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Abstract: This article reports on a longitudinal experiment in which the influence of an assistive
system’s malfunctioning and transparency on trust was examined over a period of seven days. To
this end, we simulated the system’s personalized recommendation features to support participants
with the task of learning new texts and taking quizzes. Using a 2 × 2 mixed design, the system’s
malfunctioning (correct vs. faulty) and transparency (with vs. without explanation) were manipulated
as between-subjects variables, whereas exposure time was used as a repeated-measure variable. A
combined qualitative and quantitative methodological approach was used to analyze the data
from 171 participants. Our results show that participants perceived the system making a faulty
recommendation as a trust violation. Additionally, a trend emerged from both the quantitative
and qualitative analyses regarding how the availability of explanations (even when not accessed)
increased the perception of a trustworthy system.

Keywords: trust; explainability; transparency; assistive systems

1. Introduction

Trust is a fundamental concept in human relationships, as people’s behavior depends,
among other things, on whether they trust each other. Hence, trust has been investigated
from a wide range of perspectives. Important examples include antecedents of trust [1],
cognitive and emotional components of trust [2], trust in organizations [3,4], trust develop-
ment [5], and trust in interpersonal relationships [6,7].

In recent decades, artificial intelligence (AI) has been increasingly used in a growing
number of applications, many of which range from automated transportation to email
services, online banking, and social media, thereby affecting people’s everyday lives.
For this reason, the concept of trust has come to occupy a central position in academic
and institutional discussions related to AI-based automated systems, and researchers
aim to understand the dynamics of trust formation and development in relation to such
technologies [8–11], as well as whether and how these processes relate to trust in human–
human interaction.

Explainability, or the lack thereof, is considered to be one of the idiosyncratic yet most
relevant features of AI that may influence how much trust people place in it [12–14]. This
is relevant with regard to the increasing popularity of models such as neural networks
(black box models) and is in light of their intrinsic opaqueness and inscrutability [13,15].
It is all the more relevant in interaction contexts that entail potential risks for the users,
such as with automated vehicles [16,17]. In this regard, researchers argue that making the
causal chains behind models’ decisions interpretable is likely to help people understand
the rationales behind those decisions and, importantly, calibrate their expectations and
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trust [18–20]. This, in turn, increases the chances that users decide to interact further with
a system [21,22]. Given that trust is dynamic and changes throughout different phases
of interactions, still-open questions concern how exactly trust forms and evolves in the
context of repeated interactions with AI-based systems, as well as the conditions under
which transparency affects trust in these systems.

As a gap exists in the literature concerning the explanations’ influence on trust de-
velopment in longitudinal interaction settings [23], the experimental work presented here
contributes to the literature by investigating trust dynamics in relation to transparency in
the context of repeated interaction with an assistive system. To this end, we simulated via a
‘Wizard of Oz Methodology’ the system’s personalized recommendations in order to assist
users preparing for quizzes by providing them with recommendations on which portions
of text to focus on. Specifically, this study focuses on comparing participants’ trust ratings
at the beginning, over the course of the study, and after a system malfunction. Furthermore,
the system provided explanations of how it functions to one group of participants, while
another group was not provided with this explanation. The trust ratings between these
conditions are also compared. Finally, trust in the system at the very end of the study is
also measured and compared. Our study shows that, even after the system had proven its
reliability, a faulty recommendation was perceived as a trust violation. Accordingly, partici-
pants who experienced the system’s malfunction attributed significantly lower trust to it
than those who interacted with an always accurate system. Furthermore, a trend emerged
concerning the explanations’ effect as a trust restoration strategy. Although our study did
not yield significant results on this matter, both the quantitative and qualitative analyses
suggest that providing explanations after a system malfunction may indeed accelerate the
trust restoration process.

The remainder of this paper is divided into five parts. Section 2 discusses previous
work related to the notion of trust as a dynamic process, thereby connecting it to the
concept of explainability while identifying open challenges and experimental propositions.
Then, Section 3 describes the methodology and design of the 2 × 2 study in which the
system’s accuracy and explainability were manipulated to investigate how trust in the
system is affected. Section 4 presents the results from the quantitative and qualitative
analysis. The study’s contributions to the literature on trust and explainability are then
discussed in Section 5, with considerations regarding automated vehicles, together with
final considerations and limitations in Section 6.

2. Related Work and Experimental Hypotheses

Definitions of trust have repeatedly emphasized certain elements. Namely, trust im-
plies a trustor who is willing to be vulnerable and face risks and uncertainties in expectation
that the trustee will provide support in achieving specific goals [7,24]. As such, trust is
a fundamental phenomenon that characterizes human relationships on multiple levels.
Trust in technology represents just one of these levels (albeit a multifaceted one), and
researchers emphasize how trust plays a role in determining technology acceptance [22,25].
In this respect, trust towards assistive systems, such as those employed by automated
vehicles, can be operationalized as the probability of an individual following the system’s
recommendations, predictions, and decision making [12]. Furthermore, recent long term
studies [26,27] have found time to be an important factor influencing trust in repeated
interactions with such systems. Hence, the dynamic nature of trust necessitates studying
its relationship with (and effects of) performance/accuracy and explainability at different
moments of an interaction [28–31].

2.1. Initial Trust

Certain factors influence people’s initial trust in new technologies before any inter-
action takes place. As antecedents of trust, individuals’ characteristics, environmental
factors, and features of the technology in question play a role in determining people’s
initial trust towards new technologies [25]. Taken together, these factors contribute to
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determining people’s initial attitude and expectations so that the process of trust formation
is not a complete ‘blind leap of faith’ [32], a concept which comprises a high risk potential
in applications like automated driving.

