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Abstract: To help young people understand socio-environmental systems and develop the confidence
that meaningful action can be taken to address socio-environmental problems, young people need
interactive simulations that enable them to take consequential actions in a familiar context and see
the results. This can be achieved through reduced-form models with appropriate user interfaces,
but it is a significant challenge to construct a system capable of producing educational models of
socio-environmental systems that are localizable and customizable but accessible to educators and
learners. In this paper, we present iPlan, a free, online educational software application designed
to enable educators and middle- and high-school-aged learners to create custom, localized land-
use simulations that can be used to frame, explore, and address complex land-use problems. We
describe in detail the software application and its underlying computational models, and we present
robust evidence that the accuracy of iPlan simulations is appropriate for educational contexts and
preliminary evidence that educators are able to produce simulations suitable for their pedagogical
goals and learner populations.

Keywords: reduced-form model; multi-objective simulation; online game; land-use planning;
place-based learning; environmental education

1. Introduction

Many of the world’s most pressing challenges consist of socio-environmental systems:
complex interactions among human (social, political, or economic) and natural (biophysical,
meteorological, or ecological) processes [1]. Although it is critical to understand socio-
environmental systems in order to address challenges such as global climate change, it is
difficult for educators to make them accessible to learners. Even when learners begin to
understand some of the mechanics of socio-environmental systems, the scale can make
individual actions seem meaningless, while the slow rate of change can lead to underesti-
mates of vulnerability, costs, and negative impacts [2–4]. In other words, it is challenging
to help learners understand socio-environmental systems without disempowering them to
take action on socio-environmental problems.

However, socio-environmental problems can also invoke the disorienting dilemmas
that Mezirow [5] argues can lead to transformative learning. These dilemmas, which arise
when new information challenges values or beliefs, can provoke reflection and stimulate
action, helping learners (re)examine their own and others’ assumptions and view problems
and proposed solutions from different perspectives. But as this suggests, the power of
disorienting dilemmas as mechanisms for learning derives in large part from confronting
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learners’ beliefs, biases, or basic assumptions. In the context of socio-environmental prob-
lems, learners are more likely to experience disorienting dilemmas if they are confronted
with problems they see as personally relevant to themselves [6].

To make complex, often global problems personally relevant to learners, one effective
approach is to localize them [7]. This situates authentic, real-world problems in a real
place with which learners are familiar. But it is not sufficient for learning simply to
transplant complex processes into some specific context, even one familiar to learners.
To cultivate both understanding of socio-environmental systems and the confidence that
something can be done about complex socio-environmental problems, learners need to be
able to take consequential actions and see the results in order believe that those actions
are meaningful [8]. This can be achieved through reduced-form models [9–11], simplified
models that make complex systems more accessible to learners, stakeholders, and other non-
experts without compromising the general accuracy of the underlying relationships and
outputs. However, it is a significant challenge to construct a system capable of producing
reduced-form models of socio-environmental systems that are meaningfully localizable
and broadly accessible to educators and learners.

Most existing simulations, including serious games and other educational technolo-
gies designed to help non-specialists learn about complex socio-environmental systems
and problems, do not fully address this challenge. Place-based environmental games and
simulations represent a wide and expanding range of approaches to learning in place, but
most are situated in only a single location (e.g., ElectroCity, Environmental Detectives [12],
and Sol y Agua [13]) or in a generic locale (e.g., Quest Atlantis [14], LandYOUs [15], and Plan
It Green). For example, LandYOUs is a serious game suitable for use by high-school-aged
learners that models land management impacts on a range of indicators, but it takes place
in an abstracted location and is a “god game” in the sense that players can make whatever
changes they want without regard for stakeholders who may have different or even conflict-
ing agendas. In contrast, the En-ROADS Climate Action Simulation [16] enables high school
students to assume the role of stakeholders in business, government, and civil society and
work in teams to come up with a plan to reduce projected warming. They can test their
proposals using a simulator that models the effects of energy, emissions, and transportation
policies on projected global temperature. However, the simulation does not model local
conditions or issues, and it assumes unilateral action at a global scale. Decision support
models can also serve educational functions, but few are useable by high-school-aged
learners. Even models designed to be more user-friendly and accessible to policy leaders
and other decision makers, such as GLUCOSE [17], are still too complex for teenagers,
and most such models are limited to specific contexts and classes of socio-environmental
problem (e.g., SimBasin [18], Sustainable Delta [19], and Virtual River Game [20]).

iPlan attempts to address the need for simulations of socio-environmental problem
solving that young people can use to (a) model land-use impacts in a user-selected location;
(b) address real-world planning challenges, including diverse and sometimes conflicting
stakeholder perspectives; and (c) engage in authentic practices to solve complex socio-
environmental problems.

1.1. Overview of the iPlan Modeling Platform

To enable educators, learners, civic representatives, and other non-specialists to con-
struct localized simulations of land-use planning processes, we developed iPlan [21], a
free, web-based software platform. Once a local iPlan land-use model is created, users can
construct land-use scenarios [22] that relate specific land-use policies to projected effects on
socio-economic and environmental indicators and use those scenarios to devise planning
solutions that address the different and at times conflicting demands of simulated stake-
holders. iPlan thus enables users to explore and evaluate possible solutions to complex,
multi-objective land-use problems in their own local contexts.

With iPlan, users can select any location in the contiguous United States (CONUS)
using a Google Maps interface and choose five ecological and socio-economic indicators to
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include in the model. The indicators in iPlan reflect issues that are frequently invoked in
land-use planning contexts, including measures of air and water pollution, greenhouse gas
emissions, wildlife population levels, agricultural production, commercial activity, housing,
and more.

Based on the location and indicators selected, iPlan generates (a) a land-use map of the
selected region with, at most, 200 parcels, based on land-cover raster data and U.S. Census
data, and (b) nine virtual stakeholders—business owners, environmental activists, and
concerned citizens—who advocate for different issues that the indicators reflect. iPlan uses
a set of optimization routines to divide the selected region into parcels, assign an appropri-
ate land-use class to each parcel, and set stakeholder thresholds—minimum or maximum
satisfactory values—for the selected indicators. The effect of each land-use class on each
indicator is modeled either at the national level or at the biome level. All models were
derived using spatial data, ecological simulations, or published findings. Collectively, this
process results in localized, reduced-form models that are realistic and appropriately com-
plex for non-specialists, who can use iPlan to explore the socio-environmental challenges
involved in land-use planning and management.

In iPlan, the goal is to produce a new land-use plan for the modeled region that satisfies
as many stakeholders as possible. To achieve this, users (a) read resources on the land-use
classes, indicators, and simulated stakeholders; (b) use a map interface to model the effects
of specific land-use changes on the selected indicators; (c) create land-use scenarios and
submit them to the virtual stakeholders for feedback; and (d) utilize a graphing tool to
determine how much change different stakeholders would like to see. Users have a limited
number of feedback requests, so they are challenged to conduct experiments, or stated
preference surveys [23], that help them determine with more precision the amount of
change each stakeholder actually wants (see Figure 1).

Multimodal Technol. Interact. 2024, 8, x FOR PEER REVIEW 3 of 34 
 

 

stakeholders. iPlan thus enables users to explore and evaluate possible solutions to com-

plex, multi-objective land-use problems in their own local contexts. 

With iPlan, users can select any location in the contiguous United States (CONUS) 

using a Google Maps interface and choose five ecological and socio-economic indicators 

to include in the model. The indicators in iPlan reflect issues that are frequently invoked 

in land-use planning contexts, including measures of air and water pollution, greenhouse 

gas emissions, wildlife population levels, agricultural production, commercial activity, 

housing, and more. 

Based on the location and indicators selected, iPlan generates (a) a land-use map of 

the selected region with, at most, 200 parcels, based on land-cover raster data and U.S. 

Census data, and (b) nine virtual stakeholders—business owners, environmental activists, 

and concerned citizens—who advocate for different issues that the indicators reflect. iPlan 

uses a set of optimization routines to divide the selected region into parcels, assign an 

appropriate land-use class to each parcel, and set stakeholder thresholds—minimum or 

maximum satisfactory values—for the selected indicators. The effect of each land-use class 

on each indicator is modeled either at the national level or at the biome level. All models 

were derived using spatial data, ecological simulations, or published findings. Collec-

tively, this process results in localized, reduced-form models that are realistic and appro-

priately complex for non-specialists, who can use iPlan to explore the socio-environmental 

challenges involved in land-use planning and management. 

In iPlan, the goal is to produce a new land-use plan for the modeled region that sat-

isfies as many stakeholders as possible. To achieve this, users (a) read resources on the 

land-use classes, indicators, and simulated stakeholders; (b) use a map interface to model 

the effects of specific land-use changes on the selected indicators; (c) create land-use sce-

narios and submit them to the virtual stakeholders for feedback; and (d) utilize a graphing 

tool to determine how much change different stakeholders would like to see. Users have 

a limited number of feedback requests, so they are challenged to conduct experiments, or 

stated preference surveys [23], that help them determine with more precision the amount 

of change each stakeholder actually wants (see Figure 1). 

  

Figure 1. Left: In iPlan, the map interface is used to change the land-use class of a given parcel, and 

the system computes the projected effect of the change on the selected indicators. Right: Users con-

duct experiments (stated preference surveys) and use a graphing tool to determine how much 

change the simulated stakeholders actually want. 

Because the simulated stakeholders have different and often conflicting demands, 

users must identify and negotiate trade-offs. For example, one stakeholder may advocate 

for an increase in jobs, which is easiest to accomplish by re-zoning parcels for commercial 

or industrial use, but another stakeholder may want a decrease in greenhouse gas emis-

sions, which will increase with commercial or industrial expansion. Thus, iPlan models 

not only the effects of land-use change on socio-economic and environmental indicators 

but also the acceptability of land-use change to various civic representatives. That is, iPlan 

constructs models that help people learn about the scientific and civic practices through 

which land-use planning is managed and contested. 

Figure 1. Left: In iPlan, the map interface is used to change the land-use class of a given parcel,
and the system computes the projected effect of the change on the selected indicators. Right: Users
conduct experiments (stated preference surveys) and use a graphing tool to determine how much
change the simulated stakeholders actually want.

Because the simulated stakeholders have different and often conflicting demands,
users must identify and negotiate trade-offs. For example, one stakeholder may advocate
for an increase in jobs, which is easiest to accomplish by re-zoning parcels for commercial or
industrial use, but another stakeholder may want a decrease in greenhouse gas emissions,
which will increase with commercial or industrial expansion. Thus, iPlan models not only
the effects of land-use change on socio-economic and environmental indicators but also the
acceptability of land-use change to various civic representatives. That is, iPlan constructs
models that help people learn about the scientific and civic practices through which land-use
planning is managed and contested.

iPlan was designed to integrate two effective approaches to learning. It facilitates place-
based learning [24–28], in which learners engage in authentic problem solving situated in the
place they live. Barab and colleagues [8] argue that, when learners work in a setting where
they can make consequential decisions, they are more engaged in the learning activities
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because they believe their actions and decisions matter. Place-based curricula are thus
effective because they provide consequential and realistic problem-solving activities in a
location where learners are more likely to care about the consequences of their decisions [28].
iPlan enables educators or learners to choose both meaningful locations and relevant socio-
economic and environmental issues to model, and it simulates authentic land-use planning
practices, such as scenario construction and stated preference surveys. In this respect,
iPlan also facilitates civic education [28,29] by supporting inquiry into and deliberation
on public policy issues, simulating democratic and civic processes, and promoting the
development of self-efficacy. Research has shown that young people with knowledge of
civic issues and confidence in their deliberative abilities are more likely to take action
on civic issues [29,30]. By placing learners in the role of a land-use planner interacting
with community stakeholders, iPlan not only helps users understand the professional
practices and civic processes of land-use planning but also to see themselves as potential
stakeholders—that is, as citizens who can influence land-use decision-making.

To facilitate learning in these ways, iPlan needs to (a) construct accurate land-use
maps of user-selected locations, (b) accurately model the impacts of land-use on issues
that people care about, and (c) adequately simulate authentic planning practices and civic
processes. In doing so, the system also needs to be accessible to educators and high-
school-aged learners without expertise in land-use planning, computational simulation, or
environmental modeling. As Zellner and colleagues [31] argue, there is a tradeoff “between
representational fidelity and end-user intelligibility”. When models become too complex in
the pursuit of more realistic representations, users become more myopically focused on
understanding the model, hampering the learning and decision-making that the model
is intended to facilitate. Learning gains derive less from the model itself than from the
reflective and deliberative work that the model enables [32]. iPlan attempts to achieve
this balance between fidelity and intelligibility for end-users who are teenagers and the
educators who work with them, facilitating understanding of complex socio-environmental
problems and the deliberative processes involved in addressing them while minimizing
the risk that young people will regard them as problems too complex to solve.

