition of a Composition symbol.

Improving Recognition Robustness with Error Recovery Techniques

In this section we extend the parsing process with error recovery techniques to cope with the
intrinsic variability of hand-drawn sketches, e.g., missing symbol strokes or strokes that are difficult to
identify [61]. In particular, in the case of a missing or misrecognized symbol, the parsing algorithm
actives a procedure to proceed in the recognition of the incomplete symbol. Obviously, the procedure
should not be applied if many strokes of the symbol are still missing. To this end, we use the
discriminant values that are associated to the partially recognized symbols both to disambiguate
the recognition of similar symbols and limit the number of missing strokes for a symbol. If t is
the threshold value then a symbol S is (partially or completely) recognized when dv, the sum of
discriminant values associated to the recognized strokes of S, is greater than t. In case dv exceeds
100− t, the error recovery terminates, since the recognized symbol will never exceed threshold t, even
if all the remaining symbol strokes have been drawn. In the following, we provide the algorithms
implementing the error recovery technique.



Multimodal Technol. Interact. 2020, 4, 52 14 of 30

A symbol recognizer automatically invokes the Recovery function when a syntax error occurs.
In this case, if the symbol can still be recognized the Fit function looks for a stroke able to reactivate
the parser, whereas the ContinueParsing function continues the parsing from the stroke following the
missing stroke.

The Fit function first tries to find a stroke s to fix the syntax error from the repository of unmatched
strokes. If it is not found, the function creates a dummy stroke simulating s. In both cases, the output
stroke is used by ContinueParsing function for updating the parsing state and then reactivating
the parser.

After the recovery process, the symbol recognizer checks the acceptance state of the parser to
verify whether the symbol is completely or partially recognized.

As an example, let us suppose that the user has drawn the Composition symbol that is shown in
Figure 9a which has a missing stroke. It is composed of two strokes s1 and s2 which are segmented into
7 simple strokes as shown in Figure 9b. Moreover, let us suppose that the recognizer has a threshold
value of 80 for the recognition of Composition symbols.



Multimodal Technol. Interact. 2020, 4, 52 15 of 30

(a) (b)

(c)

Figure 9. A Composition symbol with a missing stroke (a), its segmentation (b), and the parse tree
constructed by the parser with error recovery (c).

After the recognition of strokes labeled from 1 to 4 the Composition parser reaches state 7, but then
fails because the next symbol in the input is missing. The parser invokes the error recovery procedure
that uses the triple (joint2_1(t1), rotate(90, t3), joint2

1_2(t1), LINE, 10) to check whether the discriminant
value 10 exceeds 20 (i.e., 100 less the threshold). Then, it looks for a valid stroke compatible with the
previous triple in the repository. Since it is not found Fit function simulates the line completing the
diamond shape (which is depicted in gray in Figure 9c) and the parser is reactivated. In particular,
the parser moves from state 7 to state 4, and completes the recognition of the remaining strokes
reaching the acceptance state.

6.3. The Language Recognizer

The language recognizer takes in input the results that are produced by the symbol recognizers
and exploits contextual information for determining the best possible interpretation. This includes
the recognition of incomplete or inaccurate symbols, and the pruning of unnecessary active
symbol recognizers.

When a new stroke is drawn by the user, all of the active symbol recognizers receive in input
result of the primitive recognizer. The strokes that do not compound with those previously parsed are
temporarily stored in the unmatched stroke repository of its recognizer. Instead, the recognizers that
are able to parse the stroke provide their output to the language recognizer. The latter is implemented
as a non-deterministic parser automatically generated from the language grammar [59]. Such a parser
scans the results of the symbol recognizers and selects the most suitable interpretation according to the
discriminant rates. When the interpretation of a symbol S exceeds a predefined discriminant threshold,
the language recognizer discards the active recognizers that have analyzed strokes in S.

Figure 10 depicts how a class diagram is recognized during the editing process. The figure also
shows the results of the active symbol recognizers and highlights the interpretation selected by the
language recognizer.



Multimodal Technol. Interact. 2020, 4, 52 16 of 30

(a) (b)

(c) (d)

(e) (f)

Figure 10. The incremental recognition of a class diagram. (a) The square is parsed by Class and
Package recognizers with a discriminant rate of 60. (b) Only the Class recognizer is able to compound
the line within the square to the previously recognized strokes. (c) The same recognition process is
applied to the second Class symbol. (d) The language recognizer interprets the line between the two
class symbols as Association since the corresponding recognizer obtains the highest discriminant value.
(e) The rhombus near the line is compounded to the previous stroke by Composition and Aggregation
recognizers. (f) The strokes drawn inside the rhombus lead to the recognition of a Composition symbol.

In particular, the selected interpretations are indicated with a checkmark, whereas those pruned
with a cross-mark. The user starts by sketching the square of a class symbol with a single stroke,
as shown in Figure 10a. The stroke is segmented into four lines and the symbol recognizers able to
parse all of the strokes are the Class recognizer and the Package recognizer, both with a discriminant
rate of 60. The other recognizers are able to parse a single line stroke. Since the lines composing a
square have a low probability to be connector symbols (i.e., Association, Aggregation, Composition,
and Inheritance) the language recognizer prunes all of the the active recognizers of connector symbols.

Successively, the user draws with a single stroke a line within the square, as shown in Figure 10b.
Only the Class recognizer is able to compound the line to the previously recognized strokes. Moreover,
other recognizers are launched on the new stroke. Because the class recognizer reaches a discriminant
rate of 100, the language recognizer discards the remaining active recognizers. The same recognition
process is performed on a second sketched class symbol, as shown in Figure 10c.