Environmental factors include social and cultural background, as well as institutional
cues. The latter is particularly relevant for AI-based technologies, as it refers to entities
that are involved in the introduction of new technologies, such as developers and expert
opinion leaders, companies that market the technology, and national and international
organizations that contribute to shaping the narratives around new technologies [28,33–35].
Before any interaction is established, institutional cues can determine whether people
perceive new technologies as benevolent or malicious [36,37].

Human factors refer to the disposition to trust, propensity to take risks, individual
abilities, and personality traits [9,25,38]. Ref. [16] reports on a study conducted to eval-
uate the effects of risk perception on trust in automated vehicles. They found that not
only did interacting with an automated vehicle in a risky scenario significantly reduce
participants’ trust and delegation of control to the vehicle, but they also found that initial
trust was significantly higher than trust levels after interacting with the vehicle in high-risk
conditions.

Concerning technological features, ref. [8] identifies three factors that can influence
people’s trust in automation. These are performance, process, and purpose. Researchers
argue that an AI-based system may be considered trustworthy if it acts within the ‘contrac-
tual preconditions’ of its use [14], that is, if an AI-based system successfully performs in
accordance with its purposes, which are contextually recognized by users.

However, before or at the beginning of an interaction, it is difficult for people to judge
whether an AI-based system will perform in accordance with its purposes. This means that
initial trust is likely not based on the AI-based system’s actual capabilities. Rather, it is
mostly influenced by individuals’ background and disposition and how the technology is
presented by external entities. The former in particular may lead to unreasonably high or
low levels of initial trust, given that the explicit third party in this case are the researchers
conducting the study [39,40]. In this regard, several researchers note that, particularly
during the first phases of the adoption of and interaction with new AI-based technologies,
providing initial explanations may improve trust formation processes. For instance, studies
suggest that automated vehicles’ explanations provided before the vehicle acted may
positively influence the willingness to trust the vehicle [41,42]. Specifically, by compensating
for the lack of previous experience (and proven reliability), initial explanations that clarify
the functions and purposes of a specific technology may reduce users’ perception of
risk, increase perceived trustworthiness, enable accountability, and mitigate individual
disposition [25,34,43]. In turn, the initial attribution of trust and low perception of risks
may be fundamental in determining users’ acceptance of potentially hazardous systems
such as automated vehicles [44].

On top of these considerations, we propose the following:

Hypothesis 1 (H1). Transparency by means of explanations about the system’s inner workings
leads to higher initial trust levels.

2.2. Trust Development over Time

Once initial trust is established and the interaction with an AI-based system proceeds,
people are unlikely to completely lose trust without a specific reason. In this regard,
researchers suggest that trust dynamics evolve gradually [25] and that initial trust levels
usually adjust after an interaction begins as the result of a calibration of individuals’
attitudes and other factors involved in determining initial trust, which are intertwined
with an AI-based system’s behavior [10,29,45,46]. Recalling Lee and See’s model, as an
interaction unfolds, an AI-based system will likely be considered trustworthy and reliable
if it performs in accordance with its purpose or, to put it in other terms, with the ‘contracts’
established with users [8,14]. For an AI-based system to be considered reliable, behavioral
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consistency over time is required, as reliability is a property that can be attributed to a
system only in relation to its past performance [47–49]. In turn, when an AI-based system
proves reliable, people grow confident in its capacity; trust and familiarity stabilize, and
performance improves [17,50–52].

In this regard, studies have suggested that, as long as an AI system performs accurately,
people will perceive it as reliable, and explanations may be unnecessary [53,54] or even
detrimental to trust development; for instance, they might reveal the system’s limited
capabilities, thereby breaking the illusion of intelligence [12,55].

For instance, empirical results from a series of studies on explanations by automated
vehicles show how the explanations’ timing plays a central role in determining users’ trust.
The researchers found that explanations provided before the vehicle acted had a positive
influence on participants’ attribution of trust, while explanations that were given after a
specific action did not affect trust ratings [41,42]. In line with H1 , these findings suggest
that explanations may be more beneficial before, rather than during, an interaction.

However, other studies point out that explanations provided during an interaction
may help people make sense of specific decisions or predictions generated by AI-based
systems [56] and are therefore fundamental to continuous trust calibration [25].Taken all
together, these results suggest that, once a system proves itself reliable through repeated
accurate performance, people’s attribution of trust will, for the most part, depend on
this accuracy. In turn, this means that providing explanations in this phase is neither
likely to have negative effects, nor to significantly increase the perception of the system as
trustworthy.

Accordingly, we propose the following:

Hypothesis 2 (H2). As long as the system proves reliable, transparency by means of explanations
does not affect trust development as compared to a lack of transparency.

2.3. Trust Violation and Restoration

Due to the dynamic nature of trust, it may be that, after an AI-based system proves
reliable throughout an interaction, something happens that compromises people’s trust in it,
their acceptance of the system, and future interactions with it [57]. This notion is particularly
important for new technologies such as automated vehicles, as early significant trust
breaches among the public may compromise their long-term adoption. In the taxonomy of
events that can cause such trust breaches, ref. [58] identify four types of failures related
to poor design choices, system failure, behavior that goes against users’ expectations, and
users’ misbehavior.

Several studies support the idea that the types, timing, and recurrence of failure may
affect trust in different ways. For instance, Desai et al. found that early mistakes have more
negative effects on trust than mistakes that occur later [59], while other experiments show
that humans tend to take over control from robots with low levels of competence [60], or
that even as little as two trust violations are sufficient for trust to be significantly eroded [61].
Further results indicate how faulty robots are considered to be significantly less trustworthy
and reliable than the those which performed successfully, but also that mistakes do not
necessarily affect participants’ willingness to follow the robot’s instructions [62]. Finally,
individuals’ characteristics, such as perception of and disposition towards risk [63,64], as
well as willingness to forgive, age, and experience, also emerge as factors that may play a
role in determining the degree of trust erosion after a violation [61].