1.2. Software Availability

iPlan version 1.0 [21] is a free, online software platform available at https://app.i-plan.
us/. iPlan will run in Chrome, Safari, or Firefox on almost any laptop or desktop computer,
tablet, or mobile smartphone with an internet connection.

1.3. Research Questions

To enable iPlan to construct realistic but intelligible land-use models of any location
in CONUS, we developed and validated the following three primary functions: (1) the
geospatial aggregation and parcelization process that divides each user-defined region
into contiguous parcels and assigns a land-use class to each parcel based on geospatial
land-cover data and U.S. Census data; (2) the set of land-use impact functions that quan-
tify the effect of each land-use class on each indicator; and (3) the stakeholder threshold
optimization routine that selects the minimum or maximum acceptable level that a stake-
holder has for a given indicator. Collectively, these functions were designed to produce a
land-use problem that is appropriately complex for high-school-aged learners, and we de-
veloped a graphical user interface that facilitates creation and use of iPlan land-use models
by non-specialists.

In this paper, we focus on the following four research questions about the accuracy
of these functions and the extent to which they produce land-use models that educators
can use:

• RQ1. Are the land-use classifications produced by the iPlan geospatial aggregation
process accurate?

• RQ2. Are the indicator values produced by the iPlan land-use impact functions accurate?

https://app.i-plan.us/
https://app.i-plan.us/
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• RQ3. Do the values produced by the iPlan stakeholder threshold optimization routine
match optimization targets?

• RQ4. Can educators use the iPlan system to produce land-use simulations that support
their pedagogical goals and student populations?

We address each of these research questions by (a) describing our approach,
(b) explaining the methods we used to assess the validity of the approach, and (c) pre-
senting the results. We recognize that what counts as accurate, especially in reduced-form
models, is highly contestable, and there are many approaches to assessing the performance
of complex environmental models (see, e.g., [33]). Thus, our goal is not to show that the
accuracy of iPlan models meets some a priori standard, but rather to provide evidence that
the level of accuracy is acceptable given the intended uses of the system, and to provide
the information that potential users need to make informed decisions about whether the
platform is appropriate for their purposes. By describing in detail our modeling and game
design decisions and testing the system’s performance, we hope to make transparent both
the affordances and the limitations of the iPlan platform, facilitating successful use of the
system in educational contexts.

2. Geospatial Aggregation and Parcelization of User-Defined Regions
2.1. Approach

The geospatial information used as the baseline data for the iPlan system was de-
rived from the NWALT (U.S. Conterminous Wall-to-Wall Anthropogenic Land Use Trends)
dataset developed by the U.S. Geological Survey [34]. The NWALT raster dataset assigns
20 land-use classes to 60 × 60 m grids. We reduced the original 20 land-use classes to
10 by removing rare or unneeded classes and consolidating similar ones (see Table A1 in
Appendix A). Reducing the number of land-use classes decreases the cognitive complexity
of the land-use models, making them more accessible to non-specialists, and ensures that
the resulting classes can be used for the purposes of constructing land-use scenarios. For
example, the original NWALT dataset includes land-use classes such as “anthropogenic
other” that are potentially useful for describing existing miscellaneous land uses but make
less sense as planning objectives.

After consolidating the NWALT land-use classes, we constructed four co-registered
map layers at increasingly coarse scales using 2010 U.S. Census data (2020 U.S. Census data
were not available at the time). Each layer contains contiguous polygons—census blocks,
census block groups, census tracts, or counties—and each polygon in a layer is assigned
a single land-use class. Land-use classes were assigned by selecting the class associated
with the largest proportion of area in each polygon based on the underlying (reduced-class)
gridded raster data. This geospatial aggregation can produce much simpler representations
that retain a high degree of accuracy [35] (see Figure 2).

To generate a land-use map of a user-defined region that has broadly accurate land-use
classes but a small enough number of distinct parcels to be accessible to non-specialists,
we developed a parcelization optimization routine that operates on the constructed map
layers. The goal of the optimization is to produce a land-use map of the user-defined
region that has no more than 200 parcels. The number 200 was chosen based on prior
work [7,36–38], which developed land-use planning simulations in several locations, for
implementation with middle- and high-school students in both formal and informal educa-
tional settings and with citizens, as part of research and outreach efforts associated with
actual planning processes.

The parcelization optimization begins by comparing the selected region against each
map layer. The region selected will contain either ≤200 or >200 census blocks, which is the
smallest area partition. If the region contains ≤200 census blocks, the system will simply
use the census blocks to construct the map, and the map may have a smaller number of
parcels than the target of 200. If the region contains >200 census blocks but ≤200 census
block groups (the next smallest area partition), the optimization routine will use the census
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block layer to construct a new parcelization. In general, the optimization routine attempts
to use the nearest map layer that provides >200 polygons for the selected region.
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To aggregate the >200 polygons from the nearest map layer into 200 parcels, we
implement a heuristic based on minimum spanning trees and local search, which produces
near-optimal solutions in very little time (typically less than 10 s). In brief, we define
a parcel as a set of contiguous polygons, and we define the parcel’s land-use class as
the largest class by area within the set of polygons that comprise the parcel. Ideally, the
parcels that result from the aggregation of contiguous polygons will exhibit compactness: a
circle- or square-like form. We want to avoid, for example, very long and narrow parcels.
Our optimization routine generates 200 non-overlapping parcels which contain all the
polygons present within the user-defined region. This allocation is guided by the objective
of minimizing the sum of the areas of the polygons that have a different land-use class than
the aggregated parcel. To ensure the compactness of each parcel, we only allow polygons
from the same group in the next coarsest map layer to be combined: so, for example, only
census blocks that are part of the same census block group can be combined into a parcel.
(See Appendix B for more detail on the parcelization optimization routine.)

2.2. Validation Methods

Because the iPlan parcelization optimization routine only aggregates adjacent polygons
with the same land-use classification in one of the pre-computed map layers, classification
error in an iPlan map is equivalent to the classification error in the corresponding map layer.
To assess the accuracy of the map layers that the optimization routine takes as inputs, we
estimated the proportion of land area that is misallocated in the census block and census
block group map layers based on the 10 consolidated NWALT classes (given in Table A1
in Appendix A).

To achieve this, we randomly selected, without replacements, 195,225 census blocks
(~2% of the census blocks in CONUS) and 14,706 census block groups (~6% of the census
block groups in CONUS). For each block and block group contained within the sample, we
computed the proportion of area allocated to each of the 10 consolidated land-use classes
based on the underlying NWALT data. We then compared these proportions to the land-use
class allocated to the census block or census block group to estimate the error associated
with the geospatial aggregation process.

2.3. Validation Results

Figure 3 shows the median correspondence by area between the iPlan map layers and
the NWALT raster data. Parcels classed as timber in the iPlan map layers were omitted,
because there were too few of them to make reliable estimates of classification accuracy.
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As expected, classification accuracy is highest at the census block level (Figure 3,
left). Census blocks have a minimum size of 30,000 square feet, slightly smaller than the
60 × 60 m rasters in the NWALT dataset, but there is no maximum size. Because the
boundaries of census blocks are determined by features (roads, railroad tracks, waterways,
etc.), non-visible boundaries (e.g., school districts), special land-use areas (e.g., military
bases), and governmental boundaries (e.g., county and state borders), census blocks vary
substantially in size and conformation. However, half of all census blocks are less than
280,000 square feet, or approximately seven NWALT rasters. Median accuracy in the census
block map layer was highest for parcels designated high-density residential (Residential
HD) and low-density residential (Residential LD) (1.00 and 0.95, respectively), followed
by parcels designated industrial (0.87) and commercial (0.80). This is due to the fact that
these land uses tend to align well with both visible and non-visible boundaries, and they
are likely to cluster (e.g., housing developments, commercial districts). Accuracy was
lowest for pasture (0.69) and wetland (0.60), though in both cases, the majority of error was
due to limited use land, which is a catch-all category that includes any undeveloped or
minimally developed land that was not classified as one of the other categories. In other
words, land-use classification at the census block level was highly accurate, and the most
significant errors occurred between land-use categories with high similarities.

Classification at the census block group level is, as expected, less accurate than at the
census block level, due to the coarser spatial resolution, as block groups contain more than
50 blocks on average. Median accuracy was highest for high-density residential (0.75) and
lowest for pasture (0.45) and wetland (0.44). As Figure 3 shows, error was more distributed
at the block group level, though as with the block level, error was largely due to similar
land-use categories. For example, the most significant source of error for commercial land
was high-density residential, and the most significant source of error for both pasture and
wetland was limited-use land.

Table 1 provides summary statistics for each iPlan land-use category at both the census
block and census block group levels, including the mean classification accuracy (proportion
of area correctly classified), the upper and lower bounds of the 95% confidence interval
around the mean, and the variance.

Table 1. Statistics summarizing the accuracy of land-use classification in the census block and census
block group map layers, relative to the consolidated NWALT data.

Wetland Commercial Industrial Recreation Residential HD Residential LD Limited Use Cropland Pasture

Census Block

Median 0.60 0.80 0.87 0.78 1.00 0.95 0.78 0.76 0.69

Mean 0.60 0.74 0.77 0.73 0.88 0.83 0.74 0.73 0.70

95% CI UB 0.61 0.74 0.78 0.74 0.89 0.83 0.74 0.73 0.70

95% CI LB 0.59 0.74 0.77 0.72 0.88 0.83 0.74 0.72 0.69

Variance 0.08 0.07 0.07 0.08 0.04 0.05 0.06 0.06 0.05

Census
Block Group

Median 0.44 0.55 0.49 0.47 0.75 0.54 0.52 0.51 0.45

Mean 0.47 0.57 0.52 0.48 0.73 0.56 0.55 0.54 0.47

95% CI UB 0.50 0.58 0.54 0.50 0.74 0.56 0.56 0.55 0.48

95% CI LB 0.43 0.56 0.50 0.47 0.73 0.55 0.54 0.52 0.45

Variance 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03 0.01

CI = confidence interval; UB = upper bound; LB = lower bound; Residential—HD = high-density residential;
Residential—LD = low-density residential.

Overall, these results suggest that land-use allocation error in iPlan is within acceptable
bounds for educational purposes. As Figure 4 shows, the majority of maps generated by
users (58%) are less than 10,000 ha in area, and 90% of all maps created are less than
100,000 ha. That is, iPlan users generally focus on relatively small extents, so land-use
classifications in the resulting maps are well aligned with local land-uses pattern.



Multimodal Technol. Interact. 2024, 8, 30 9 of 33

Multimodal Technol. Interact. 2024, 8, x FOR PEER REVIEW 9 of 34 
 

 

Table 1. Statistics summarizing the accuracy of land-use classification in the census block and census 

block group map layers, relative to the consolidated NWALT data. 

    Wetland Commercial Industrial Recreation 
Residential 

HD 

Residential 

LD 

Limited 

Use 
Cropland Pasture 

Census 

Block 

Median 0.60 0.80 0.87 0.78 1.00 0.95 0.78 0.76 0.69 

Mean 0.60 0.74 0.77 0.73 0.88 0.83 0.74 0.73 0.70 

95% CI UB 0.61 0.74 0.78 0.74 0.89 0.83 0.74 0.73 0.70 

95% CI LB 0.59 0.74 0.77 0.72 0.88 0.83 0.74 0.72 0.69 

Variance 0.08 0.07 0.07 0.08 0.04 0.05 0.06 0.06 0.05 

Census 

Block 

Group 

Median 0.44 0.55 0.49 0.47 0.75 0.54 0.52 0.51 0.45 

Mean 0.47 0.57 0.52 0.48 0.73 0.56 0.55 0.54 0.47 

95% CI UB 0.50 0.58 0.54 0.50 0.74 0.56 0.56 0.55 0.48 

95% CI LB 0.43 0.56 0.50 0.47 0.73 0.55 0.54 0.52 0.45 

Variance 0.02 0.03 0.03 0.02 0.03 0.02 0.03 0.03 0.01 

CI = confidence interval; UB = upper bound; LB = lower bound; Residential—HD = high-density 

residential; Residential—LD = low-density residential. 