When the user draws a line between the two class symbols (see Figure 10d), a new recognizer of
each domain symbol is activated. The language recognizer prunes class and package recognizers, since
only connector symbols can be drawn between class symbols. Moreover, it selects the Association
interpretation which has the highest discriminant value. By drawing a rhombus near the line symbol,
as shown in Figure 10e several new recognizers are activated. Only the Composition and Aggregation
recognizers are able to compound the rhombus to the previously recognized strokes. The language



Multimodal Technol. Interact. 2020, 4, 52 17 of 30

recognizer prunes the Class and Package recognizers because neither classes nor packages can be
related to a class symbol, and the Association and Inheritance recognizers, because they parse a subset
of the strokes that are used to recognize the aggregation and composition symbols. It is worth to note
that the Composition recognizer is not discarded because a composition symbol can be drawn starting
from an Aggregation symbol. Indeed, in Figure 10f, the strokes that are drawn inside the rhombus
lead to the recognition of a Composition symbol. In this case, the language recognizer prunes all of
the recognizers activated on the strokes of the Composition symbol. In particular, the Aggregation
recognizer is discarded, because its recognized symbol strokes are included in the composition symbol.

The language recognizer is also able to establish whether a class diagram is syntactically correct
by using the embedded parser. As an example, only the class diagram of Figure 10d is not syntactically
correct, because the association symbol is linked to one class only.

6.4. Offline Sketch Recognition

The proposed recognition approach can also be applied to offline sketch recognition. The layers
of the system that have to be adapted to this recognition mode are the primitive shape recognizer and
the symbol recognizers.

In the offline case, the input to the system is a bitmap image that is produced by image acquisition
devices. Thus, the first task of the sketch recognition system is the analysis of the input image and
its conversion into a set of primitive shapes. Because the scanning process can introduce noise into
the sampled image bitmap of the original sketch, an image filter can be used to preprocess the image
bitmap. The output of the filter is a smoothed image bitmap that is presented to the segmentation step,
which identifies a set of primitive shapes that are used by the individual recognizers. The set of shapes
is sorted according to a topological order.

The symbol recognizers receive the sequence of primitive shapes from the low-level recognizer
and apply their parser for identifying the domain symbols. Notice that, in the offline case, the
generated parsers ignore the temporal information provided in the symbol grammars.

7. Recognition Accuracy Evaluation and Usability Study

We have implemented the proposed recognition model in SketchBench [58], a system that provides
sketch recognition capabilities for pen-based applications. This system has been used to evaluate the
effectiveness of the proposed recognition system. In particular, in the domain of UML class diagrams
we have run a user study for analyzing recognition performances and a usability study to highlight the
advantages of SketchBench over traditional WIMP (Windows, Icons, Menus, and Pointing) CASE tools.

7.1. Uml Class Diagram Recognition Study

The goal of this user study is to evaluate the recognition performances of the proposed approach
and compare them against the results that were obtained with a previous recognition system [58].

7.1.1. Experiment Setup

We recruited twenty subjects with little experience using sketch-based interfaces and with basic
knowledge of UML diagrams. They took a lesson of 10 min. to learn the principles of drawing
by sketches and introduced them the main SketchBench features, included the multi-stroke symbol
recognition capabilities.

We asked to the subjects to use the system for some minutes until they felt comfortable with it and
with the pen-based input device. Subsequently, we gave them the five class diagrams (in the following
indicated with D1, . . ., D5) depicted in Appendix B, which they had to draw in an unconstrained
fashion using SketchBench. We collected one hundred sketches of varying complexity containing
between 22 and 94 strokes and between five and 17 symbols. The subjects knew that they were not
being timed and that they were able to erase strokes during the editing process only by using the undo



Multimodal Technol. Interact. 2020, 4, 52 18 of 30

operation. Moreover, SketchBench does not provide feedback to the users during the editing process in
order to not interfere with data collection and avoid any kind of adaptation from the user.

Because the direct comparison with previous work is difficult, to measure the benefits of our
approach, we use as a baseline the bottom-up approach presented in [58]. This approach combined
low-level shapes into language symbols using a single monolithic LR-based parser for the domain
language. The interpretation of the sentence was done by selecting the symbol interpretations that
cover the higher number of strokes with a reasonable percentage of accuracy.

7.1.2. Results and Discussion

The recognition performance have been measured by computing the number of correctly identified
symbols in each diagram. We have used the precision and recall metrics to measure the recognition
rates [62]. Precision is the ratio of the actual recognized symbols over the total recognized symbols,
whereas recall is the ratio of the number of recognized symbols over the number of real symbols in the
diagrams. Thus, a value that is equal to 1 for recall (for precision, respectively) means that all of the
real symbols have been recognized (all the recognized symbols are real symbols, respectively).

The confusion matrix shown in Table 2 reports the recognition errors of the system. Rows
contain the interpretations obtained for the drawn symbols, while columns contain the instances
(mis-)recognized for a given symbol. For instance, the Package row indicates that 78 out of 86 Package
symbols have been correctly recognized, seven have been misrecognized as Association, and one
as Aggregation. Whereas, the Class column indicates that 455 Class symbol instances have been
recognized, three of should be recognized as Aggregation (false positives). The diagonal reports the
number of symbols recognized correctly.

Table 2. Confusion matrix for the class diagram symbols. Each row shows the number of symbols
of a given type that were assigned to each class. The last column shows the recall and the last row
the precision.

Shapes Recognized RecallClass Package Association Aggregation Composition Inheritance

Drawn

Class 455 5 22 9 2 1 0.95
Package 0 78 7 1 0 0 0.98
Association 0 0 84 9 2 8 0.84
Aggregation 3 0 3 51 3 3 0.85
Composition 0 0 2 8 48 2 0.80
Inheritance 0 0 12 6 0 142 0.89

Precision 0.99 0.94 0.65 0.68 0.91 0.92

The matrix highlights that many mistakes are due to confusing different views of the same
structure, e.g., Associations that are recognized as Aggregations and Inheritances. As shown in
Figure 11a, this might happen when the user draws sloppy arrows with a single stroke. In this case,
the parser cannot solve the ambiguities due to missing contextual information. This also happens
during the recognition of Aggregation, Composition, and Inheritance symbols.