Alsom in [58], trust restoration strategies are introduced. Important examples are
apologies, promises, remedial trustworthy behavior, and explanations. Importantly, com-
pared to the other trust restoration strategies, explainability comes with one major advan-
tage. In this regard, studies suggest that perceiving an anomaly in a system’s behavior
represents the main trigger for an explanation request [65,66] and that providing expla-
nations for such anomalies (and mistakes), may result in increased trust and reliance by
shedding light on the causes of the anomalous behavior rather than just offering a re-
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structuring of the relationship [31,39,67]. At the same time, high levels of trust in a faulty
system may still be dangerous, even if the system can explain its mistakes. In this regard,
studies suggest that explanations may not only restore trust after a violation, but also
dampen it in case people overtrust a nontrustworthy system [14,30]. Ref. [39] suggests that
providing more informative explanations and instructions about how the system operates
may mitigate unwanted effects. Accordingly, studies on automated vehicles indicate that
the negative effects on the trust of vehicles’ mistakes that lead to, for instance, near crash
events need to be mitigated and that transparency may play a key role in that [68–70].

Taking into account the aforementioned considerations on trust violation, as well as
the role of explanations as a trust restoration strategy as it emerges from the literature, we
propose the following:

Hypothesis 3 (H3) . After a faulty recommendation, the groups that experience such a malfunction
will report lower trust ratings than groups without malfunction.

Hypothesis 4 (H4). The group with explanations after the malfunction will experience a greater
increase in trust than the group without explanation.

3. Method
3.1. Experimental Design

To test our hypotheses, a 2 × 2 mixed design with the following independent variables
was implemented: system malfunctioning (correct/faulty), transparency (with/without
explanation), and exposure time (measured over seven days). The system’s malfunction
and transparency were manipulated as between-subjects variables and exposure time was
a within-subjects variable. For this purpose, we mimicked, through the Wizard of Oz
methodology, an abstract-generating assistive system named PLANT. The Wizard of Oz
methodology entails that the system’s autonomy and agency were simulated in order to
conduct research on the way that humans react to its appearances and actions. As such,
it allows for the study of user interactions and to gather feedback on the system’s design
without actually implementing full autonomy [71].

3.1.1. Use Case: PLANT as a Personalized Assistive System

In the context of our study, the assistive component was developed by making the
system support participants with the task of learning new technology-related texts. Re-
garding the content of each text, they had to take a quiz with five questions. To meet
its goal, the system provided personalized recommendations on the most relevant parts
of text (i.e., abstracting support) in order to prepare participants for upcoming quizzes
about the content of this text. While participants always had the option to access the full
texts, accepting PLANT’s recommendations resulted in time savings in preparation for
the quizzes. Conducting the study with an assistive system providing recommendations
allowed for a certain degree of generalization of the results, as platforms of this kind are
very common across different types of AI-based technologies.

When participants were introduced to the system, they were explained that the rec-
ommendations were generated through the system’s Natural Language Processing (NLP)
algorithms, while in reality the researchers behind the project produced and controlled
them via the Wizard of Oz methodology. Thus, NLP algorithms were meant to represent
the core of the automated features of the system by demonstrating the ability to interpret
and comprehend human language. Even though these kinds of algorithms (and their
mistakes) were simulated in order to conduct the research in a controlled manner with a
focus on human reactions and experiences to automated systems, the goal was to produce
a simulation that was very close to reality. In terms of the NLP systems that we were simu-
lating, we focused on deep learning models that are trained for automatic summarization
in a specific domain. Participants were told that the goal of the experiment was to test
the beta testing version of the system’s functionalities in order to provide feedback to the
developers. Crucial to note here is that the experiment took place before the breakthrough
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of ChatGPT, which meant that NLP algorithms and deep learning models in text analysis
were still a rather abstract theme for most participants. Furthermore, the general focus
of our study was mostly to understand trust dynamics with regard to AI-based systems
in general; NLP systems simply functioned as a specific instance of such systems. In this
context, the mimicked nature of PLANT ensured the controllability and reproducibility of
the study, as no actual malfunctions could occur.

Given that PLANT was presented as a personalized assistive system with a focus
on summarization, one of its key features was the range of customization options. These
included alerts and notifications, via either email or (optionally) SMS, with reminders of
upcoming quizzes and suggestions to change the scheduling and timing of one’s prepa-
ration. Additionally, participants could receive performance-based insights into their use
of the recommendations, switch between ‘light’ and ‘dark’ themes for the interface, and
personalize the text font. Perhaps more importantly, participants could personalize their
learning style by choosing among four different options (see Figures 1–4). Specifically, these
were the following:

• Kinesthetic: Full text with highlights.
• Auditory: Reading and listening to the summary.
• Reading/Writing: Bullet points.
• Visual: Graphical representation.

Figure 1. Kinesthetic learning style. The kynesthetic learning style consists of highlighted portions of
the original full text.

Figure 2. Auditory learning style. The auditory learning style consists of a textual summary of the
original content and an additional auditory reading of the summary.
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Figure 3. Reading/writing learning style. The visual learning style consists of a graphic rendering of
the key points of the original full text.

Figure 4. Visual learning style. The reading/writing learning style consists of a series of bullet points
containing key chunks of the original full text, adapted from the summary.