Overall, these results suggest that land-use allocation error in iPlan is within accepta-

ble bounds for educational purposes. As Figure 4 shows, the majority of maps generated 

by users (58%) are less than 10,000 ha in area, and 90% of all maps created are less than 

100,000 ha. That is, iPlan users generally focus on relatively small extents, so land-use clas-

sifications in the resulting maps are well aligned with local land-uses pattern. 

 

Figure 4. Distribution of 1904 maps generated by users based on area. Cities listed in gray boxes are 

provided for reference purposes. 

Interviews with educators who have used iPlan with learners (described in more de-

tail in Section 5) also suggest that the land-use maps produced by the platform feel accu-

rate to their lived experiences and those of their students. 

3. Modeling the Impacts of Land Use on Indicators 

3.1. Approach 

The iPlan system models the impacts of 10 land-use classes on 18 indicators, includ-

ing measures of air and water pollution (lead emissions, NOx emissions, particulate 

Figure 4. Distribution of 1904 maps generated by users based on area. Cities listed in gray boxes are
provided for reference purposes.

Interviews with educators who have used iPlan with learners (described in more detail
in Section 5) also suggest that the land-use maps produced by the platform feel accurate to
their lived experiences and those of their students.

3. Modeling the Impacts of Land Use on Indicators
3.1. Approach

The iPlan system models the impacts of 10 land-use classes on 18 indicators, including
measures of air and water pollution (lead emissions, NOx emissions, particulate matter,
and runoff), greenhouse gas emissions, sensible heat (added heat advisory days), wildlife
populations (birds and butterflies), agricultural products (biofuels, corn, cornfed beef,
and grassfed beef), structural features (housing units, impervious surface area, and green
space), economic performance (jobs and sales), and population (see Appendix C for more
information on the indicators).

The relationship between each land-use class j and each indicator i for any map in
a given biome is computed using a linear equation, Iij = mijaj, where Iij is the value of
indicator i contributed by land-use class j, mij is a multiplier that characterizes the impact of
each hectare of land-use class j on indicator i, and aj is the total area in hectares of land-use
class j in the map. The value of each indicator i for the whole map, then, is given by the
sum of the values of Iij, as follows:

Ii =
11

∑
j=1

mijaj

Thus, the key challenge is to derive the values of the multipliers mij, such that the
relationship between a given land-use class and a given indicator in each biome is as
accurate as possible, given the geographic scale and the availability of existing data and
models. In most cases, each combination of indicator and land use is associated with only
one multiplier, as regional variation is small enough to be insignificant, given the coarse
scale of iPlan models and the prioritization of accessibility. In cases where regional variation
is significant, multipliers were derived for each biome to reflect important differences in
the effects of land-use in different geographic locations within the contiguous United States.
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(The runoff indicator was computed for groups of states, rather than biomes, because the
best available dataset provided information for groups of states.) We used a variety of
approaches to construct suitable multipliers (for a summary of the methods and data used,
see Appendix C).

For indicators for which spatial data were available, such as jobs and housing units,
we co-registered the indicator data with the census block map layer. We then computed
the mean contribution of each land-use class to the indicator at a national scale to esti-
mate the value of the indicator per hectare of each land-use class. To achieve this, we
(a) downloaded spatial data from the National Historical Geographic Information System
(https://data2.nhgis.org/main; accessed on 12 October 2019) and reprojected the data from
the projected coordinate system (i.e., USA Contiguous Albers Equal Area Conic) to the
geographic coordinate system (i.e., GCS North American 1983 High-Accuracy Reference
Network); (b) co-registered the values from the National Historical GIS data with the
census block map layer, which assigns a single land-use class to each census block; and
(c) computed the mean value of the indicator represented in the NHGIS data per hectare of
each iPlan land-use class.

For indicators for which spatial data could be imputed, such as added heat advisory
days, we used PEGASUS [39] to generate spatial data. PEGASUS is a reduced-form model
that estimates ecosystem photosynthesis and net production using a light-use efficiency
approach combined with surface energy and soil water budgets [40–43]. The model is
driven by daily data on temperature, precipitation, and potential sunshine hours. Daily
data come from linear interpolation of the Climatic Research Unit monthly climatology of
the global land surface at 10’ latitude/longitude resolution [44]. In addition to climate data,
the model uses the International Soil Reference and Information Centre’s- WISE data on
soil available water capacity [45]. For iPlan, PEGASUS was run assuming native vegetation
and run again assuming complete land surface coverage with an impervious surface to
simulate balances of energy and water for each land-use class. The impervious surface was
parameterized by changing surface albedo, plant canopy coverage, and soil percolation
constants. The simulation outputs were then combined in weighted averages according
to the proportion of impervious surface area of each land-use class [46]. The process of
deriving multipliers from that point was the same as that described above.

For indicators for which spatial data were neither available nor were able to be
modeled at this scale, such as birds (American robins, Turdus migratorius) and butterflies
(monarch butterflies, Danaus plexippus), we derived multipliers based on published findings
that report relationships between indicator levels and land-uses by area (see Appendix C).

Once multipliers were computed for every combination of land use and indicator in
each of the nine biomes in CONUS, we produced lookup tables that iPlan uses to compute
the effects of land-use change. The results are communicated to the user in two ways: (1) in
the map interface, changes in indicators are displayed as percent change from the initial
value (thus, all percentages are zero for the initial map); and (2) for each submission of a
land-use scenario to the virtual stakeholders, users can see the value of the indicator in its
native units by accessing the data tab.

To illustrate this process in more detail, in the next section we describe how we deter-
mined the contributions of different land uses to anthropogenic greenhouse gas emissions.

Modeling the Impact of Land Use on Greenhouse Gas Emissions

Multipliers for anthropogenic greenhouse gas emissions (GHGs) were developed from
a 2018 national emissions inventory [47]. This inventory was based on economic activities
(e.g., shipping goods by rail), not on land uses nor on a land-area basis. To compute
GHG multipliers for land-uses in iPlan, we developed a multi-step method to map the
activity-based GHG emissions onto specific land uses.

The national emissions inventory breaks GHGs into five basic categories (see Table 2).
These values include the emissions due to electric power generation for each category.

https://data2.nhgis.org/main
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Table 2. U.S. annual greenhouse gas emissions by economic sector (Table ES-7 in [47]).

Sector MMT CO2e *

Transportation 1.86 × 103

Industry 1.90 × 103

Agriculture 6.51 ×102

Commercial 1.06 × 103

Residential 1.00 × 103

* MMT CO2e = million metric tons of CO2 equivalents, the standard unit for total greenhouse gases that accounts
for differences in radiative forcing between gases.

First, we distributed transportation emissions into other categories, as the iPlan system
does not model transportation directly. This was achieved by making a set of estimations
about the types of transportation used in each of the other economic sectors (see Table 3).
The majority of emissions are for personal transportation and so were allocated to the
residential sector. Many of the remaining emissions involved freight transportation. Freight
was considered on an “activity” basis rather than a “consumption” basis, consistent with
the general method of the national emissions inventory. For example, coal freight was
considered industrial because of its immediate use at a steel mill or chemical refinery, rather
than being considered partly residential due to the consumption of steel or chemicals in
homes. In general, freight within a vehicle type was allocated according to U.S. tonnage
statistics. This assumes that the tonnage of each commodity was transported a similar
distance, which may not be the case. Ton-miles would have been a better basis for alloca-
tion, but with the exception of truck freight, ton-miles statistics were not available in the
necessary granularity of vehicle and commodity types. International bunker fuel use in
ports (4% of total transportation emissions) was omitted due to the difficulty of attribution
to the land-use types in iPlan.

Table 3. U.S. annual transportation emissions by economic sector (vehicle type totals from
Tables 3–12 in [47]).

Fuel Type Vehicle Type Total MMTCO2e Residential Commercial Industrial Agricultural

Gasoline Passenger cars 1 744.90 744.90 0.00 0.00 0.00
Gasoline Light-duty trucks 1,2 294.60 294.60 0.00 0.00 0.00
Gasoline Medium and heavy trucks 3 40.40 0.00 1.21 31.11 8.08
Gasoline Buses 1 0.90 0.90 0.00 0.00 0.00
Gasoline Motorcycles 1 3.80 3.80 0.00 0.00 0.00
Gasoline Recreational boats 1 10.70 10.70 0.00 0.00 0.00

Diesel Passenger cars 1 4.30 4.30 0.00 0.00 0.00
Diesel Light-duty trucks 1,2 14.30 14.30 0.00 0.00 0.00
Diesel Medium and heavy trucks 3 376.40 0.00 11.29 289.83 75.28
Diesel Buses 1 17.00 17.00 0.00 0.00 0.00
Diesel Rail 4 36.70 0.00 0.00 29.36 7.34
Diesel Recreational boats 1 2.80 2.80 0.00 0.00 0.00
Diesel Ships and non-recreational boats 5 11.10 0.00 0.00 9.44 1.67

Jet Fuel Commercial aircraft 6 120.40 96.32 8.03 8.03 8.03
Jet Fuel Military aircraft 7 12.30 0.00 0.00 12.30 0.00
Jet Fuel General aviation 8 33.40 8.35 8.35 8.35 8.35

Aviation Gasoline General aviation 8 1.40 0.35 0.35 0.35 0.35
Residual Fuel Oil Ships and non-recreational boats 5 12.90 0.00 0.00 10.97 1.94

Natural Gas Buses 1 1.00 1.00 0.00 0.00 0.00
Natural Gas Pipeline 9 39.60 0.00 0.00 39.60 0.00

LPG Light-duty trucks 10 0.10 0.00 0.03 0.03 0.03
LPG Medium and heavy trucks 3 0.40 0.00 0.01 0.31 0.08
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Table 3. Cont.

Fuel Type Vehicle Type Total MMTCO2e Residential Commercial Industrial Agricultural

LPG Buses 1 0.20 0.20 0.00 0.00 0.00
Total 1779.60 1199.52 29.28 439.66 111.14

1 Assumed to be for personal transportation. 2 Includes pickup trucks, minivans, and sport-utility vehicles. 3 U.S.
truck freight tonnage is 20% agricultural products. Mixed truck freight (3%) is assigned to the commercial sector
and the remainder (77%) to the industrial sector (see Table 8 of [48]). Between different kinds of commodities,
tonnage was assumed to be proportional to ton-miles. 4 U.S. rail freight tonnage is 20% grain, farm products, and
farm chemicals. Industrial tonnage is 80% (see Table 13 of [48]). 5 U.S. water freight tonnage is 15% agricultural
commodities and 85% industrial (see Table 19 of [48]). 6 In the U.S., approximately 20% of airline trips are for
business [49]. Without a basis for further attribution, commercial aircraft emissions for business travel were
divided evenly among non-residential sectors. 7 In iPlan, military land use is part of the industrial land-use class.
8 No basis for attribution was found, so general aviation emissions were distributed evenly across sectors. 9 See
Table 2 of [48]. 10 Liquefied petroleum gas (LPG) is currently used for fleet transportation [50]. No further basis
for attribution was found, so these emissions were distributed evenly across non-residential sectors.

After attribution of transportation emissions, we next addressed the sequestration
of CO2 due to land management (see Table 4). In the inventory, net sequestration due
to land management counts photosynthesis and ecosystem respiration but not direct
emissions from fuel burning that occurs as part of land management, which is counted
elsewhere. Forest land creates a significant net uptake of CO2, and human settlements also
store CO2 via urban trees, soil carbon uptake from grass clippings, and organic matter in
landfill. However, cropland and grassland have net emissions, due to land clearing and soil
carbon loss.

Table 4. Net GHG annual emissions due to land use (Table ES-4 of [47]).

Land Use MMT CO2e

Forest 7.41 × 102

Cropland −1.40 × 101

Grassland −2.00 × 101

Residential 3.60 × 101

With transportation and sequestration from land use included, the new sector totals
for GHG emissions are given in Table 5. Emissions are also shown on a per-hectare basis.
These were calculated by dividing sector emissions by the total area of the corresponding
land-cover classes for CONUS in the NWALT dataset [34].

Table 5. U.S. annual GHG emissions by major sector, including transportation and land-use.

Sector MMT CO2e MT CO2e/ha

Industrial and Mining 2.34 × 103 9.30 × 102

Agricultural 7.96 × 102 4.14 × 10

Commercial 1.09 × 103 2.92 × 102

Residential 2.16 × 103 1.55 × 102

Forest −7.45 × 102 −3.53 × 10

With all the major CO2 sequestration and GHG emission fluxes included, we next
assigned the GHG emissions from the various sectors to the land-use classes in iPlan.