(a) (b) (c)

Figure 11. Examples of sketched symbols misrecognized by the proposed approach. A sloppy arrow
with a single stroke (a); an association symbol positioned on the corner of a messy Class symbol (b);
an Association and a Class symbol misrecognized as a Composition (c).



Multimodal Technol. Interact. 2020, 4, 52 19 of 30

The symbols with highest recognition rate are Classes and Packages. This depends on their
unambiguous shape features, and on the context specified in the language grammar. In 4 cases a Class
symbol has been misrecognized as a set of Association symbols. This occurred when the Class symbol
is drawn as a messy square, as shown in Figure 11b. In 11 cases, a Class symbol has been misrecognized
as Aggregation or Composition. This happened when an association symbol is positioned on the
corner of a messy Class symbol. For instance, the Association and the Class symbols in Figure 11c are
misrecognized as a Composition. The Package is never confused as a Class symbol, since it is the only
symbol containing other symbols. This allows the system to correctly solve the ambiguities with the
contextual information.

Figure 12 shows how the precision and recall values vary on the different diagrams. We can notice
that no dependence exists between diagram sizes and precision and recall measures. This is mainly
due to the independence of symbol recognizer execution, e.g, when a parser fails the performances of
the other parsers are not affected considerably. The worst performances obtained on diagram 3 are
mainly due to the poor contextual information that is available for ambiguity resolution.

Figure 12. Precision and recall by diagram.

Tables 3 and 4 provide the recognition rates of the baseline (BL) and multi-layer (ML) algorithms.
The results show that ML outperforms BL. In fact, BL correctly recognizes 79% of the symbols
on average, whereas ML reaches 90% of correctly identified symbols. Only for Class symbols the
recognition improvement obtained with ML is lower, this is due to the fact that the BL system already
obtained good performances.

Table 3. Recognition rates for the baseline system (BL) and the proposed algorithm (ML). The size
column indicates the number of strokes in each sketch.

Size #Symbols Precision Recall
BL ML BL ML

D1 25 5 0.84 0.92 0.81 0.93
D2 35 6 0.79 0.92 0.77 0.91
D3 50 9 0.71 0.83 0.69 0.84
D4 60 10 0.74 0.88 0.74 0.92
D5 90 17 0.84 0.94 0.83 0.95
Average 52 9.4 0.79 0.90 0.77 0.89



Multimodal Technol. Interact. 2020, 4, 52 20 of 30

Table 4. Recognition rates by shape.

Total Precision Recall
BL ML BL ML

Class 480 0.98 0.99 0.83 0.95
Package 80 0.72 0.94 0.78 0.98
Association 100 0.44 0.65 0.75 0.84
Aggregation 60 0.52 0.68 0.70 0.85
Composition 60 0.77 0.91 0.55 0.80
Inheritance 160 0.85 0.92 0.73 0.89

7.2. Sketchbench Usability Study

This second user study has the goal of analyzing how SketchBench is easy to use for drawing class
diagrams with respect to a traditional WIMP UML CASE tool.

7.2.1. Experiment Setup

The usability study of SketchBench has been performed by recruiting sixteen undergraduate
students from a software engineering class, which were not involved in the recognition study. All of
the students were familiar with UML class diagram notation, but they had no experience with the use
of CASE (Computer Automated Software Engineering) tools and sketch-based interfaces. They took a
lesson of 15 min to learn the principles of drawing by sketches. Moreover, we introduced them to the
main SketchBench features, included the multi-stroke symbol recognition capabilities, and we show
them how to sketch class diagrams. Notice that the version of SketchBench used in this study supported
the deletion of any stroke during the editing process. Moreover, they took a lesson of 15 min. to learn
the main features of ArgoUML for editing class diagrams.

The students were divided in two groups of eight subjects (A and B) and each student performed
two tasks (t1 and t2). Group A used ArgoUML to solve t1 and SketchBench for t2, whereas group B
solves t1 with SketchBench and t2 with ArgoUML. Each task consisted of creating a class diagram for
a hotel reservation software according to a given use case. In particular, the use case for task t1 was
"the reservation of a room", whereas the use case for task t2 was "check-out of a room". For each task,
the students had twenty minutes to solve it by using the assigned tool only.

The authors observed how students worked with the tools during the study. After students
finished each task, they completed the post-task questionnaire that is shown in Table 5a regarding
their experience with the used tool. At the end of the experiment, the subjects filled the conclusive
questionnaire shown in Table 5b to report their positive/negative opinions on the two tools.
The judgment to the questions was given within a range. Indeed, the questions expect closed answers
according to a Likert scale: from 1 (Very low) to 5 (Very high).

Notice that SketchBench does not yet support text recognition, thus to support the user in the
definition of a class diagram, including the class names, field and method declarations, and so on,
we have added on the interface a button for switching from drawing mode to text mode editing,
and vice versa. The strokes edited during the text-editing mode were not sent to the recognizer.

The SketchBench user interface also provides the subjects a button for requiring the current
interpretation of the sketch drawn so far. The interpretation was given by associating a label to each
recognized symbol and by coloring the class symbols and the relationships differently. As an example,
Figure 13 shows a class diagram sketched by a student for solving task t1. In particular, the recognized
class symbols are visualized in green, the relationships are in blue and, to provide an unambiguous
description of the symbol interpretation, all recognized symbols have annotated a text label.



Multimodal Technol. Interact. 2020, 4, 52 21 of 30

Table 5. Questions regarding the usability of SketchBench (a) and questions regarding the subject
experience in the study (b).