What each of the four learning styles respectively entails will now be briefly described.
The ‘kinesthetic’ learning style presented the full text with essential sentences highlighted
in yellow in text. The ‘auditory’ style was a shortened version of the full text consisting
of the highlighted text passages only, to which participants could listen to. Additionally,
the summary featured headings and subheadings corresponding to the sections of the
full text. The ‘reading/writing’ style was adapted from the summary, with the essential
passages slightly changed or shortened to create a list of appropriate bullet points. The
headings and subheadings of the summary were also shown in the list of bullet points. The
contents of the ‘visual’ were derived from the bullet points by shortening and modifying the
essential passages. In order to distinguish between different parts of the text, the sections
were colored differently, and icons were used to support the text. The infographic would
automatically switch to a different set of colors if the user turned on the dark theme. The
highlights, summary, and bullet points were designed by the researchers responsible for
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the study using the edit tab in the backend of the web application. The visualization was
created with CSS classes based on the Flexbox Grid (http://flexboxgrid.com, last accessed
19 February 2024) system.

Based on how participants answered an initial questionnaire, the VARK Questionnaire
Version 8.01 (https://vark-learn.com/the-vark-questionnaire/, last accessed 19 February
2024), PLANT suggested one of these learning styles to each user. However, participants
did not have to follow the system’s recommendation, and it was ultimately up to them to
decide which learning style they felt most comfortable proceeding with. Furthermore, the
full text was always available to all users, regardless of which learning style they selected.
To keep experimental conditions controlled, the initial learning style choice could not be
changed during the course of the study, and participants using different learning styles
were evenly distributed across all experimental conditions.

3.1.2. Participants

The pilot study was conducted between April and July 2021. Over a period of seven
weeks, each participant had a total of seven interaction sessions with PLANT, with one text
and quiz per week. Participants were recruited from the Technical University of Vienna. A
total of 75 participants took part in the pilot study, but only 13 participants completed it
(2 female and 11 male). Their ages ranged between 22 and 54 years old (M = 26, SD = 8.51).
The highest educational degree completed by the participants was a general qualification
for university entrance (46%), bachelor’s degree (46%) and master’s degree (1%). The
majority of participants were of Austrian nationality (85%).

After conducting the pilot study, we reduced the duration of study (from seven weeks
to seven days, i.e., one text and quiz per day) and changed our incentive system (from
random lottery to performance-based) to reduce the number of dropouts. The main study
was conducted between June and August of 2021. Participants for the main study were
recruited through the online platform Probando (https://www.probando.io, last accessed
19 February 2024) and were redirected to the PLANT website. Of the 205 participants who
took part in the study, 171 completed it. Thus, the sample used for quantitative analysis
consisted of 171 participants.

The majority of participants had Austrian nationality (72.5%). Participants’ age ranged
between 19 and 69 years old, with an average age of 29.3 years (M = 29, SD = 9.11).
The majority of participants (71%) identified as female. Furthermore, the majority of
participants had a general qualification for university entrance as their highest educational
degree (51%).

Before taking part in the study, participants were provided with information about
the study and a consent form, which was approved by the Research Ethics Coordinator of
the Technical University of Vienna. After creating an account and logging in, participants
were directed to the homepage of PLANT, where introductory information about PLANT,
a timeline, and assignments (quiz and questionnaire) were listed. Upon registration, they
were asked to fill out a demographics questionnaire and the VARK Questionnaire. After
submitting these questionnaires, PLANT suggested a learning style to each participant
based on their answers to the VARK Questionnaire.

3.1.3. Experimental Conditions

Participants were then randomly assigned to one of the four experimental conditions.
Hereby, we briefly describe each of them.

• Correct with explanation (CwE): PLANT provides correct recommendations through-
out the entire study. From the beginning and throughout the study, the system allows
participants to access a short explanatory description of how recommendations are
generated by means of NLP algorithms (i.e., a ‘global explanation’).

• hlCorrect without explanation (CwoE): PLANT provides correct recommendations
throughout the entire study but does not offer any explanation concerning its in-
ner workings.

http://flexboxgrid.com
https://vark-learn.com/the-vark-questionnaire/
https://www.probando.io
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• Faulty with explanation (FwE): From the beginning and throughout the study, PLANT
allows participants to access a short explanatory description of how recommendations
are generated. The system initially provides three correct recommendations to let
participants familiarize themselves with the system and to support trust formation.
At the fourth interaction, the system provides a faulty recommendation (i.e., trust
violation) and offers an explanation focused on the inaccuracy of one of the algorithms
used by the system. The final three recommendations are again correct.

• Faulty without explanation (FwoE): PLANT initially provides three correct recommen-
dations to let participants familiarize themselves with the system and to support trust
formation. At the fourth interaction, the system provides a faulty recommendation
(i.e., trust violation) and offers no explanation for the malfunction. The final three
recommendations are again correct.

Malfunction Explanation

After the faulty recommendation, participants in the FwE group received a notifica-
tion that a malfunction occurred in one of the NLP models used to generate the recom-
mendations and that the issue had been solved for the upcoming quizzes. Furthermore,
participants in this group had the chance to access a more detailed ‘local explanation’ (i.e.,
only concerning the reasons for the malfunction [56]) by clicking a ‘More Information’
button. As the Figure 5 shows, a plausible explanation for the faulty recommendation,
and the confirmation that the issue had been resolved were provided. Additional graphic
information showing which chunks of text were wrongly recommended and which ones
should have been recommended instead was also displayed.

Figure 5. Malfunction explanation

3.1.4. Procedure

Each participant was required to prepare for seven quizzes over the next seven working
days. The texts that participants had to study were all related to emerging technologies
and carefully selected by the team of researchers running the study. The order of the texts
presented to participants across the four experimental treatments was fixed to mitigate the
possibility of cheating (i.e., participants talking to each other about the previous quizzes).
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The order of the texts, respectively labeled from ‘A’ to ‘G’, plus ‘X’ and ‘Y’ (same text, but
‘X’ faulty, ‘Y’ correct) is reported in Table 1 below.

Table 1. Order of the texts in the different experimental treatments.