The GHG emissions from the industrial and mining sectors were assigned to the
iPlan land-use class industrial, commercial was assigned to commercial, and forest was
assigned to timber. We separated the residential sector into the residential—HD and
residential—LD land-use classes in iPlan. We achieved this using data on total household
GHGs from Jones and Kammen [51]. Their study took a consumption perspective, which
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claims GHGs from other sectors that contribute to household consumption, including
food, energy, transportation, goods, and services. Although the total GHGs attributed to
residential categories by Jones and Kammen are accordingly higher than the totals in the
U.S. Environmental Protection Agency (EPA) inventory, we used the ratio of high-density to
low-density residential GHG emissions from their study to divide GHGs between the two
residential land-use classes in iPlan. Although the ratio of high-density residential to low-
density residential GHGs is slightly less than one on a per-capita basis, it is approximately
4:3 when expressed on a land-area basis. This 4:3 ratio was subsequently used to partition
the inventory-based GHGs between residential land-use types.

The GHGs for the agricultural sector were similarly partitioned between the cropland
and pasture land-use classes used in iPlan. The U.S. Environmental Protection Agency’s
Greenhouse Gas Inventory Data Explorer [52] indicates that the total GHGs of crop and animal
production in the United States are roughly equal; therefore, we assumed equal rates
of GHG emissions from cropland and pasture. However, this almost certainly inflates
the GHG emission rate for pasture because a significant but poorly defined proportion
of animals are raised in confinement instead of pasture [53]. That said, we ignored the
smaller land area of pasture relative to cropland, which deflates the pasture GHG emission
rate. Because we lack the basis for more nuanced partitioning of agricultural GHGs on a
land-area basis, we used one GHG emission rate for both agricultural land types (cropland
and pasture), which is non-zero but far less than the emissions from industrial, commercial,
and residential land uses.

All the remaining, low-use land types (limited use, wetlands, recreation) were assigned
zero GHGs due to lack of inventory data that aligns with the limited-use land categories in
iPlan. This assignment has the benefit of differentiating low-intensity land uses, such as
parks, wetlands, and minimally developed regions, from the agricultural and forestry land
classes. The final set of multipliers for GHG emissions is shown in Table 6.

Table 6. GHG emission multipliers used in iPlan.

Land Use GHGs (Metric Tons of CO2e/ha/yr)

Commercial 1.59 × 102

Cropland 2.73 × 10

Industrial 9.30 × 102

Limited Use 0.00 × 10

Pasture 2.73 × 10

Recreation 0.00 × 10

Residential—HD 1.94 × 102

Residential—LD 1.38 × 102

Timber −3.53 × 10

Wetlands 0.00 × 10

Two caveats about the GHG multipliers should be noted. First, since inventory GHGs
are due to human activity and mostly to fossil fuel combustion, the multiplier values were
assumed to be independent of biome. Therefore, only one GHG multiplier per land use type
was created for all of CONUS, even though the net sequestration values from agriculture,
forestry and human settlements do vary across regions. Second, the EPA inventory values
are for the entire United States, not just CONUS. However, Alaska and Hawaii together
comprise just 1% of U.S. energy-related emissions [54], so the U.S. emissions were used to
approximate CONUS emissions.
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3.2. Validation Methods

To validate this process, we compared the outputs of the iPlan GHG emissions equa-
tions, which are land-use based, to values contained in the Vulcan Project’s annual emissions
data [55], an inventory-based dataset that was not used to derive the iPlan multipliers. The
Vulcan dataset provides GHG emissions values for all locations in CONUS at 1 km spatial
resolution and is in good agreement with GHG emissions calculated from atmospheric
samples [56]. The Vulcan authors intend the data for use by municipalities to calculate
their own GHG emissions, in lieu of expensive self-inventories, and thus Vulcan data are
presented at a relevant spatial resolution for iPlan.

Vulcan presents annual (2010–2015) GHG emissions from combined fossil fuel combus-
tion and cement production, which is abbreviated “FFCO2”. Vulcan includes information
on combustion economic sector (e.g., on-road, residential, electricity, or airport), combus-
tion subsector (e.g., vehicle class or building type), combustion process (e.g., boiler, turbine,
or engine), and fuel description (e.g., individual petroleum fuels or coal grade). Although
the dataset is gridded, the underlying data were individual point, line, and polygon source
elements chosen and processed to represent census block-group sizes or finer. The “spatial-
ization” of FFCO2 onto a 1 km grid was undertaken using federal datasets produced by
the Federal Emergency Management Association, the Department of Energy, the Federal
Highway Administration, the EPA, and others.

Our GHG validation exercise compared FFCO2 from the year 2015 to iPlan GHG
emissions output at three different spatial scales: 300 × 300 km, 30 × 30 km, and 3 × 3 km.
Locations across CONUS were randomly selected for each spatial scale, with 1661, 585, and
122 sites chosen at the 3 km, 30 km, and 300 km scales, respectively. Bodies of water were
excluded from the analysis. At the randomly chosen sites, the sums of FFCO2 and GHG
emissions were computed for the sample area, and then Pearson’s correlations between
the set of FFCO2 and GHG sums were calculated for each of the three scales. It should be
noted that total U.S. GHG emissions are somewhat larger than FFCO2 since GHGs include
fluxes from agriculture and land-use change.

3.3. Validation Results

Figure 5 shows the correlations between the inventory-based FFCO2 emissions in
the Vulcan dataset and the land-use-based GHG emissions computed in iPlan at three
spatial resolutions.
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and the land-use-based GHG emissions computed in iPlan (x-axis) at three spatial resolutions.

At the coarse spatial resolution (300 × 300 km), there is a high correlation (Pearson’s
r = 0.95) between the Vulcan data and the iPlan system’s computed GHG emissions. This
indicates that iPlan is accurately computing the overall load of GHG emissions. As expected,
the correlation decreases substantially with increasing spatial resolution: for 30 × 30 km
samples, Pearson’s r = 0.72, and for 3 × 3 km samples, Pearson’s r = 0.20. iPlan consistently
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computes higher GHG emissions values than those in the Vulcan dataset, in part because the
assignment of GHG emissions from power plants and transportation in iPlan is distributed
to other land-use classes, such as residential and commercial. For example, iPlan models
the fact that electricity demand in households and businesses is the primary cause of GHG
emissions at power plants. Samples with smaller areas are less likely to include power
plants, and therefore there is greater divergence between the Vulcan values and the iPlan
outputs with increasing spatial resolution.

4. Optimization of Stakeholder Preferences
4.1. Approach

A key feature of iPlan simulations is the ability, not only to model the impacts of land
use on various indicators, but also to construct land-use scenarios for submission to virtual
stakeholders who provide feedback on proposed land-use changes. Because each land-use
model created by the iPlan system is a unique result of user selection and non-deterministic
optimization, the preferences of the virtual stakeholders need to be set automatically, such
that the resulting land-use problem space is neither too simple nor too complex. To achieve
this, we constructed a large set of stakeholders, assigned one indicator to each stakeholder,
determined whether they would advocate for that indicator to be above or below some
threshold, and then developed an optimization routine to set the thresholds such that the
resulting land-use problem would have an appropriate level of complexity.

In iPlan, a land-use model includes nine virtual stakeholders, each of whom advocates
for land-use based on one indicator. Thus, because each model includes five indicators,
there are two stakeholders who care about four of the indicators, and one stakeholder who
cares about the fifth. The nine stakeholders are representatives of three fictitious groups:
the Local Business Consortium, the Environmental Justice Center, and the Community
Coalition. These groups were designed to reflect the three largest constituencies in planning
processes: business leaders and owners, environmentalists, and residents.

We constructed 54 virtual stakeholders, each of whom has a name, image, job, brief
biography, stakeholder group, and indicator. We developed 54 so that each of the 18 in-
dicators is associated with one member from each of the three stakeholder groups. For
each stakeholder, we also determined whether they prefer their assigned indicator to be
above or below some threshold. For every indicator, there is at least one stakeholder who
desires it to be below a threshold and at least one who desires it to be above a threshold,
which models the fact that different constituencies have different goals. For example, a
business lobby may advocate expanding commercial or industrial development to increase
jobs and revenue, while homeowners may oppose such expansion due to the increased
traffic, pollution, or noise.

The system selects the nine stakeholders for each land-use model based on the indica-
tors chosen and a prioritization algorithm, then the system runs an optimization routine
to set the indicator threshold for each stakeholder. This process is explained in detail
in Appendix D. The objective of the optimization is to set the thresholds, such that the
distribution of land-use scenarios that satisfy some number of stakeholders matches a
target distribution. The default target distribution (see Figure A1) is based on prior work
developing land-use simulations for use by high-school and adult learners [7,36–38], but a
key advantage of this approach is that the difficulty of iPlan simulations can be adjusted
simply by adjusting the target distribution.

Because there are 11200 possible land-use scenarios that can be constructed for a
given land-use model, we use a sampling process to generate a set of reasonable land-
use scenarios for that model, which in turn generates distributions of indicator values
from which to select and optimize threshold levels. There are two constraints on this
optimization, as follows: (a) no more than four stakeholders can be satisfied with the initial
map produced by the parcelization process, and (b) two stakeholders assigned the same
indicator cannot have the same threshold.
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4.2. Validation Method

To validate the stakeholder threshold optimization routine, we randomly selected
6000 rectangular extents with diagonals of approximately 10 km. Each extent was processed
using the parcelization optimization routing, to create 6000 extents with 200 parcels each.
For each extent, five indicators were randomly selected, and then the stakeholder threshold
optimization routine was applied.

4.3. Validation Results

Figure 6 shows the correspondence between the output of the stakeholder threshold
optimization routine and the target distribution, which indicates that the optimization pro-
cess can reliably produce stakeholder thresholds that approximate the target distribution.
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Figure 6. Histogram showing the target distribution (dark grey) and the mean obtained distribution
with 95% confidence intervals produced by the stakeholder threshold optimization routine (light
grey). The height of the bars represents the proportion of sample land-use scenarios that satisfy each
number of stakeholders.

This result also suggests that adjusting the target distribution could provide a useful
mechanism for controlling the difficulty of the land-use simulations that iPlan produces.

5. Use of the iPlan Platform in Educational Contexts

To integrate all the modeling features of iPlan into a usable simulator, we developed
an ArangoDB graph database for storing the geospatial data. By indexing all the parcels
in every map layer and precomputing their locations and adjacencies, we can run the
parcelization optimization routine in a matter of seconds. To develop the software ap-
plication, we used the Ionic platform. Ionic is an HTML5 (HyperText Markup Language
version 5) mobile application development framework for building hybrid mobile apps
(small websites running in a browser shell as an app that can mimic native apps). Unlike
pure native apps, hybrid mobile apps are faster to develop and deploy and can function on
a broader range of platforms. This enables iPlan to run on any platform with an Internet
browser, including laptops, Chromebooks, tablets, and mobile phones.

A key affordance of this approach is that users can construct land-use simulations in
iPlan and share them with other users. For example, educators can construct a land-use
simulation and share it with learners, so that all learners are using identical simulations
to construct their land-use scenarios. This process involves simply sharing a URL, and
anyone who logs in to iPlan using that URL will have access to that model. However, each
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user will have their own copy of the model; the current version of iPlan does not support
collaborative use.

At the time of this writing, more than 2000 individuals have used iPlan to construct
and explore land-use models of regions in 40 U.S. states. Educators have successfully
constructed and used iPlan models in a variety of subject areas and learning contexts,
including in units on water quality, urban planning, sustainable cities, ecological restoration,
human geography, and general biology. The following examples illustrate three ways
educators have integrated iPlan into their curricula and provide preliminary evidence that
they are able to use iPlan to achieve their educational goals.

5.1. Example Uses of iPlan in Classroom Contexts
5.1.1. Introduction to Science, Technology, Engineering, and Math (STEM) Disciplines
and Careers

At a high school with a predominantly Black and Latine student population in Paw-
tucket, Rhode Island, iPlan is part of a class designed to introduce 9th-grade students to
STEM disciplines and the social impacts of STEM professionals. For the climate science and
land-use planning unit, the teacher begins with lessons on greenhouse gases, the carbon
cycle, and the ozone layer, then uses iPlan to help students understand how land-use
planning can address environmental challenges like the greenhouse effect but that there
are trade-offs in doing so. At the beginning of the simulation, students often expressed a
sense of hopelessness: “Can we ever get to net zero?” or “Did you give us this assignment
so you could stress us out? Nobody can be happy”. But by the end, she said, “students
felt more confident that there are things that can be done”. They recognized the chal-
lenges and tradeoffs involved, but they also saw how those challenges and tradeoffs could
be addressed.