(a) (b)
Questionnaire 1 Questionnaire 2
1.1 How difficult is it for you create a class diagram?
1.2. How difficult is it for you to create a class object?
1.3. How difficult is it for you to create

an association between class objects?
1.4. How difficult is it for you to create

an aggregation association?
1.5. How difficult is it for you to create

a generalization association?
1.6. Each set of operations does not produce

a predictable result?
1.7. Overall, how difficult is it for you to use

the system?
1.8. How difficult is it for you find

the solution to the proposed problem?

2.1. I prefer SketchBench over ArgoUML for
constructing UML class diagrams.

2.2. Overall, SketchBench is easy to use for
constructing a UML class diagram.

2.3. Overall, it is pleasant to use SketchBench.
2.4. Using the SketchBench does not require

a lot of mental effort wrt ArgoUML.
2.5. What do you like least about the SketchBench?
2.6. What do you like most about this SketchBench?

Figure 13. The visualization of the SketchBench interpretation for a user sketch.

7.2.2. Results and Discussion

Overall the assigned tasks were correctly completed by 9 students, 5 of group A and 4 of group
B. Two students of group A failed to solve an assigned task: one using ArgoUML on task t1 and one
using SketchBench on task t2. In only one case a student did not complete the solution (for task t2) due
to the inability of SketchBench to recognize a part of the student diagram. For group B, one student
failed to solve both the tasks, two students failed to solve task t2 using ArgoUML, and one student
drew an unrecognizable sketch for task t1.

Boxplot in Figure 14 reports the distribution of the times required to solve a task by each group.
The boxplot shows median values (horizontal lines), interquartile ranges (boxes), the largest and
smallest observations (whiskers), and outliers (circles). Notice that label Xi in a plot indicates the data
on group X for task i. We can observe that for task t1 SketchBench (used by group B) has considerably
reduced the time to find the correct solution. This was mainly due to the ability of SketchBench interface
to allow users to reason directly on the solution. The outlier in the boxplot is the time of the student,
which created a sketch that SketchBench was not able to recognize.



Multimodal Technol. Interact. 2020, 4, 52 22 of 30

Figure 14. Boxplot showing the distribution of times to solve the two tasks by each group.

On the contrary, there is no significant time difference between the two tools for task t2.
The advantages of SketchBench that are highlighted in t1 are weakened by the increased complexity of
the diagram to be drawn. Indeed, we observed that the students have encountered many difficulties
in the modification of the sketches and in the editing of textual labels. Moreover, some ArgoUML
facilities, such as the syntax-directed editing, used by the students of group A for solving t1 were no
longer available to solve t2.

The boxplots presented in Figure 15 show the distributions of user answers to the post-task
questionnaire. In particular, Figure 15a (Figure 15b, resp.) allows for comparing the answers of groups
A and B to the questions on task t1 (t2, resp.).

The ratings for question 1.1 reveal that the students consider SketchBench better than ArgoUML in
the editing of simple class diagrams. In particular, for task t1, even if the maximum editing difficulty
is the same for both tools, on average SketchBench is better. For task t2, whose solution requires
more symbols than t1, SketchBench suffers from ambiguity recognition issues, such as overlapped and
overtraced symbols, intrinsic in dense sketches.

(a)

Figure 15. Cont.



Multimodal Technol. Interact. 2020, 4, 52 23 of 30

(b)

Figure 15. Distribution of answers to Questionnaire 1 by group: task t1 (a) and task t2 (b).

Similar ratings have been obtained for questions 1.2–1.5 regarding the edited class diagram
symbols. In particular, for task t1, we observe that the Aggregation and Inheritance symbols are the
symbols more difficult to sketch, since they are very similar and SketchBench confuses their recognition.
On the other hand, for ArgoUML the Aggregation is the more difficult to draw since it is not included
in the symbol palette, but it can be defined by drawing an Association symbol and by setting its
properties through a context menu. For task t2, the difficulties in the sketching are increased for all
symbols; this is mainly due to the arrangement of the symbols on the sheet. In particular, we observed
that, while ArgoUML provides a support in the symbol layout, SketchBench users incrementally sketch
the symbols on the sheet according to their vision of the solution and this makes the recognition
process more difficult for complex sketches.

The answers to question 1.6 reveal that both tools produce predictable results. Finally, by analyzing
the ratings for questions 1.7 and 1.8 we observe that when the task is not difficult, SketchBench is lesser
difficult to use and easier to find the solution than ArgoUML. Indeed, for task t2 the little practice
of the students with sketching created frustration, which caused the drawing of diagrams difficult
to recognize.

The boxplot in Figure 16 compares the distribution of student group answers to the conclusive
questionnaire. The answers to question 2.1 highlight that students prefer to use SketchBench wrt.
ArgoUML for both tasks. This consideration is slightly stronger for the students of group B probably
because they used SketchBench on the easier task.

Figure 16. Distribution of answers to Questionnaire 2.

The ratings for question 2.2 reveal that SketchBench is easy to use for designing UML class
diagrams. However, the complexity of the diagrams to be constructed influences this measure.
In particular, we observe that the students had difficulties in fixing recognition mistakes when the
diagrams contained many symbols. The outlier of group A corresponds to the student that was not
able to create a recognizable diagram. The ratings for question 2.3 reveal that SketchBench is very



Multimodal Technol. Interact. 2020, 4, 52 24 of 30

pleasant to use. The two outliers are the students frustrated by the inability of SketchBench to recognize
their sketches. The ratings for question 2.4 reveal that the use of SketchBench requires the same mental
effort of ArgoUML.

The main difficulties encountered by the students in the use of SketchBench and highlighted by
the answers to question 2.5 include the way to report and fix errors in the sketches and the dual
mode drawing approach used to separate drawings from text. The appealing features of SketchBench
highlighted by answers to question 2.6 are the possibility of reasoning on the solution directly on the
tool, the rapidity to create a diagram without selecting symbols from palette, and the satisfaction of
recognition performances of SketchBench.

Overall, the answers to the questions reveal that both groups prefer SketchBench to ArgoUML for
its easiness of use and pleasantness to use. Nevertheless, the results of this usability study should be
further validated by considering other application domains and by comparing SketchBench with other
sketch-based tools.