Order Participants

‘A’,‘B’,‘C’,‘X’,‘D’,‘E’,‘F’,‘G’ even user ID
‘A’,‘D’,‘E’,‘X’,‘F’,‘B’,‘C’,‘G’ odd user ID
‘A’,‘D’,‘F’,‘B’,‘C’,‘Y’,‘E’,‘G’ even user ID
‘A’,‘B’,‘D’,‘F’,‘E’,‘Y’,‘C’,‘G’ odd user ID

Each day over the following seven days, according to the provided timeline, a new
text to study was made available on the homepage under the ‘assignment’ section. After
studying the text, participants were asked to take a short quiz that consisted of five multiple
choice questions about the text. Participants could take the quiz whenever they wanted
during that day. After clicking on the quiz, they only had five minutes to complete it.
After each quiz, participants were asked to fill out a post-test questionnaire that contained
questions about trust and satisfaction levels.

Upon completion of the seventh quiz, the study concluded with a final questionnaire
that contained questions about participants’ perceived trust in the system and perception
of the system’s usefulness. After finishing the study, they received an email informing
them of the review and payment process and inviting them to participate in an online
interview and focus group about their perception of the whole experience (participation in
the interview and focus group were optional and unpaid).

As a token of gratitude for participants’ time and support, all those who completed all
the questionnaires (demographic and learning style, post-test, final questionnaire) received
a fix payment of 35 EUR. Additionally, for each correct response to a quiz question, they
received a bonus payment of 0.5 EUR (i.e., if a participant answered all five questions
correctly in all seven quizzes, they received a bonus of 17.5 EUR, thus yielding a total
compensation of 52.5 EUR). Participants in the pilot study received a participation certificate
signed by the head of the research group. In addition, everyone who completed all
questionnaires was entitled to participate in a lottery with ten prizes worth 200 EUR each.
The lottery drawing was a live online event conducted in July under the supervision of a
member of the research ethics coordination team at the Technical University of Vienna.

Eventually, participants were debriefed via email about the actual purpose of the study
and the fact that the system was not actually automated and was operated by humans.

3.2. Measurements
3.2.1. Questionnaires

After each interaction throughout the seven days, trust perception was measured by
means of an adapted version of the short, validated ‘Trust Perception Scale-HRI’, consisting
of twelve items [72]. We used the short version as it is suitable for“trust measurement
specific to measuring changes in trust over time, or during assessment with multiple
trials” ([72], p. 214) and because it is specific to systems’ functional capabilities. A sample
item was “What % of the time did PLANT perform exactly as instructed”. Three negatively
worded items (Items 1.8, 1.10, 1.11) were reverse coded. Two items that directly and
specifically referred to physically embodied robots were excluded from our questionnaire.

At the end of the seven-day study, participants were asked to rate the trustworthiness
of PLANT. Trustworthiness was measured by means of an adapted version of the ‘Multi-
Dimensional Measure of Trust’ [73], which consists of 16 items divided into four groups
(namely capable, reliable, ethical, and sincere). Only the scale’s wording was adapted to fit
our specific use case. Participants were asked to report how closely they associated PLANT
with each item on a five-point scale ranging from “strongly disagree” to “strongly agree”.
A sample item was “Predictable”. Cronbach’s alpha values for the four subscales were the
followinf: capable = 0.86, reliable = 0.78, ethical = 0.89, and sincere = 0.88.
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Finally, demographic information such as age, gender, highest educational degree,
and country of residence was acquired.

3.2.2. Interviews and Focus Groups

After finishing the study, participants received an email and were asked whether
they wanted to provide us with further feedback and insights by participating in optional
interviews and focus groups. We conducted 18 semistructured interviews and a focus
group discussion. The interviews focused on the following topics: the functionality and
purpose of PLANT, the personalized learning styles, experiences concerning reliability, and
explanations and interpretability of PLANT. As such, were meant to provide additional
insights into the main themes of the study. The focus group concerned the same topic;
however, there was a stronger emphasis on the explanations and malfunctions of PLANT,
since the focus group allowed for fruitful discussions on these topics. We conducted the
interviews and focus groups online with the help of video conference software (https:
//zoom.us, last accessed 19 February 2024). The data were collected in the form of audio
recordings, which were subsequently transcribed using transcription software (https://
www.otter.ai,last accessed 19 February 2024). Both the audio recordings and transcripts
were stored in a protected database at the Technical University of Vienna. Only PLANT
team members had access to this database. After the transcription of the interviews and
focus group, we analyzed the textual data with the help of the Atlas.ti (https://atlas.de,
last accessed 19 February 2024) qualitative data analysis software. The analysis was
conducted using a qualitative coding methodology, thus assigning descriptive labels to
the transcripts of the interviews and focus group discussion. The qualitative coding
analysis was conducted by two different people. Several meetings were organized in
order to discuss the direction of the coding process. Furthermore, the functionalities of
the qualitative data analysis software provided a good overview of the major topics that
emerged in the qualitative research.

4. Results
4.1. Quantitative Analysis

As mentioned in procedure, participants were randomly assigned to one of the four
groups. Table 2 shows the frequency distribution of the groups. As each group was nearly
equal in size (52/36 = 1.44 < 1.5), the multivariate test results are fairly robust.

Table 2. Frequency distribution of treatment groups.

Group Frequency Gender Learning Style

Male Female Other K V A R

CwE 37 (22%) 14 23 0 18 8 8 3
CwoE 52 (30%) 14 38 0 21 12 5 14
FwE 46 (27%) 8 37 1 21 8 5 12
FwoE 36 (21%) 12 24 0 18 10 6 2

Total 171 (100%) 48 122 1 78 38 24 31
K = kinesthetic, V = visual, A = auditory, R = reading/writing.