One of the teacher’s goals for the unit was to have more grounded conversations with
students about how land-use planning works. Specifically, she wanted them to see that
they could have a voice in land-use planning processes: “I wanted students to have a better
appreciation of the range of stakeholders . . . even to the point where they could see that
they could be stakeholders. . . . It’s not just to beat the game, pleasing people . . . but these
are people in the real world and you could have a say in this”. While iPlan places the user
in the role of a planner, not a stakeholder, the virtual stakeholders were constructed to
represent a broad range of people, with various appearances, backgrounds, and social roles,
to help learners see that stakeholders are simply “people in the real world”.

The teacher also felt that it was important to link STEM professional activities to social
impacts in their community. During one semester, the unit took place during a heat wave,
prompting a conversation about the relationship between land-use and extreme heat in the
context of climate justice. Another time, the class discussed a strip mall down the street
from the school that was being redeveloped, and specifically, the process through which
such development happens: “Before anyone builds they have to go to the zoning board.
There’s a group of people making these decisions. They can’t just plop a business down in
a housing neighborhood”. Overall, the teacher felt that the simulation helped her students
understand both the relationships between land-use and environmental or socio-economic
issues and the civic process of land-use planning.

5.1.2. Life on Earth, Localized

At an underfunded high school in rural Massachusetts, iPlan is part of a “Life on
Earth” class for 11th- and 12th-grade students. The teacher uses iPlan in a unit on land-
use planning to learn about planning practices, explore multi-objective problems with
no perfect solution, experience the challenge of representing diverse perspectives, and
understand quality indicators. The teacher sees the class as an important way to engage
disenfranchised students, noting that it “keeps kids coming back to school”.

One of the advantages of iPlan, she noted, is that it is the “only opportunity students
have where they have to represent other people. . . . They aren’t a player, they don’t have
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an avatar”, which “focuses them on the stakeholders”. It was important to her that the
students not only learn about the relationships between land use and the environment
but also that civic processes often involve negotiating among competing priorities. For
example, in one semester, she had her students use a simulation of a neighboring town, a
formerly successful industrial area “where there are a lot of closed mills”. She had them
focus on increasing jobs in the area but wanted them to recognize how re-industrialization
can also lead to environmental harms. It successfully stimulated conversations on tradeoffs
and the challenges involved in solving multi-objective problems.

The teacher also incorporated the town’s actual planning work into the class, as the
town is currently considering proposals for redevelopment of the site of a former state
institution that is walking distance from the school. The town planner visited the class,
and after using iPlan, the students produced a plan for the site and an accompanying
vision statement to help them understand one way that young people can engage in civic
decision-making; they were familiar with other towns that are “struggling and fading,
. . . they know what happens when there isn’t a coordinated effort by people who care”.
The teacher then submitted the proposals of willing students to the local planning board.
The first time she brought student proposals to the planning board, the members “were
absolutely floored [that students] were actively engaged in the planning process”. iPlan
provided “a direct link between . . . school learning and this very important project that has
the potential to influence . . . [our town] for decades to come”. When she told her students
how the planning board reacted to their proposals, “there was a lot of blushing going on.
. . . They were really proud”.

5.1.3. Field Biology

At the largest high school in New Hampshire and the public high school for six small
towns, iPlan is used as part of a “Field Biology” elective. In the “Freshwater” unit, students
learn about runoff and pollution, conduct water quality tests of a nearby lake, and then use
iPlan in the same location as their testing site. The class is visited by the town planner, and
then they use iPlan to try to improve the health of the lake while also accommodating a
growing population. “They know the health of the lake is not great, so they do not want
to do anything [in iPlan] to make it worse”. iPlan helps interest the students in the way
land-use planning can be used to address the effects of climate change, such as warming
temperatures leading to declining water quality in the lake, which is an important part of
the local ecology and economy.

Like other educators, the teacher reported that iPlan works well for students who do
not respond well to more traditional curricula. “Every student was engaged, even my
students who always put their heads down”, because they could take meaningful action on
issues that otherwise felt remote and unchangeable. One of the boys “who usually doesn’t
do anything [in class]”, she explained, even started using iPlan on his own just to see the
land-use maps of other locations. She also saw iPlan as a useful tool for helping students to
support one another’s learning. Students often talk while they play, sharing information:
“One kid would say, ‘I can’t make so-and-so happy’ and then another would say ‘trying
changing X to Y’ . . . or “if you change this to that, the birds go way down”.

5.2. Summary of Educators’ Experiences with iPlan

Feedback from educators (N = 19) is being collected using a semi-structured interview
protocol and survey. While the number of survey responses is currently too low for
meaningful quantitative analysis, which will be conducted in a future study, preliminary
qualitative analysis indicates broad agreement from educators that iPlan (a) produces
realistic, accessible land-use models that are easy to use; (b) supports learning about
the relationship between land-use and indicators, multi-objective problems with diverse
solutions, the challenge of representing diverse perspectives, and the ways in which
scientific and civic practices are interrelated; (c) works well with a range of learners, and in
particular with learners who are not engaged by more traditional learning modalities; and
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(d) facilitates engagement with real-world planning processes. As one teacher from Boston
summarized it:

The iplan tool is a very realistic modeling tool. It was easy to use for both me
and my students, and allowed each student to engage with the model at their
own level. I loved the fact that we could model our community—I have been
struggling to find ways to teach about ecological restoration, and its implications
at the local level, that shows kids real world applications, and this tool really
helped me do that. My students really buy into learning more when the topic at
hand relates to where they live, play, and go to school.

While all educators interviewed to date offered suggestions for improvement or
requested additional features, they agreed that the platform addresses their educational
needs by providing learners with realistic, localized land-use models in an authentic
simulation of scientific and civic land-use planning practices.

These findings are in alignment with previous studies of iPlan usage. For example, the
Massachusetts Audubon Society and Rhode Island Environmental Education Association
conducted a pilot study [57] with 10 high-school teachers who implemented iPlan in
24 sessions with 321 students (a total of 2185 contact hours). All 10 teachers reported that
iPlan was “easy to use,” and 9 out of 10 reported that they could integrate iPlan simulations
into future classes. The study also surveyed students (N = 281) about their experience using
the simulations. Fifty-three percent reported that the simulation was “easy to use” (only
20% reported that it was not easy to use); 56% reported that it was “fun to use” (only 18%
reported that it was not fun to use); and 63% reported that they “were focused while using
iPlan” (only 12% reported that they were not focused). In other words, both teachers and
students reported a positive user experience, and the primary finding was that teachers
need more support integrating iPlan effectively into their curricula. To that end, the Rhode
Island Environmental Education Association is currently developing curriculum units that
provide wrapper activities and professional development supports for teachers, and other
curriculum units have been developed to help teachers use iPlan more effectively [58].

6. Discussion

In this paper, we described iPlan, a free, online software application that enables
educators and learners to easily create and implement custom land-use simulations of any
location in CONUS. Learners can use iPlan simulations to construct land-use scenarios,
see the effects of land-use change on environmental and socio-economic indicators, and
explore how simulated stakeholders respond to proposed changes as they attempt to devise
land-use plans that satisfy as many stakeholders as possible. We presented evidence that
the three primary computational models—which produce parcelized land-use maps of
user-defined locations, calculate the local effects of land-use change on various indicators,
and set stakeholder priorities—are sufficiently accurate for educational purposes. Moreover,
initial interviews with educators indicate that (a) the system creates realistic representations
of local conditions, (b) educators can construct simulations that meet their curricular and
pedagogical needs, and (c) iPlan is an effective educational technology, especially for
learners less motivated by more traditional curricula.

As with any model, and especially with reduced-form models, there is no standard way
to determine what counts as “accurate enough” for the intended purposes. However, by
describing our modeling methods in detail and systematically testing model performance
against known standards, we demonstrated that iPlan achieves its modeling goals, and
we provide information that enables potential users to determine if the software will meet
their needs.

There are, of course, many important factors that iPlan does not account for when
simulating the effects of land use on environmental and socio-economic indicators, includ-
ing transportation, adjacency effects, and temporality. Because the software needs to be
accessible to educators and learners, the system excludes these and other relevant factors to
make the problem space more tractable and to help learners understand basic relationships
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between land use and issues that people care about. However, in future versions, we
plan to incorporate several additional functionalities based on feedback from educators,
including (a) modeling the effects of land-use change under a set of assumptions about how
climate change will affect the selected location; (b) modeling the effects of land-use change
broken out by demographic categories and spatially distributed based on properties of the
selected location; and (c) modeling the effects of land-use adaptations, such as shade tree
planting, construction of flood barricades, and solar panel installation, on select indicators.
While this will present challenges for accessibility, we believe these can be addressed by
optimizing the number of parcels included in the land-use map, the number of indicators
and land-use classes/modifications included in the simulation, the number of demographic
categories and other data layers included in the model, the difficulty of satisfying the
virtual stakeholders (i.e., the target distribution used to set stakeholder preferences), or
the number of stakeholder feedback requests allotted (this is the means of modulating the
tractability of current iPlan simulations).

A key finding of user experience testing to date is that educators need more support
for integrating iPlan effectively into their curricula, including professional development
and suggested wrapper activities that supplement or enhance the activities in the iPlan
system [57,58]. This work is ongoing and will be described in a future paper. However,
it points to a key challenge in the design of learning systems more broadly, namely that
the flexibility of customization requires different skills from educators to successfully
utilize them [59]. This will involve developing and testing new models of professional
development and further development of the platform itself to more effectively guide
educators on its use.

In addition, further research is needed on how iPlan improves learning. As we argue
elsewhere [60], the more customizable an educational experience is, the more difficult
it is to design learning analytic models or assessment systems that can be reliably used
to measure learning. In other words, constructing normative assessments of learning in
complex learning environments when neither the content nor the context is standardized
presents significant challenges [61]. Indeed, the very features of iPlan that make it appealing
to educators—namely, the features that facilitate customization of the location and socio-
environmental issues modeled—mean that each simulation an educator creates is unique.
Moreover, iPlan was designed to be a tool, not a curriculum, and, thus, teachers use it in
a range of ways, as the examples described in Section 5 indicate. While there are many
validated measures of relevant constructs, for example, environmental literacy, there is no
reason to expect that those measures would be appropriate for any given use of iPlan, and,
because different educators use different simulations, there would be no way to aggregate
or compare different cases even if such a measure could be used. Thus, we have relied
on qualitative methods to assess the effectiveness of iPlan, and this work is ongoing, and
we are currently developing methods to assess learning quantitatively in the absence of
normative assessments [60].

While iPlan was designed for and is primarily used in educational contexts, it may
also be useful as a decision support tool. For example, the Capital Area Regional Planning
Commission, in Dane County, Wisconsin, used a prototype version of iPlan to better under-
stand the land-use decisions that citizens would make to address the related challenges of
expanding population and water conservation [37]. They found that, when asked, citizens
generally favored infill and multi-family dwellings as a solution to anticipated population
growth, but when presented with an interactive land-use simulation, the same individuals
were more likely to add housing to peripheral land currently undeveloped or used for
agricultural or recreational purposes. That is, people articulated an imperative to maintain
a smaller development footprint but struggled to actually implement it, even in a simula-
tion. Using the simulation thus enabled the planning commission to have more grounded
conversations with stakeholders about how to address future growth in the area.
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iPlan is thus a flexible platform that both young people and adults can use to explore
how land use affects local issues—and how changes in land-use patterns can address a
range of pressing environmental and socio-economic challenges.
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Appendix A. Land-Use Data Preparation

Appendix A.1. Land-Use Class Consolidation

Table A1 gives the original NWALT land-use classes and the corresponding classes
in iPlan. We removed pixels classed as “Water” (class 11), as those cannot in most cases
be changed to anything else, and we removed pixels classed as “Major Transportation”
(class 21) because the inclusion of transportation would have made the resulting land-use
models too complex for non-specialist users. We also removed pixels classed as “Very Low
Use, Conservation”, which are very rare—to the point where the class virtually disappears
from the census block map layer—and, in many cases, represent land uses that are not
generally changeable, such as national historical markers. The remaining 17 NWALT classes
were consolidated into 10 classes by aggregating land uses with similar compositions and
socio-economic and environmental impacts.