8. Conclusions and Future Work

We have presented a grammar-based approach for multi-domain hand-drawn diagram
recognition. The recognition system is composed of three layers that perform context-based
disambiguation and ink parsing. The domain symbols are recognized through their geometric
properties allowing users the freedom to sketch and edit diagrams as they would naturally, while still
making it possible to maintain a high level of recognition accuracy. The proposed recognition
system performs a fine-to-coarse, incremental, and unobtrusive interpretation of the sketches as
they are created.

The performance of the proposed approach has been evaluated in the domain of UML class
diagrams. The obtained results clearly show the improvements with respect a baseline approach and
demonstrate good scalability to larger drawings. We have also evaluated the usability of SketchBench
to analyze the advantages of our tool wrt. traditional WIMP tools. The results have highlighted that
SketchBench is preferred wrt. ArgoUML for easiness of use and pleasantness to use.

In general, a limit of the proposed approach is the process of grammar definition. Indeed,
the grammar rules should be explicitly defined and compiled by the user. We intend to investigate
inference procedures for obtaining a grammar from a set of sketch samples automatically in order
to reduce this effort, as done in [63,64]. This also involves the definition of a technique for automatically
setting the thresholds and the parameters included the proposed grammar formalism. We can observe
that such parameters are similar to the probabilities associated to the productions of SCFG and many
approaches for training stochastic grammars over a corpus have been proposed in the literature [65,66].
However, the parameters of each SCFG reflect the frequency of applying grammar rules in the
recognition of training corpus. On the contrary, a discriminant value is associated to a terminal symbol
and reflects the frequency of using such a terminal in the recognition of the various language symbols.
In particular, the greater the frequency of using a terminal is, the smaller the discriminant value. Thus,
the algorithms for estimating SCFGs should be revised to the different mean of such parameter in order
to infer discriminant values from training corpus.

Another limitation of grammar-based approaches lies in the management of uncertainty expressed
through over-sketching [67]. Indeed, it is difficult to encode this kind of inaccuracies in grammar
productions. Noise and over-sketching are pervasive in hand-drawn diagrams of domains whose
symbols have a complex geometry, such as petroglyph symbols [68,69]. To mitigate this issue, we plan
to extend the proposed approach by integrating statistical information in the recognition process.

In the future, we also plan to further empirically validate the scalability of the approach by
considering a more complex domain, such as military, engineering, and CAD symbology. Such
domains are characterized by more complex symbols, a vocabulary size very great, and theyinclude
various kinds of symbol relationships.



Multimodal Technol. Interact. 2020, 4, 52 25 of 30

Author Contributions: Conceptualization, formal analysis, investigation, methodology, writing—original draft,
writing—review & editing: V.D., Conceptualization, methodology, software, data curation, data analysis,
writing—original draft: M.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SkGs Sketch Grammars
SCFG stochastic context-free grammars
UML Unified Modeling Language
HMM Hidden Markov Model

Appendix A. The Parsing Program Algorithm

Input: A sequence of interpreted shapes, a parser tree, and a parsing table.
Output: A bottom-up analysis of the input sketch if it is syntactically correct, an error
message otherwise.
Method: Start with the state s0 on the top of the stack.



Multimodal Technol. Interact. 2020, 4, 52 26 of 30

Appendix B

In the following we report the five class diagrams given to the users for the evaluation of the
recognition system described in Section 7.

(a) (b)

Figure A1. Cont.



Multimodal Technol. Interact. 2020, 4, 52 27 of 30

(b) (c)

(d)

Figure A1. The five class diagrams to be drawn in an unconstrained fashion by the twenty subjects
using SketchBench.

References

1. Davis, R. Magic Paper: Sketch-Understanding Research. IEEE Comput. 2007, 40, 34–41. [CrossRef]
2. Igarashi, T.; Zeleznik, B. Sketch-based Interaction. IEEE Comput. Graph. Appl. 2007, 27, 26–27. [CrossRef]

[PubMed]
3. Stahovich, T.; Davis, R.; Shrobe, H. Generating Multiple New Designs from a Sketch. Artif. Intell.

1998, 104, 211–264. [CrossRef]
4. Ghorbel, A.; Lemaitre, A.; Anquetil, E.; Fleury, S.; Jamet, E. Interactive interpretation of structured

documents: Application to the recognition of handwritten architectural plans. Pattern Recognit.
2015, 48, 2446–2458. [CrossRef]

5. Atilola, O.; Valentine, S.; Kim, H.H.; Turner, D.; McTigue, E.; Hammond, T.; Linsey, J. Mechanix: A natural
sketch interface tool for teaching truss analysis and free-body diagrams. Artif. Intell. Eng. Des. Anal. Manuf.
2014, 28, 169–192. [CrossRef]

6. Goel, V. Sketches of Thought; The MIT Press: Cambridge, MA, USA, 1995.
7. Hearst, M. Sketching Intelligent Systems. IEEE Intell. Syst. Their Appl. 1998, 13, 10–19. [CrossRef]
8. Igarashi, T.; Matsuoka, S.; Kawachiya, S.; Tanaka, H. Interactive Beautification: A Technique for Rapid

Geometric Design. In Proceedings of UIST’97; ACM Press: New York, NY, USA, 1997; pp. 105–114.
9. Cheema, S.; LaViola, J.J. Applying Mathematical Sketching to Sketch-Based Physics Tutoring Software.

In Smart Graphics; Taylor, R., Boulanger, P., Krüger, A., Olivier, P., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 13–24.