4.1.1. Initial Trust Perception

An independent sample t test was conducted to compare the initial trust level (day 1) in
groups with and without the explanation. There was no significant effect of the explanation
on the initial trust level, t(169) = −0.59, p = 0.56, even though both groups with the
explanation (namely, CwE and FwE) (M = 86.15, SD = 10.99) exhibited higher trust scores
than the groups without the explanation (CwoE and FwoE) (M = 84.99, SD = 14.32). Thus,
H1 is not supported.

https://zoom.us
https://zoom.us
https://www.otter.ai
https://www.otter.ai
https://atlas.de
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4.1.2. Trust Development over Time in Groups without Malfunction

To assess the effect of the explanations on trust development over time, we looked at trust
level in both groups with no system malfunction (i.e., CwE and CwoE). A repeated-measures
ANOVA was performed to evaluate the effect of explainability and time on trust. Mauchly’s
test indicated that the assumption of sphericity had been violated, χ2 (20) = 88.31, p < 0.001,
and therefore degrees of freedom were corrected using Greenhouse–Geisser estimates of
sphericity (ε = 0.73). The analysis revealed a main effect of time (F(4.36, 379.57) = 2.86,
p < 0.05) in trust development, but the main effect of explanation (F(1, 87) = 1.64, p = 0.2)
and the interaction between time and explanation (F(4.36, 379.57) = 0.34, p = 0.86) were
not significant. As posited in H2, explanation did not affect the trust level in groups
without malfunction.

4.1.3. Trust Violation and Restoration

As shown on Figure 6, the trust level was lower on day 4 in groups with the malfunc-
tion, i.e., FWO and FWOE (Mean = 74.44), compared to groups without the malfunction,
i.e., CWE and CWOE (Mean = 86.66). An independent t test revealed that this difference
among groups with and without the malfunction was significant (t(169) = 4.68, p < 0.01).
Thus, H3 is supported in this work. If the malfunction has a trust violation effect, we expect
trust level to decrease from day 3 to day 4 for groups with malfunctions. A 2 × 2 ANOVA
with malfunction as a between factor and time as a within-subjects factor was run. The
analysis revealed a main effect of time (F(1, 169) = 30.74, p < 0.001), the main effect of
explanation (F(1, 169) = 13.27, p < 0.001) and an interaction between time and explanation
on trust (F(1, 169) = 19.22, p < 0.001) in the predicted direction. Thus, H3 is supported.

Figure 6. Trust development in each group.

To assess the impact of explanation on trust restoration, we looked at the trust level in
two groups with a malfunction when the system made a mistake (day 4) and functioned
correctly again (day 5). On day 5, while descriptive statistics revealed that participants’
trust was higher in the faulty with explanation group (FwE: Mean = 84.77) compared to
the faulty without explanation group (FwoE: Mean = 79.68) (see Table 3), an independent t
test showed that this difference was not significant (t(80) = 1.31, p = 0.19). If providing an
explanation has a trust restoration effect, we expect the trust level to improve from day 4 to
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day 5, especially for FwE group. A 2 × 2 ANOVA with explanation as a between factor
and time as a within-subjects factor was run. The analysis revealed a main effect of time
(F(1, 80) = 21.91, p < 0.001) in the predicted direction, and an interaction between time and
explanation (F(1, 80) = 5.21, p < 0.05), but the main effect of explanation was not significant
on trust (F(1, 80) = 0.13, p = 0.71). Thus, H4 is not supported.

Table 3. Mean scores for trust perception by groups (day 3–5).

Day Group Mean SE LB UB

3 CwE 89.48 2.29 84.95 94.01
CWoE 86.61 1.94 82.79 90.43
FWE 83.87 2.06 79.81 87.93
FWoE 84.65 2.33 80.05 89.24

4 CwE 88.67 2.81 83.12 94.22
CwoE 85.23 2.37 80.55 89.92
FwE 73.40 2.52 68.42 78.38
FwoE 75.76 2.85 70.13 81.39

5 CwE 89.18 2.59 84.06 94.30
CwoE 85.69 2.18 81.37 90.01
FwE 84.77 2.33 80.18 89.36
FwoE 79.68 2.63 74.49 84.87

4.2. Qualitative Analysis

The qualitative research provided useful outcomes to supplement the quantitative
results. In what follows, we focus on three different major complementary insights of the
qualitative research, namely the perceived accuracy and reliability of PLANT, perceptions
of the malfunctions of PLANT, and how participants experienced system transparency in
terms of explanations.

4.2.1. PLANT’s Accuracy and Reliability

Since trust development over time was a central component of our study, we wanted
to gain more insights regarding the perceived accuracy and reliability of the system. Partic-
ipants generally provided constructive and positive feedback about their experiences with
the assistance offered by PLANT. Crucially, several participants explained that after reading
the original text, they gained an increased understanding of PLANT’s accuracy in relation
to its assistance for the quizzes and thus argued that it strengthened their appreciation of
PLANT being a reliable assistant. However, in some cases, it was also argued that curiosity
about the way the system functioned, in turn, could translate to suspicions about how this
was done in an automated manner. In this regard, an important insight was that several
participants expressed a desire to gain more insight into how PLANT could achieve this
kind of accuracy, regardless of whether the system malfunctioned or not.

This provides an important lesson about the experience of trustworthiness in the sense
that trust in the system is not just an outcome of the experience of accuracy itself, but
is likely influenced by the larger context within which people interpret the accuracy of
automated systems. This could be particularly interesting in terms of achieving better
explanations to improve the interpretability of assistive systems, since curious users can be
provided with more detailed insights into how such systems function. To provide just a
few examples, this can include background information about the systems’ developers or
insights into the choices made during the development phase, and so on.