Table A1. Reduction of 20 NWALT land-use classes to 10 iPlan land-use classes.

NWALT Land-Use Class iPlan Land-Use Class

11. Water Removed
12. Wetlands Wetlands
21. Major Transportation Removed
22. Commercial/Services Commercial
23. Industrial/Military Industrial
24. Recreation Recreation
25. Residential, High Density Residential—High Density
26. Residential, Low–Medium Density Residential—Low Density
27. Developed, Other Commercial
31. Urban Interface High Limited Use
32. Urban Interface Low Medium Limited Use
33. Anthropogenic Other Limited Use



Multimodal Technol. Interact. 2024, 8, 30 22 of 33

Table A1. Cont.

NWALT Land-Use Class iPlan Land-Use Class

41. Mining/Extraction Industrial
42. Timber and Forest Timber
43. Cropland Cropland
44. Pasture/Hay Pasture
45. Grazing Potential Pasture
46. Grazing Potential Expanded Pasture
50. Low Use Limited Use
60. Very Low Use, Conservation Removed

In response to feedback from educators, we then added an additional land-use class,
“Conservation”, so that users of iPlan can designate a parcel as conservation, even though it
will never appear on initial maps constructed by the system. For the purposes of modeling,
conservation behaves identically to limited use. Table A2 provides a brief definition of each
iPlan land-use class, based on both the consolidated NWALT classes and the ways in which
the land uses are modeled in iPlan (see Appendix C).

Table A2. Definitions of the land-use classes in iPlan.

Land-Use Class Definition

Commercial Commercial land is primarily used for services or businesses, including shopping centers, office
buildings, retail shops, schools, hospitals, churches, prisons, and police and fire stations.

Conservation

Legally designated conservation lands constrain or prohibit development. While conservation land
can be privately or publicly owned, it is typically characterized by very low or no human usage.
Conservation objectives may include goals like water quality management, the maintenance or
restoration of wildlife habitats, or supporting sustainable agriculture or forestry.

Cropland
Cropland produces foods for humans and animals, as well as raw materials for textiles, biofuels, and
many other consumer goods. Corn is the most widely grown crop in the United States, accounting
for more than 90 million acres of land, and the majority is grown for livestock feed.

Industrial

Industrial land is used mainly for the extraction of natural resources or the production, storage, and
shipment of commodities. Rock quarries, mines, and energy operations extract and refine raw
materials, and factories, workshops, and production plants create materials, components, and
finished products. Military installations, waste processing facilities, and seaports are also
considered industrial.

Limited Use

Limited use regions have low or no human usage or impact. These areas can include rural and
sparsely populated exurban communities (<16 housing units/km2), unmanaged green space and
unused lots, mountains and deserts, as well as Superfund sites or other areas inhospitable to
human habitation.

Pasture

Pasture, which includes grasslands and prairies, is undeveloped or minimally developed land
dominated by grass and herbaceous vegetation. Pasture is land actively used for livestock grazing or
the production of seed or hay crops, or land with the potential for such use that has a housing unit
density <124 units/km2, is not on a military base or part of protected land such as a national park,
has a grade of <30%, and is within 1 km of water.

Recreation Recreational land includes areas commonly used for entertainment purposes, including golf courses,
playgrounds, open sports arenas and playing fields, racetracks, amusement parks, and zoos.

Residential—HD
High-density residential areas have a housing unit density of >500 units/km2. These areas typically
include multi-family residences, like apartments and condominiums, which house multiple families
in a single structure, as well as neighborhoods of closely built single-family homes.

Residential—LD
Low-density residential areas have a housing unit density of 16–500 units/km2. These areas typically
include residences that house one or two families per structure that are distributed over larger areas
than high-density residential areas.

Timber Timberlands are undeveloped regions dense with trees. These areas have a housing unit density
< 10 units/km2, are not on or near a road, and are outside the borders of cities.

Wetlands Wetlands are regions that are either permanently or seasonally flooded with water.
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Appendix A.2. Map Layer Construction

To construct each of the four map layers (census block, census block group, census
tract, and county) and allocate a land-use to each polygon, we performed the follow-
ing four steps using the arcpy, postgresql with the postgis extension, and/or pandas
software packages:

1. Reprojection. We reprojected the GIS data for each layer from a projected coordi-
nate system (USA Contiguous Albers Equal Area Conic) to a geographic coordinate
system (GCS North American 1983 HARN) to co-register the census data with the
NWALT data.

2. Land-use allocation. To assign a land-use class to each polygon, we identified the
iPlan land-use class (see Table 1 above) in the NWALT raster data that accounts for
the most area in a given polygon (e.g., a given census block). We then assigned that
land-use class to the entire polygon.

3. Computation of basic spatial parameters. We calculated the area of each polygon in
each map layer, as well as the latitude and longitude of the centroid of each polygon.

4. Adjacency table generation. We generated adjacency tables based on geographic
adjacency among polygons. The record for each polygon also indicates to which
polygon in the next coarsest map layer it belongs. For example, the record for each
census block indicates which census block group it belongs to.

This process produced the map layers on which the parcelization optimization
routine operates.

Appendix B. Parcelization of a User-Defined Region

Parcelization of a user-defined region is accomplished using an optimization routine
that operates on the map layers. To aggregate the >200 polygons from the nearest map
layer into 200 parcels, we implement a heuristic approach.

Adjacency among polygons in a given map layer (i.e., adjacency among census blocks,
census block groups, etc.), is represented by an undirected graph, G, where the set of
vertices V is defined by the centroids of the set of polygons, and there is an edge, e ∈ E,
between adjacent polygons. A parcel is a connected subgraph of G. The problem of
obtaining n disjoint connected subgraphs of an undirected graph G is a particular case
of the so-called spatial unit allocation problem [62–64]. Spatial unit allocation aims to
allocate spatial units to different regions while respecting some allocation criteria. The
most common criteria are contiguity and compactness, which are both included in our
optimization.

Given a graph G = (V, E), we define P ⊂ 2V as the set of all possible parcels,
V(p) ⊆ V as the set of vertices in parcel p ∈ P . The cost of a parcel cp is defined as the
total mismatched area in the parcel.

In our heuristic approach, the edges of graph G receive a weight based on the area of
the vertices they connect and whether their land use is the same or not. By obtaining the
minimum spanning tree of this weighted graph, we are able to rapidly identify parcels with
low cost. This approach, which is combined with local search, gives near-optimal solutions
with minimal computation time, making this heuristic well suited for an online application.

Appendix C. Indicators Included in the iPlan System

iPlan includes 18 indicators, which are given in Table A3. These indicators represent a
range of social, economic, and environmental phenomena that can be reasonably modeled
using only location and land-use information as inputs.
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Table A3. The 18 indicators included in iPlan.

Indicator Definition Units Region-Specific Model/Data Source

Added heat
advisory days

Days per year when the
heat index is ≥100 ◦F
for at least 2 h

Days per year Yes PEGASUS [39]

Biofuels

Energy potential of
fuel-grade ethanol that
can be produced from
corn, under the
assumption that all
cropland is used for
corn production

10,000 kilocalories
per year Yes PEGASUS [39]

Hay [65]

Birds American robins
(Turdus migratorius) Total number Yes

PEGASUS [39]
North American Breeding
Bird Survey (https://www.
pwrc.usgs.gov/bbs/;
accessed on
10 September 2018)
Blair [66]

Butterflies Monarch butterflies
(Danaus plexippus) Total number Yes

PEGASUS [39]
Pleasants [67]
Thogmartin et al. [68]

Corn

Food energy of corn
produced for human
consumption, under
the assumption that all
cropland is used for
corn production

10,000 kilocalories
per year Yes

PEGASUS [39]
FoodData Central
(https://fdc.nal.usda.gov/
index.html; accessed on
15 July 2018)

Cornfed beef

Food energy of beef
produced from cows
that primarily eat corn
products, under the
assumption that all
cropland is used for
corn production

1000 kilocalories
per year Yes

PEGASUS [39]
“On Average, How Many
Pounds of Corn Make One
Pound of Beef?” [69]

Grassfed beef

Food energy of beef
produced from cows
that primarily eat grass
and other forage, under
the assumption that all
pasture is actively
grazed by cattle

1000 kilocalories
per year Yes PEGASUS [39]

Penman et al. [70]

Green space

Proportion of
non-impervious surface
area (e.g.,
forest, grassland,
wetland, etc.)

Percentage of
non-impervious
surface area

No NWALT [34]

Greenhouse gas
emissions

Emission of carbon
dioxide, methane, and
other greenhouse gases
into the atmosphere

Metric tons of carbon
dioxide equivalents
per year

No

Hockstad and Hanel [47]
Jones and Kammen [51]
Kellogg [53]
Kuhle and Sloan [50]
Greenhouse Gas Inventory
Data Explorer [52]
U.S. Travel Answer
Sheet [49]
Worth et al. [48]

https://www.pwrc.usgs.gov/bbs/
https://www.pwrc.usgs.gov/bbs/
https://fdc.nal.usda.gov/index.html
https://fdc.nal.usda.gov/index.html


Multimodal Technol. Interact. 2024, 8, 30 25 of 33

Table A3. Cont.

Indicator Definition Units Region-Specific Model/Data Source

Housing units

Estimated number of
housing units (number
of housing units in the
2010 U.S. Census plus
estimated new
residential construction
and estimated
new mobile homes
minus estimated
housing units lost)

Number of
housing units No

National Historical
Geographic Information
System (https:
//data2.nhgis.org/main;
accessed on 20 March 2017)

Impervious
surface area

Proportion of
impervious surface
area (e.g., concrete,
asphalt, structures, etc.)

Percentage of
impervious
surface area

No NWALT [34]

Jobs

Number of employed
persons, including full-
and part-time
employment and
self-employment

Number of jobs No

National Historical
Geographic Information
System (https:
//data2.nhgis.org/main;
accessed on 14 May 2017)

Lead emissions Emission of lead into
the atmosphere Grams per year No

2014 National Emissions
Inventory (NEI) Data
(https://www.epa.gov/
air-emissions-inventories/
2014-national-emissions-
inventory-nei-data;
accessed on
18 August 2019)

NOx emissions
Emission of nitrogen
oxides (NOx) into
the atmosphere

Kilograms per year No

2014 National Emissions
Inventory (NEI) Data
(https://www.epa.gov/
air-emissions-inventories/
2014-national-emissions-
inventory-nei-data;
accessed on
20 September 2019)

Particulate matter
emissions

Emission of particulate
matter (PM2.5) into
the atmosphere

Kilograms per year No

2014 National Emissions
Inventory (NEI) Data
(https://www.epa.gov/
air-emissions-inventories/
2014-national-emissions-
inventory-nei-data;
accessed on
25 September 2019)

Population

Estimated number of
people (number of
people in the 2010 U.S.
Census plus births and
migrations minus
deaths)

Number of people No

National Historical
Geographic Information
System (https:
//data2.nhgis.org/main;
accessed on 27 April 2018)

Sales Gross sales per year Dollars per year No

(Adopted from a prior
version of the iPlan
modeling system: Bagley
and Shaffer [71])

https://data2.nhgis.org/main
https://data2.nhgis.org/main
https://data2.nhgis.org/main
https://data2.nhgis.org/main
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://www.epa.gov/air-emissions-inventories/2014-national-emissions-inventory-nei-data
https://data2.nhgis.org/main
https://data2.nhgis.org/main
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Table A3. Cont.

Indicator Definition Units Region-Specific Model/Data Source

Runoff Flow of
unabsorbed water Metric tons per year Yes *

Water Erosion on Cropland,
by Region and Year
(https://www.nrcs.usda.
gov/wps/portal/nrcs/
detailfull/national/
technical/nra/nri/results/
?cid=nrcs143_013656;
accessed on
10 October 2019)
Franzmeier and
Steinhardt [72]
Wischmeier and Smith [73]

* Unlike the other region-specific indicators, which vary by biome, runoff varies by groups of states.

Appendix D. Assignment of Stakeholder Preferences

To set the thresholds for stakeholder preferences in iPlan land-use models, the system
selects nine stakeholders with pre-defined indicator directionality preferences—that is,
whose preference for their assigned indicator is either above or below some threshold—
and an optimization routine determines the threshold for each stakeholder, based on the
properties of the parceled land-use map produced by the iPlan system.

Let a =

a1
...

an

 denote the area assigned to each of n land-use classes. Let mi =

(mi1, · · ·min) denote the multipliers on the land-use classes for the indicator i. Then, for a
given map, the indicator values I for K indicators are computed by the following:

I =

 I1
...
In

 =

m11 · · · m1n
...