10. Fišer, J.; Asente, P.; Schiller, S.; Sýkora, D. Advanced drawing beautification with ShipShape. Comput. Graph.
2016, 56, 46–58. [CrossRef]

11. Rubine, D. Specifying Gestures by Example. Comput. Graph. 1991, 25, 329–337. [CrossRef]
12. Damm, C.; Hansen, K.; Thomsen, M. Tool Support for Cooperative Object-oriented Design: Gesture based

Modeling on an Electronic Whiteboard. Chi Lett. 2000, 2, 518–525.
13. Li, L.; Fu, H.; Tai, C. Fast sketch segmentation and labeling with deep learning. IEEE Comput. Graph. Appl.

2019, 39, 38–51. [CrossRef]

http://dx.doi.org/10.1109/MC.2007.324
http://dx.doi.org/10.1109/MCG.2007.9
http://www.ncbi.nlm.nih.gov/pubmed/17220122
http://dx.doi.org/10.1016/S0004-3702(98)00058-7
http://dx.doi.org/10.1016/j.patcog.2015.01.028
http://dx.doi.org/10.1017/S0890060414000079
http://dx.doi.org/10.1109/5254.683174
http://dx.doi.org/10.1016/j.cag.2016.02.003
http://dx.doi.org/10.1145/127719.122753
http://dx.doi.org/10.1109/MCG.2018.2884192


Multimodal Technol. Interact. 2020, 4, 52 28 of 30

14. Schneider, R.G.; Tuytelaars, T. Example-Based Sketch Segmentation and Labeling Using CRFs.
ACM Trans. Graph. 2016, 35. [CrossRef]

15. Lank, E.; Thorley, J.; Chen, S. An Interactive System for Recognizing Hand Drawn UML Diagrams.
In Proceedings of the Conference of the Centre for Advanced Studies on Collaborative Research
(CASCON’00), Mississauga, ON, Canada, 13–16 November 2000; pp. 1–15.

16. Sezgin, T. Online Sketch Recognition from a Dynamic Perspective. Ph.D. Dissertation, Department Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA, 2006.

17. Wenyin, L.; Qian, W.; Xiao, R.; Jin, X. Smart Sketchpad—An On-line Graphics Recognition System.
In Proceedings of the International Conference on Document Analysis and Recognition (ICDAR’01),
Seattle, WA, USA, 13 September 2001; IEEE CS Press: Los Alamitos, CA, USA, 2001; pp. 1050–1054.

18. Costagliola, G.; Deufemia, V.; Risi, M. Sketch Grammars: A Formalism for Describing and Recognizing
Diagrammatic Sketch Languages. In Proceedings of the International Conference on Document Analysis
and Recognition (ICDAR’05), Seoul, Korea, 31 August–1 September 2005; IEEE CS Press: Los Alamitos,
CA, USA, 2005.

19. Costagliola, G.; Deufemia, V.; Risi, M. A Multi-layer Parsing Strategy for On-line Recognition of
Hand-drawn Diagrams. In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’06), Brighton, UK, 4–8 September 2006; IEEE CS Press: Los Alamitos, CA, USA,
2006; pp. 103–110.

20. Aho, A.; Sethi, R.; Ullman, J. Compilers Principles, Techniques, and Tools; Addison-Wesley Longman
Publishing Co., Inc.: Boston, MA, USA, 1987.

21. Snelting, G. How to Build LR Parsers which Accept Incomplete Input. Sigplan Not. 1990, 25, 51–58.
[CrossRef]

22. Kara, L.; Stahovich, T. Hierarchical Parsing and Recognition of Hand-sketched Diagrams. In Proceedings of
UIST’04; ACM Press: New York, NY, USA, 2004; pp. 13–22.

23. McFadzean, J.; Cross, N.G.; Johnson, J.H. An Analysis of Architectural Visual Reasoning in Conceptual
Sketching Via Computational Sketch Analysis (CSA). In Proceedings of the IEEE International Conference
on Information Visualization, London, UK, 14–16 July 1999; pp. 258–265.

24. Apte, A.; Vo, V.; Kimura, T.D. Recognizing Multistroke Geometric Shapes: An Experimental Evaluation.
In Proceedings of UIST’93; ACM Press: New York, NY, USA, 1993; pp. 121–128.

25. Fonseca, M.; Pimentel, C.; Jorge, J. CALI—An Online Scribble Recognizer for Calligraphic Interfaces.
In AAAI Spring Symposium on Sketch Understanding; AAAI Press: Cambridge, MA, USA, 2002; pp. 51–58.

26. Sun, Z.; Jiang, E.; J., S. Adaptive Online Multi-Stroke Sketch Recognition based on Hidden Markov Model.
Adv. Mach. Learn. Cybern. 2006, 3930, 948–957.

27. Kara, L.; Stahovich, T. An Image-based, Trainable Symbol Recognizer for Hand-drawn Sketches.
Comput. Graph. 2005, 29, 501–517. [CrossRef]

28. Hu, R.; James, S.; Wang, T.; Collomosse, J. Markov random fields for sketch based video retrieval.
In Proceedings of ACM Conference on International Conference on Multimedia Retrieval; ACM Press: New York,
NY, USA, 2013; pp. 279–286.

29. Schneider, R.G.; Tuytelaars, T. Sketch Classification and Classification-Driven Analysis Using Fisher
Vectors. ACM Trans. Graph. 2014, 33, 1–9. [CrossRef]

30. Deufemia, V.; Risi, M.; Tortora, G. Sketched symbol recognition using Latent-Dynamic Conditional
Random Fields and distance-based clustering. Pattern Recognit. 2014, 47, 1159–1171. [CrossRef]

31. Seddati, O.; Dupont, S.; Mahmoudi, S. DeepSketch: Deep convolutional neural networks for sketch
recognition and similarity search. In Proceedings of the 2015 13th International Workshop on Content-Based
Multimedia Indexing (CBMI), Prague, Czech Republic, 10–12 June 2015; IEEE CS Press: Los Alamitos, CA,
USA, 2015; pp. 1–6.