Furthermore, participants’ experience of accuracy and reliability was described as
something relative to specific users’ needs. In our case, participants who were focused on
receiving assistance for the test were mostly happy with the system’s accuracy, even if they
had read the full text beforehand. Other participants were instead focused on getting a
better understanding of the text content in general (and less focused on getting a good score
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in the test). Since texts can often be interpreted in different ways, they would occasionally
complain about the accuracy of the assistance.

4.2.2. Perception of Malfunctions

PLANT’s malfunctions were a central element of the experiment and the subsequent
quantitative analysis. Interestingly however, malfunctions were not always explicitly
experienced as a prominent issue by the participants, who reported to not be always
bothered by the malfunction. Some participants were, in fact, rather forgiving, due to the
very notion that the system was fully automated. In other terms, the automated system
did something that could be experienced as a malfunction by participants, but at the same
time, some participants expressed this as a way of humans and automated systems to
adjust to each other. This emphasis on two different types of intelligence, human versus
artificial, can therefore be considered important for the way people interpret and judge
such malfunctions.

4.2.3. Transparency through Explanations

Finally, with regard to PLANT’s explanations, several interesting insights emerged.
The focus group provided particularly interesting results concerning the general role of
explanations in automated systems. First of all, the word “black box” played an important
role in this context, as it was used to emphasize how it was still not clear to participants how
exactly the mechanisms behind PLANT’s assistance worked. Even though this was obvi-
ously related to the fact that this was a Wizard of Oz study, in hindsight, a possible solution
would have been to provide optional insights that provide clear, additional explanations
about the way NLP systems develop text summaries.

It was interesting to see that several participants exhibited strong curiosity regarding
the provided explanations. When asking for more clarification about this curiosity in
the focus group, a consensus emerged that different types of users should be provided
with different kinds of explanations. That is, participants agreed that users with different
backgrounds are likely to be looking for a divergent range of insights. For instance, the
technical details behind the system might be interesting for a specific group of users,
whereas others are likely to focus more strongly on the application’s user-friendliness. It is
therefore recommended that different explanations be able to be accessed through different
channels. An example would be to not only implement explanations in the system itself
but also provide further explanations on the website about how such automated systems
work through social media channels or as part of personalized insights. Explainability in
this sense can be seen as a term denoting a general tendency to provide explanations in
many different ways.

In relation to this general tendency, several participants argued that even if they would
not access such explanations or insights into the data, they would prefer such explanations
and insights to be available nevertheless. This is an important insight from the qualitative
research, since it shows that even though explanations are not always accessed immediately
(since people lack the time or the motivation to go through them), their very availability
could help to create the impression of a system that gains a positive reputation and authority
based on features like transparency and explanatory behavior.

Finally, in relation to such a larger framework, a topic that came up concerned the
authority embedded in the explanation. Crucial here is to understand the way in which
explanations are embedded in a larger array of expectations about a system’s quality.
Explanations can help to build and restore trust when they are seen as dependent on the
perceived authority of the entity that provides the explanation. In other words, if the
explanations are provided by people, institutions, or companies that are already seen as
reliable and transparent, participants reported that they would be much more likely to take
the explanations for malfunctions or irregularities seriously.
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5. Discussion

This paper addresses the gap in the literature concerning longitudinal studies on trust
development [23,25,30,74], and, as such, it contributes to the understanding of trust dynam-
ics in repeated interaction with AI-based systems. Specifically, our investigation sheds light
on the combined effects of an assistive system’s level of performance and explainability
(or lack thereof) on people’s attribution of trust over the course of repeated interactions.
Furthermore, thanks to the combination of quantitative and qualitative methodologies,
other insights emerged in this study that deserve to be discussed and further investigated.

Concerning initial trust formation, the literature suggests that that initial explanations
may mitigate the effect of personal dispositions and external influences in determining trust
formation in new technologies [25,32,34,42]. As our results do not show any significant
difference in terms of trust formation across the different groups, H1 is not supported.

There are some possible interpretations of our findings. In the first place, the literature
indicates that explanations of specific predictions (i.e., local explanations), rather than
general ones that clarify how a system works (i.e., global explanations) are the most likely
to improve trust [56,75]. The fact that, in this study, the initial explanation provided
by the system fell into the second category might clarify our results. However, another
possible explanation lies in the role played by ‘institutional cues’, that is, the authority and
reputation of third parties in determining how likely people are to trust new technologies
with which no interaction has taken place [28,34]. Such third parties may be a reputable
vehicle manufacturer, governmental institutions, or other such entities. In our study,
participants were aware of the fact that the study was conducted by university researchers.
In turn, this may have been perceived as an ‘institutional cue’ and primed participants’
initial perception of the system in terms of benevolence.

Results from the qualitative analysis back up this interpretation, as in the interviews
and the focus group, the role of ‘institutional cues’ in the form of a ‘concealed authority’
behind the system’s explanations emerged. While it was not possible to determine with
certainty how the researchers’ authority influenced participants’ perceptions of the system,
particularly in terms of initial trust (e.g., whether they perceived the system as benevolent),
the fact that participants brought up the topic, specifically in relation to the reliability and
transparency of such a ‘concealed authority’, corroborates the idea of ‘institutional cues’ as a
determining factor for trust formation. This consideration has some important implications,
particularly for those applications such as automated vehicles, in which the authority of
the well-reputed companies marketing automated vehicles and other technologies heavily
relying on AI might influence or even distort the narrative around (and consequently
people’s perception of) the technology’s reliability and safety, with possible repercussions
in terms of liability, responsibility distribution, and lawfulness [76–78].

Regarding continuous trust development, studies provide contrasting evidence con-
cerning explanations’ impact on trust development throughout an interaction, thereby
suggesting alternatively that they are useful if not fundamental for continuous trust build-
ing [25,56], superfluous [53,54], or even detrimental [12,55]. In line with H2, our study did
not find any significant differences in terms of trust among the groups with and without
explanations, as long as the system performed accurately.