. . .
...

mK1 · · · mKn


a1

...
an

 = Ma.

When the land-use class assignment is changed in one or more parcels, the total area
of at least two land-use classes is changed, and the indicator values are recomputed. For
a given map with P parcels and L land-use classes, the total possible number of land-use
scenarios is N = LP (in the current version of iPlan, 11200).

For a given land-use model, the difficulty of developing satisfactory land-use scenarios
can be approximated by the proportion of all possible land-use scenarios that satisfies
exactly zero, one, two . . . nine stakeholders. Because there are more possible land-use
scenarios for a given iPlan model than there are atoms in the universe, this probability
distribution can only be estimated. The objective of the optimization is to set stakeholder
thresholds such that the (estimated) probability distribution for the model matches a
target distribution. We currently use the target distribution shown in Figure A1, but other
distributions could be chosen to adjust the difficulty of developing satisfactory land-use
scenarios. Note that the value for satisfying all nine stakeholders is zero, which reflects the
fact that it is virtually impossible to satisfy everyone in a land-use planning process.

https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/nri/results/?cid=nrcs143_013656
https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/nri/results/?cid=nrcs143_013656
https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/nri/results/?cid=nrcs143_013656
https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/nri/results/?cid=nrcs143_013656
https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/national/technical/nra/nri/results/?cid=nrcs143_013656
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Appendix D.1. Land-Use Scenario Sampling

To estimate the probability distribution of stakeholder satisfaction for a given land-use
model, we first implement a sampling algorithm. For a given map with P parcels and L
land-use classes, we randomly generate land-use scenarios under the following constraints:

1. No more than 10% of the parcels may be changed to a new land-use class;
2. The number of parcels changed is a random variable with a normal distribution with

mean = 0.05P and SD = 0.025P;
3. The area of any changed parcel cannot exceed 50% of the total map area;
4. The area of any changed parcel is a random variable with a normal distribution with

mean = SD = 0.1A, where A is the total area of all parcels.

Under these four constraints, we draw a random sample of scenarios with size
∼
N. The

following algorithm is used to produce one land-use scenario:

1. Choose a random number, k, from a normal distribution with mean = 0.05P and
SD = 0.025P, restricted to the range [1, 0.1P]. This is the number of parcels whose
land-use class will be changed.

2. Find the parcel, p, whose area is closest to a random number, s, drawn from a nor-
mal distribution with mean = standard deviation = 0.1A, restricted in the range
[0.01A, 0.5A], where A is the total area of the map.

3. Assign a new, randomly selected land-use class to the selected parcel.
4. Repeat steps 2 and 3 until k parcels have been changed.

This process is repeated until
∼
N scenarios are generated. In the current version of

iPlan,
∼
N = 1000.

Appendix D.2. Computing the Indicator Values for the Land-Use Scenario Sample

Once we have generated a large set land-use scenarios using the conditional random
sampling procedure described above, we compute the indicator values for each scenario.

For a given land-use scenario i
(

i = 1, 2, . . . ,
∼
N
)

, we sum the parcel areas, ai, for each

land-use class. This produces a vector ai =

a1i
...

ani

, where aji is the total area of the parcels

with land-use class j. These vectors form a matrix, A
n×
∼
N

=
(

a1, a2, . . . , a∼
N

)
. For K
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indicators, each of which has a multiplier, m, for each land-use class, the multipliers form a
matrix, as follows:

MK×n =

m11 · · · m1n
...

. . .
...

mK1 · · · mKn

,

where mkj is the multiplier for indicator k and land-use class j. The indicator values for
each allocation i are computed by Mai. This forms an indicator matrix, as follows:

V = MA =


v11 · · · v

1
∼
N

...
. . .

...
vK1 · · · v

K
∼
N

,

where vki is the value of the indicator k for scenario i.

Appendix D.3. Optimization of Stakeholder Preferences

As they are operationalized in iPlan, the virtual stakeholders are agents who indicate
whether the value of an indicator in a land-use scenario is satisfactory or not. There are R
stakeholders, each of whom provides feedback on one and only one indicator. There are
nine stakeholders and five indicators in the current version of iPlan, so four of the indicators
are assigned to two stakeholders and the fifth indicator is assigned to one stakeholder. Each
stakeholder r has a threshold value tr and an orientation direction or = (1or–1) for their
assigned indicator. For a stakeholder with a positive orientation (or = 1), the stakeholder
is satisfied with a scenario if the value of their indicator is equal to or greater than the
threshold value: that is, aki ≥ tr; for all stakeholders, then, satisfaction is determined by
oraki ≥ ortr.

For a given iPlan model, stakeholders are selected automatically according to a pri-
oritization algorithm. There are three possible stakeholders (one from each group) that
can be selected for a given indicator, and each of the three stakeholders is assigned a
priority. For example, for the greenhouse gas emissions indicator, the stakeholder from the
Environmental Justice Center is assigned a priority of “1”, the stakeholder from the Local
Business Consortium is assigned a priority of “2”, and the stakeholder from the Community
Coalition is assigned a priority of “3”. Thus, for each of the three stakeholder groups, there
are five stakeholders—one for each indicator—that could be selected, and each of those
stakeholders has an assigned priority (1–3). The stakeholders are sorted within each group;
if an indicator is represented by one of the top three stakeholders in each group, then the
stakeholder assigned a priority of “3” is removed. We then repeat this process, continuing
until there are exactly nine stakeholders remaining, three in each group, such that four of
the indicators are associated with two stakeholders each and the fifth indicator is associated
with one stakeholder.

Thus, the optimization routine operates on (a) an initial land-use map of a user-defined
region containing 200 parcels, each of which has an area and a land-use class; (b) five user-
defined indicators; and (c) nine stakeholders, each of whom has an orientation for one and
only one indicator. The objective of the optimization is to find the values of tr such that
the estimated probability distribution of stakeholder satisfaction with any given land-use
scenario matches a target distribution (in the current version of iPlan, the target distribution
is given in Figure 3).

For a given sample of land-use scenarios, the probability distribution is a function of
the thresholds (t1, . . . , tR) and the number of satisfied stakeholders x, which we denote

h(t1, . . . , tR, x). The computation complexity of this function is O
(∼

N
)

, and the computa-

tion algorithm has two steps, as follows:

1. For x = 0, 1, . . . , R, set h(t1, . . . , tR, x) = 0;
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2. For each land-use scenario a, compute the number of satisfied stakeholders x0 for the
given thresholds and add one to h(t1, . . . , tR, x0).

The optimization routine finds a threshold vector t = (t1, . . . , tR), such that the proba-
bility distribution h(t1, . . . , tR, x) is as close as possible to a given probability distribution
h0(x). That is, the objective is to find the optimal vector t in the R-dimensional space. The
naïve optimization algorithm is as follows:

1. Assign the mean indicator values, vk, to the threshold vector t;
2. Compute the initial distance of the probability distribution, where

d = ‖h(t1, . . . , tR, x)− h0(x)‖;
3. Randomly choose a stakeholder r and change the value of tr such that the distance d

is minimized;
4. Repeat Step 3 until ∆d is minimized.

The computation load of this algorithm is in the iteration between Steps 3 and 4. Note
that Step 3 is an optimization problem in itself—finding the optimal threshold for a given
stakeholder while assuming fixed thresholds for the other stakeholders. Step 3 can be
solved by, for example, using a binary search algorithm. But whichever algorithm is used,
the basic computation is calculating the function h(t1, . . . , tR, x) for different values of tr.

Because this optimization routine cannot be implemented until the user has selected
a region and indicators, our goal was to minimize the computation time so that users do
not need to wait a long time between parameterizing their iPlan model and beginning to
develop land-use scenarios. To reduce the computation complexity, we consider only a
given number of discrete threshold values, n, for each stakeholder. For a stakeholder r, the
range of the indicator value in the sample is given by [ar, br], and we select n threshold
values such that ar − 1 = τr1 < τr2 < . . . < τrn = br + 1. Because the indicator values may
not be consistently distributed in their ranges, we select the values of τrj so that the number
of scenarios in all intervals [τrj, τr(j+1)] is about the same. This can be achieved by sorting
the indicator values of the sample scenarios and then taking the indicator values at equally
spaced positions. For example, if the sorted indicator values are xi1, xi2, xi3, xi4, xi5, xi6, xi7,
and n = 4, then we will have τr1 = xi1 − 1, τr2 = xi3, τr3 = xi5, and τr4 = xi7 + 1.

For a stakeholder r with orientation or = −1, there is a set of satisfactory scenarios, Srj,
for some threshold τrj. Sr1 is an empty set because there is no scenario with an indicator
value lower than τr1. Srn includes all scenarios because the indicator values of all scenarios
are lower than τrn. Further, we have ∅ = Sr1 ⊆ Sr2. . .⊆ Srn = S, where S is the set
of all scenarios. For a stakeholder with or = 1, we have the opposite relationship, i.e.,
S = Sr1 ⊇ Sr2. . .⊇ Srn = ∅. We define a delta set between adjacent sets Srj and Sr(j+1)
as follows:

∆rj =

{
Sr(j+1) − Srj, for or = −1
Sr(j) − Sr(j+1), for or = 1

(j = 1, 2, . . . , n− 1)

Based on our choice of the threshold values trj, the number of scenarios in all delta

sets are about the same, namely,
∣∣∆rj

∣∣ ≈ ∼
N

n−1 .
To generate the estimated probability distribution, then, we change the threshold of

stakeholder r from tr = τrj to tr = τr(j+1). If the stakeholder is negatively oriented, i.e.,
or = −1, then when the threshold increases, the number of satisfactory scenarios increases.
The scenarios that turned from unsatisfactory to satisfactory are all included in the delta
set ∆rj. Thus, for all scenarios in ∆rj, the number of satisfied stakeholders increases by one
because stakeholder r is satisfied with those scenarios. For each scenario s in ∆rj, if the
number of satisfied stakeholders is x before the threshold was increased, then after the
increase, the number of satisfied stakeholders becomes x + 1. The value of the probability
distribution function h at x + 1 thus increases by 1, and the value at x decreases by 1. If
the stakeholder is positively oriented, then when the threshold increases, the number of
satisfactory scenarios descreases. The scenarios changed from satisfactory to unsatisfactory
are all included in the delta set ∆rj. For each scenario in this set, the number of satisfied
stakeholders changes from x to x− 1. Therefore, the value of the probability distribution
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function h at x− 1 increases by 1, and the value at x deceases by 1. Table A4 shows all the
changes to the distribution for all situations.

Table A4. Updates to the probability distribution function with changes to a stakeholder’s threshold.

Threshold tr Orientation or ∆ h Increases h Decreases

τr(j+1) −1 ∆rj h(t, x + 1)+ = 1 h(t, x)− = 1

τr(j+1) 1 ∆rj h(t, x− 1)+ = 1 h(t, x)− = 1

τr(j−1) −1 ∆r(j−1) h(t, x− 1)+ = 1 h(t, x)− = 1

τr(j−1) 1 ∆r(j−1) h(t, x + 1)+ = 1 h(t, x)− = 1

Given this, the optimization algorithm is as follows:

1. Select initial thresholds tr = τr( n
2 )

, r = 1, 2, . . . , R;
2. For each scenario, compute the number of satisfied stakeholders using the thresholds

selected in Step 1;
3. Compute the probability distribution h(t1, . . . , tR, x);
4. Compute the distance between the probability distribution from Step 3 and the target

distribution: d1 = ‖h(t1, . . . , tR, x)− h0(x)‖;
5. Beginning with stakeholder r = 1, perform the following operations:

• Increase the threshold from τrj to τr(j+1) and compute distance d+r ;
• Decrease the threshold from τrj to τr(j−1) and compute the distance d−r ;
• Among τrj, τr(j+1) and τr(j−1), select the threshold for which the distance d is

smallest, and set that as threshold tr;
• Update the probability distribution function h based on the selected threshold tr;
• Update the number of satisfied stakeholders in the delta set ∆rj;
• Set dr+1 = mindr, d+r , d−r ;

6. If r < R, increase r by one and go to 5);
7. If d1 − dR > ε, go to 5a);
8. Stop.

In this algorithm, each time we change a threshold, the computation is on the delta set
instead of the whole sample. This reduces the computation for each probability distribution

from
∼
N to

∼
N

n−1 . Because n is the number of discrete threshold values, a larger n will reduce
the computations for each probability distribution but will increase the number of threshold
values to consider, and thus may result in more iterations to find the optimal thresholds.