32. Zhang, H.; Liu, S.; Zhang, C.; Ren, W.; Wang, R.; Cao, X. SketchNet: Sketch classification with web images.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; IEEE CS Press: Los Alamitos,
CA, USA, 2016; pp. 1105–1113.

33. Zhang, X.; Huang, Y.; Zou, Q.; Pei, Y.; Zhang, R.; Wang, S. A Hybrid convolutional neural network for
sketch recognition. Pattern Recognit. Lett. 2020, 130, 73–82. [CrossRef]

http://dx.doi.org/10.1145/2898351
http://dx.doi.org/10.1145/987481.987485
http://dx.doi.org/10.1016/j.cag.2005.05.004
http://dx.doi.org/10.1145/2661229.2661231
http://dx.doi.org/10.1016/j.patcog.2013.09.016
http://dx.doi.org/10.1016/j.patrec.2019.01.006


Multimodal Technol. Interact. 2020, 4, 52 29 of 30

34. Saund, E.; J., M.; Fleet, D.; Larner, D.; Lank, E. Perceptual Organization as a Foundation for intelligent
Sketch Editing. In Proceedings of AAAI Spring Symposium on Sketch Understanding; AAAI Press: Cambridge,
MA, USA, 2002; pp. 118–125.

35. Lank, E.; Saund, E. Sloppy Selection: Providing an Accurate Interpretation of Imprecise Stylus Selection
Gestures. Comput. Graph. 2005, 29, 490–500. [CrossRef]

36. Perteneder, F.; Bresler, M.; Grossauer, E.M.; Leong, J.; Haller, M. CLuster: Smart Clustering of Free-Hand
Sketches on Large Interactive Surfaces. In Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, ACM, UIST’15, Charlotte, NC, USA, 8–11 November 2015; pp. 37–46.

37. Sezgin, T.; Davis, R. Sketch Interpretation Using Multiscale Models of Temporal Patterns. IEEE Comput.
Graph. Appl. 2007, 27, 28–37. [CrossRef]

38. Hall, A.; Pomm, C.; Widmayer, P. A Combinatorial Approach to Multi-Domain Sketch Recognition.
In Proceedings of the Eurographics Workshop on Sketch-Based Interfaces and Modeling (SBIM’07),
Riverside, CA, USA, 2–4 August 2007.

39. Bresler, M.; Průs̆a, D.; Hlavác̆. Online recognition of sketched arrow-connected diagrams. Int. J. Doc.
Anal. Recognit. 2016, 19, 253–267. [CrossRef]

40. Alvarado, C.; Davis, R. Dynamically Constructed Bayes Nets for Multi-Domain Sketch Understanding.
In Proceedings of the IJCAI’05, Edinburgh, UK, 30 July–5 August 2005; pp. 1407–1412.

41. Hammond, T.; Davis, R. LADDER—A Sketching Language for User Interface Developers. Comput. Graph.
2005, 29, 518–532. [CrossRef]

42. Stiny, G.; Gips, J. Shape Grammars and the Generative Specification of Painting and Sculpture. Inf. Process.
1972, 71, 1460–1465.

43. Mahoney, J.; Fromherz, M. Three Main Concerns in Sketch Recognition and an Approach to Addressing
Them. In Proceedings of AAAI Spring Symposium on Sketch Understanding; AAAI Press: Cambridge, MA,
USA, 2002; pp. 105–112.

44. Pasternak, B. Processing Imprecise and Structural Distorted Line Drawings by an Adaptable Drawing
Interpretation Kernel. In Proceedings of the IAPR Workshop on Document Analysis Systems (DAS’94),
Kaiserslautern, Germany, 18–20 October 1994; pp. 349–363.

45. Landay, J. Interactive Sketching for the Early Stages of User Interface Design. Ph.D. Dissertation,
Carnegie Mellon University, Pittsburgh, PA, USA, 1996.

46. Shizuki, B.; Yamada, H.; Iizuka, K.; Tanala, J. A Unified Approach for Interpreting Handwritten
Strokes. In Proceedings of the IEEE Symposium on Human-Centric Computing, Auckland, New Zealand,
31 October 2003; IEEE CS Press: Los Alamitos, CA, USA, 2003; pp. 180–182.

47. Shilman, M.; Pasula, H.; Russell, S.; Newton, R. Statistical Visual Language Models for Ink Parsing.
In Proceedings of AAAI Spring Symposium on Sketch Understanding; AAAI Press: Cambridge, MA, USA, 2002;
pp. 126–132.

48. Álvaro, F.; Sánchez, J.A.; Benedí, J.M. Recognition of on-line handwritten mathematical expressions using
2D stochastic context-free grammars and hidden Markov models. Pattern Recognit. Lett. 2014, 35, 58–67.
[CrossRef]

49. Macé, S.; Anquetil, E. Eager interpretation of on-line hand-drawn structured documents: The DALI
methodology. Pattern Recognit. 2009, 42, 3202–3214. [CrossRef]

50. Krichen, O.; Girard, N.; Anquetil, É.; Corbille, S.; Renault, M. Real-Time Interpretation of Hand-Drawn
Sketches with Extended Hierarchical bi-Dimensional Grammar. In Proceedings of the 16th International
Conference on Frontiers in Handwriting Recognition, IEEE Computer Society, ICFHR 2018, Niagara Falls,
NY, USA, 5–8 August 2018; pp. 273–278.

51. Object Management Group. UML Specification Version 2.5.1. Technical Report. Available online:
https://www.omg.org/spec/UML (accessed on 14 August 2020).