This corroborates the idea that, after initial trust is established, it will adjust primarily
according to a system’s accuracy and reliability [41,42,47,48]. In such cases, explanations
may become superfluous and do not necessarily increase people’s trust in an artificial
agent. Supporting this position, the qualitative analysis showed that some participants read
the original text alongside PLANT’s recommendations to check the system’s accuracy. In
other words, participants’ perception of PLANT as a reliable assistant strengthened as they
checked for themselves and after accuracy was confirmed by the initial quizzes. However,
at the same time, the qualitative analysis also indicated that even when participants did
not access the explanations, their very presence added to the positive perception of the
system. A possible interpretation for this is that explanations should not be forced upon
users, particularly during the initial phases of an interaction and as long as a system
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performs accurately. Rather, to support trust development, it may be good design practice
to implement informative explanations (particularly local ones) and let the users decide
whether they need them or not [20,79].

With regard to trust violation and restoration, this study found that system malfunc-
tions negatively influence trust ratings, as they are perceived as trust violations. This finding
supports H3, is consistent with that of a driving simulation experiment that found that
unexpected malfunctions lead to trust decrease [68], and generally corroborates the results
from the literature about the negative effects of errors and malfunctions on trust [58,62,70].
Interestingly, however, during the interviews and focus groups, some participants reported
that they were not too negatively surprised by the system’s faulty recommendation. Be-
cause they were aware of its nonhuman nature, they expressed forgiveness. The results
from [59] suggest that mistakes and malfunctions that occur early on during an interaction
affect trust more negatively than later ones, while [61] notes how trust erodes much faster
after multiple errors. In our case, the system only made one mistake while being accurate
before (first three interactions) and afterwards (last three). This relatively high accuracy
may clarify why several participants were so tolerant toward the system’s faulty recom-
mendation, even though it still yielded significantly lower trust ratings. Furthermore, the
fact that the interaction posed no risk for the participants may further clarify why some of
them were so tolerant, as the literature indicates that trust ratings are the lowest in high-risk
situations [16,44,57].

Finally, our results did not show any significant difference in terms of trust restoration
with and without explanations. Hence, H4 was not supported. However, as Figure 6 shows,
a clear trend emerged concerning the explanations effectiveness as a trust restoration
strategy. The qualitative results corroborate this trend, as several participants argued that
even if they would not access the explanations, they would prefer such explanations and
insights to be available nevertheless. Recalling what was mentioned above in relation to
trust restoration strategies [58], the fact that, after the malfunction, the system provided
accurate recommendations offers a possible interpretation of our results. In other words,
participants who did not receive an explanation could still benefit from the system’s
‘remedial trustworthy behavior’ [58]. Additionally, the qualitative analysis shows that
some participants did not understand how the system worked, even after explanations
were provided. Additionally, comments from participants with different levels of familiarity
and expertise with the technology suggest the need for different explanations that provide
insights at different levels of complexity. This relates to user experience concepts concerning
systems’ usability and the effects this has on trust development [79]. Furthermore, our
finding is in line with studies that suggest personalizing explanations as a means to support
users’ confidence, familiarity, and acceptance [39,67,80,81], and it reinforces the idea that
an explanation which is not understood serves little to no purpose in terms of supporting
trust calibration [20].

6. Conclusions and Future Work

This paper investigated, from both a quantitative as well as qualitative perspective,
the dynamics of trust development in the context of repeated interactions with an assistive
system. As this kind of technology is being integrated in a wide range of applications, such
as automated vehicles, personalized recommender systems, social media, and so forth. Our
results further the understanding of how different system’s features contribute to people’s
perception, attribution of trust, and acceptance of such systems.

While our results did not show significant differences in terms of initial trust ratings
across the groups, the role of ‘institutional cues’ emerged as a potential key determining
factor for trust formation. In this regard, as initial trust may determine how new technolo-
gies are accepted into society and used, a limitation of this study is that it did not fully
consider the consequences of this phenomenon. Future work could control for the impact of
different external parties’ reputation and investigate, perhaps on a more explicit level, their
priming effects of on trust formation. Furthermore, our results show that once a system’s
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reliability is established through repeated accurate performances, explanations may be
superfluous. However, our qualitative analysis showed that their availability may add to
people’s positive experience of a system in terms of transparency and reliability. Future
work shall focus more in detail on how the presence of different types of explanations (e.g.,
local and global) influence continuous trust development.

Moreover, our results corroborate existing evidence on how a system’s malfunction
compromise trust. While our study shows a significant trust decline after a wrong recom-
mendation, participants also expressed tolerance towards the error, which might highlight
the timing and single occurrence of the malfunction as a limitation of this study. At the
same time, a larger and more gender-balanced sample might show significant correlations
between personal factors such as general risk attitude and affinity for technology and
tolerance towards mistakes and malfunctions. Building upon these insights, future work
shall focus on comparing how different types of malfunctions, number, and timing of their
occurrences affect trust in a longitudinal context.

Finally, despite showing a trend suggesting that explanations led to faster trust restora-
tion, our study did not yield significant results in this regard. As some participants noted
that it was not clear how the system worked, even after the explanation, a possible limi-
tation concerns participants’ understanding of the causes of the faulty recommendation
in relation to the quality of the explanations provided by the system. Furthermore, the
system’s ‘remedial trustworthy behavior’ in the group without explanations may also
provide an interpretation of our results. Future work should investigate more rigorously
the effect of different kinds (i.e., personalized and at varied levels of detail) of explanations
and other trust restoration strategies, such as apologies and remedial behavior, on users’
experience of a system in terms of reliability, transparency, and trustworthiness. Likewise,
a study designed to explicitly assess how people understand different types of explanations
would help to shed light on the dynamics of understanding explanations and their effect
on trust development.
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