52. Duda, R.; Hart, P. Pattern Classification and Scene Analysis; Wiley Press: New York, NY, USA, 1973.
53. Hse, H.; Shilman, M.; Newton, A. Robust Sketched Symbol Fragmentation using Templates. In Proceedings

of IUI ’04; ACM Press: New York, NY, USA, 2004; pp. 156–160.
54. Zhang, X.; Song, J.; Dai, G.; Lyu, M. Extraction of Line Segments and Circular Arcs from Freehand Strokes

based on Segmental Homogeneity Features. IEEE Trans. Syst. Man Cybern. 2006, 36, 300–311. [CrossRef]

http://dx.doi.org/10.1016/j.cag.2005.05.003
http://dx.doi.org/10.1109/MCG.2007.17
http://dx.doi.org/10.1007/s10032-016-0269-z
http://dx.doi.org/10.1016/j.cag.2005.05.005
http://dx.doi.org/10.1016/j.patrec.2012.09.023
http://dx.doi.org/10.1016/j.patcog.2008.10.018
https://www.omg.org/spec/UML
http://dx.doi.org/10.1109/TSMCB.2005.857288


Multimodal Technol. Interact. 2020, 4, 52 30 of 30

55. Yin, L.; Yajie, Y.; Weyin, L. Online Segmentation of Freehand Stroke by Dynamic Programming.
In Proceedings of the International Conference on Document Analysis and Recognition (ICDAR’05),
Seoul, Korea, 31 August–1 September 2005; IEEE CS Press: Los Alamitos, CA, USA, 2005; pp. 197–201.

56. Weisstein, E. Least Squares Fitting–Perpendicular Offsets. Technical Report. Available online: http:
//mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html (accessed on 14 August 2020).

57. Fitzgibbon, A.; Pilu, M.; Fisher, R. Direct Least Square Fitting of Ellipses. IEEE Trans. Pattern Anal.
Mach. Intell. 1999, 21, 476–480. [CrossRef]

58. Costagliola, G.; Deufemia, V.; Polese, G.; Risi, M. A Parsing Technique for Sketch Recognition Systems.
In Proceedings of the IEEE Symposium VL/HCC’04, Rome, Italy, 26–29 September 2004; pp. 19–26.

59. Costagliola, G.; Deufemia, V.; Polese, G.; Risi, M. Building Syntax-Aware Editors for Visual Languages.
J. Vis. Lang. Comput. 2005, 16, 508–540. [CrossRef]

60. Costagliola, G.; Deufemia, V.; Polese, G. A Framework for Modeling and Implementing Visual Notations
with Applications to Software Engineering. Acm Trans. Softw. Eng. Methodol. 2004, 13, 431–487. [CrossRef]

61. Costagliola, G.; Deufemia, V.; Risi, M. Using Error Recovery Techniques to Improve Sketch Recognition
Accuracy. In Proceedings of the 7th International Workshop on Graphics Recognition, GREC’07, Curitiba,
Brazil, 20–21 September 2007; pp. 157–168.

62. Salton, G.; McGill, M. Introduction to Modern Information Retrieval; McGraw-Hill: New York, NY, USA, 1983.
63. Romeu, J.; Lamiroy, B.; Sanchez, G.; Llados, J. Automatic Adjacency Grammar Generation from User Drawn

Sketches. In Proceedings of the International Conference on Pattern Recognition (ICPR’06), Hong Kong,
China, 20–24 August 2006; IEEE CS Press: Los Alamitos, CA, USA, 2006; pp. 1026–1029.

64. Veselova, O.; Davis, R. Perceptually based Learning of Shape Descriptions. In Proceedings of the Nineteenth
National Conference on Artificial Intelligence (AAAI-04); AAAI Press: Cambridge, MA, USA, 2004; pp. 482–487.

65. Benedì, J.; Sànchez, J. Estimation of stochastic context-free grammars and their use as language models.
Comput. Speech Lang. 2005, 19, 249–274. [CrossRef]

66. Ra, D.Y.; Stockman, G. A New one Pass Algorithm for Estimating Stochastic Context-Free Grammars.
Inf. Process. Lett. 1999, 72, 37–45. [CrossRef]

67. Carton, C.; Lemaitre, A.; Coüasnon, B. Fusion of Statistical and Structural Information for Flowchart
Recognition. In Proceedings of the 12th International Conference on Document Analysis and Recognition,
IEEE Computer Society, 2013, ICDAR’13, Washington, DC, USA, 25–28 August 2013; pp. 1210–1214.

68. Deufemia, V.; Paolino, L.; de Lumley, H. Petroglyph Recognition Using Self-Organizing Maps and Fuzzy
Visual Language Parsing. In Proceedings of the IEEE 24th International Conference on Tools with Artificial
Intelligence, IEEE Computer Society, ICTAI’12, Athens, Greece, 7–9 November 2012; pp. 852–859.

69. Deufemia, V.; Paolino, L.; Tortora, G.; Traverso, A.; Mascardi, V.; Ancona, M.; Martelli, M.; Bianchi, N.;
de Lumley, H. Investigative analysis across documents and drawings: Visual analytics for archaeologists.
In Proceedings of the International Working Conference on Advanced Visual Interfaces, ACM, AVI’18,
Naples, Italy, 22–25 May 2012; pp. 539–546.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html
http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html
http://dx.doi.org/10.1109/34.765658
http://dx.doi.org/10.1016/j.jvlc.2005.06.001
http://dx.doi.org/10.1145/1040291.1040293
http://dx.doi.org/10.1016/j.csl.2004.09.001
http://dx.doi.org/10.1016/S0020-0190(99)00119-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Sketch Recognition Challenges
	Related Work
	Stroke-Based Sketch Recognition Methods
	Sketch Description Languages

	Overview of Our Approach
	Describing Diagrammatic Sketches
	Preliminary Definitions
	Sketch Grammars

	The Sketch Recognition System
	The Primitive Shape Recognizer
	The Symbol Recognizer
	The Language Recognizer
	Offline Sketch Recognition

	Recognition Accuracy Evaluation and Usability Study
	Uml Class Diagram Recognition Study
	Experiment Setup
	Results and Discussion

	Sketchbench Usability Study
	Experiment Setup
	Results and Discussion


	Conclusions and Future Work
	The Parsing Program Algorithm
	
	References