Two more constraints are also taken into consideration, as follows: (1) the initial
scenario (i.e., the starting map) cannot satisfy more than four stakeholders; and (2) the
thresholds for two stakeholders assigned to the same indicator cannot be equal.

To ensure that no more than a given number of stakeholders are satisfied by the initial
scenario, the system chooses a random number 0 ≤ n ≤ 4 as the number of stakeholders
the initial scenario can satisfy, then randomly chooses n stakeholders. The range of the
indicator values for each of these n stakeholders is set, such that whatever value in the
range is taken as the threshold, the initial indicator value is satisfactory. For example, given
a stakeholder r with orientation or = 1, the indicator range is [a, b], and the initial indicator
value is x0. If the range is adjusted to [a, x0], then any threshold t ∈ [a, x0] satisfies x0 ≥ t,
and, thus, the results of the optimization will satisfy this stakeholder. For the remaining
R− n stakeholders, the system adjusts the range in the opposite way, namely, setting the
range so that the initial indicator value is never satisfactory.

To ensure that two stakeholders assigned to the same indicator have different thresh-
olds, for any two stakeholders, r1 and r2, with the same indicator, the algorithm is modified
as follows: (a) in the initialization process, the system assigns thresholds to the two stake-
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holders; and (b) when changing the threshold of one stakeholder, the value that is currently
assigned to the other is excluded.

References
1. Elsawah, S.; Filatova, T.; Jakeman, A.J.; Kettner, A.J.; Zellner, M.L.; Athanasiadis, I.N.; Hamilton, S.H.; Axtell, R.L.; Brown, D.G.;

Giligan, J.M.; et al. Eight Grand Challenges in Socio-Environmental Systems Modeling. Socio-Environ. Syst. Model. 2020, 2, 16226.
[CrossRef]

2. Uzzell, D.L. The Psycho-Spatial Dimension of Global Environmental Problems. J. Environ. Psychol. 2000, 20, 307–318. [CrossRef]
3. Wibeck, V. Enhancing Learning, Communication and Public Engagement about Climate Change—Some Lessons from Recent

Literature. Environ. Educ. Res. 2014, 20, 387–411. [CrossRef]
4. Sze, J. Scale. In Keywords for Environmental Studies; Adamson, J., Gleason, W., Pellow, D.N., Eds.; New York University Press: New

York, NY, USA, 2016; pp. 178–180.
5. Mezirow, J. Transformative Learning: Theory to Practice. New Dir. Adult Contin. Educ. 1997, 74, 5–12. [CrossRef]
6. Monroe, M.C.; Plate, R.R.; Oxarart, A.; Bowers, A.; Chaves, W.A. Identifying Effective Climate Change Education Strategies: A

Systematic Review of the Research. Environ. Educ. Res. 2019, 25, 791–812. [CrossRef]
7. Siebert-Evenstone, A.L.; Shaffer, D.W. Location, Location, Location: The Effects of Place in Place-Based Simulations. In Proceedings

of the A Wide Lens: Combining Embodied, Enactive, Extended, and Embedded Learning in Collaborative Settings: 13th
International Conference on Computer-Supported Collaborative Learning (CSCL), Lyon, France, 17–21 June 2019; Lund, K.,
Niccolai, G., Lavoué, E., Hmelo-Silver, C., Gweon, G., Baker, M., Eds.; International Society of the Learning Sciences, Inc.: Buffalo,
NY, USA, 2019; Volume I, pp. 152–159.

8. Barab, S.A.; Gresalfi, M.; Arici, A. Why Educators Should Care About: Games. Educ. Leadersh. 2009, 67, 76–80.
9. Nelson, E.J.; Daily, G.C. Modelling Ecosystem Services in Terrestrial Systems. F1000 Biol. Rep. 2010, 2, 53. [CrossRef] [PubMed]
10. Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting Global Land-Use

Change and Its Effect on Ecosystem Service Provision and Biodiversity with Simple Models. PLoS ONE 2010, 5, e14327. [CrossRef]
11. McDonald, R.I.; Green, P.; Balk, D.; Fekete, B.M.; Revenga, C.; Todd, M.; Montgomery, M. Urban Growth, Climate Change, and

Freshwater Availability. Proc. Natl. Acad. Sci. USA 2011, 108, 6312–6317. [CrossRef]
12. Klopfer, E.; Squire, K. Environmental Detectives: The Development of an Augmented Reality Platform for Environmental

Simulations. Educ. Technol. Res. Dev. 2008, 56, 203–228. [CrossRef]
13. Akbar, M.; Dura, L.; Gates, A.Q.; Ortega, A.; Roy, M.K.; Santiago, C.; Tellez, J.G.; Villa, E. Sol y Agua: A Game-Based Learning

Platform to Engage Middle-school Students in STEM. In Proceedings of the 2018 IEEE Frontiers in Education Conference (FIE),
San Jose, CA, USA, 3–6 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–9.

14. Barab, S.A.; Scott, B.; Siyahhan, S.; Goldstone, R.; Ingram-Goble, A.; Zuiker, S.; Warrant, S. Transformational Play as a Curricular
Scaffold: Using Videogames to Support Science Education. J. Sci. Educ. Technol. 2009, 18, 305–320. [CrossRef]

15. Schulze, J.; Martin, R.; Finger, A.; Henzen, C.; Lindner, M.; Pietzsch, K.; Werntze, A.; Zander, U.; Seppelt, R. Design, Implementa-
tion and Test of a Serious Online Game for Exploring Complex Relationships of Sustainable Land Management and Human
Well-Being. Environ. Model. Softw. 2015, 65, 58–66. [CrossRef]

16. Rooney-Varga, J.N.; Kapmeier, F.; Sterman, J.D.; Jones, A.P.; Putko, M.; Rath, K. The Climate Action Simulation. Simul. Gaming
2020, 51, 114–140. [CrossRef]

17. Beltramo, A.; Ramos, E.P.; Taliotis, C.; Howells, M.; Usher, W. The Global Least-cost User-friendly CLEWs Open-Source
Exploratory Model. Environ. Model. Softw. 2022, 143, 105091. [CrossRef]

18. Craven, J.; Angarita, H.; Corzo Perez, G.A.; Vasquez, D. Development and Testing of a River Basin Management Simulation
Game for Integrated Management of the Magdalena-Cauca River Basin. Environ. Model. Softw. 2017, 90, 78–88. [CrossRef]

19. Valkering, P.; van der Brugge, R.; Offermans, A.; Haasnoot, M.; Vreugdenhil, H. A Perspective-Based Simulation Game to Explore
Future Pathways of a Water-Society System under Climate Change. Simul. Gaming 2013, 44, 366–390. [CrossRef]

20. Den Haan, R.J.; van der Voort, M.C.; Baart, F.; Berends, K.D.; van den Berg, M.C.; Straatsma, M.W.; Geenen, A.J.P.; Hulscher,
S.J.M.H. The Virtual River Game: Gaming Using Models to Collaboratively Explore River Management Complexity. Environ.
Model. Softw. 2020, 134, 104855. [CrossRef]

21. Ruis, A.R.; Siebert-Evenstone, A.L.; Brohinsky, J.; Barford, C.; Klein, J.; Hinojosa, C.; Shaffer, D.W. iPlan. 2020. Available online:
https://app.i-plan.us/ (accessed on 10 March 2024).

22. Xiang, W.-N.; Clarke, K.C. The Use of Scenarios in Land-Use Planning. Environ. Plan. B Plan. Des. 2003, 30, 885–909. [CrossRef]
23. Tagliafierro, C.; Boeri, M.; Longo, A.; Hutchinson, W.G. Stated Preference Methods and Landscape Ecology Indicators: An

Example of Transdisciplinarity in Landscape Economic Valuation. Ecol. Econ. 2016, 127, 11–22. [CrossRef]
24. Gruenewald, D.A. Foundations of Place: A Multidisciplinary Framework for Place-Conscious Education. Am. Educ. Res. J. 2003,

40, 619–654.
25. Gruenewald, D.A. The Best of Both Worlds: A Critical Pedagogy of Place. Educ. Res. 2003, 32, 3–12. [CrossRef]
26. Theobald, P. Teaching the Commons: Place, Pride, and the Renewal of Community; Westview Press: Boulder, CO, USA, 1997.
27. Theobald, P.; Curtiss, J. Communities as Curricula. Forum Appl. Res. Public Policy 2000, 15, 106–111.
28. Smith, G.A.; Sobel, D. Place- and Community-Based Education in Schools; Routledge: London, UK, 2014.

https://doi.org/10.18174/sesmo.2020a16226
https://doi.org/10.1006/jevp.2000.0175
https://doi.org/10.1080/13504622.2013.812720
https://doi.org/10.1002/ace.7401
https://doi.org/10.1080/13504622.2017.1360842
https://doi.org/10.3410/B2-53
https://www.ncbi.nlm.nih.gov/pubmed/21173858
https://doi.org/10.1371/journal.pone.0014327
https://doi.org/10.1073/pnas.1011615108
https://doi.org/10.1007/s11423-007-9037-6
https://doi.org/10.1007/s10956-009-9171-5
https://doi.org/10.1016/j.envsoft.2014.11.029
https://doi.org/10.1177/1046878119890643
https://doi.org/10.1016/j.envsoft.2021.105091
https://doi.org/10.1016/j.envsoft.2017.01.002
https://doi.org/10.1177/1046878112441693
https://doi.org/10.1016/j.envsoft.2020.104855
https://app.i-plan.us/
https://doi.org/10.1068/b2945
https://doi.org/10.1016/j.ecolecon.2016.03.022
https://doi.org/10.3102/0013189X032004003


Multimodal Technol. Interact. 2024, 8, 30 32 of 33

29. Levy, B.L.M. Fostering Cautious Political Efficacy through Civic Advocacy Projects: A Mixed Methods Case Study of an Innovative
High School Class. Theory Res. Soc. Educ. 2011, 39, 238–277. [CrossRef]

30. Levy, B.L.M.; Zint, M.T. Toward Fostering Environmental Political Participation: Framing an Agenda for Environmental Education
Research. Environ. Educ. Res. 2013, 19, 553–576. [CrossRef]

31. Zellner, M.L.; Milz, D.; Lyons, L.; Hoch, C.J.; Radinsky, J. Finding the Balance between Simplicity and Realism in Participatory
Modeling for Environmental Planning. Environ. Model. Softw. 2022, 157, 105481. [CrossRef]

32. Van der Wal, M.M.; de Kraker, J.; Kroeze, C.; Kirschner, P.A.; Valkering, P. Can Computer Models Be Used for Social Learning? A
Serious Game in Water Management. Environ. Model. Softw. 2016, 75, 119–132. [CrossRef]

33. Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.;
Norton, J.P.; Perrin, C.; et al. Characterising Performance of Environmental Models. Environ. Model. Softw. 2013, 40, 1–20.
[CrossRef]

34. Falcone, J.A. US Conterminous Wall-to-Wall Anthropogenic Land Use Trends (NWALT), 1974–2012; U.S. Geological Survey: Seattle,
WA, USA, 2015.

35. Lark, T.J.; Schelly, I.H.; Gibbs, H.K. Accuracy, Bias, and Improvements in Mapping Crops and Cropland across the United States
Using the USDA Cropland Data Layer. Remote Sens. 2021, 13, 968. [CrossRef]

36. Foster, A.; Shah, M.; Barany, A.; Petrovich, M.E.; Cellitti, J.; Duka, M.; Swiecki, Z.; Siebat-Evenstone, A.; Kinley, P.; Quigley, P.;
et al. Virtual Learning Environments for Promoting Self Transformation: Iterative Design and Implementation of Philadelphia
Land Science. In Immersive Learning Research Network; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–22.

37. iPlan. Greater Madison. The Isthmus, 26 July 2017.
38. Bagley, E.A.; Shaffer, D.W. Promoting Civic Thinking through Epistemic Game Play. In Discoveries in Gaming and Computer-Mediated

Simulations: New Interdisciplinary Applications; Ferdig, R., Ed.; IGI Global: Hershey, PA, USA, 2011; pp. 111–127.
39. Deryng, D.; Sacks, W.J.; Barford, C.C.; Ramankutty, N. Simulating the Effects of Climate and Agricultural Management Practices

on Global Crop Yield. Glob. Biogeochem. Cycles 2011, 25. [CrossRef]
40. Foley, J.A. Net Primary Productivity in the Terrestrial Biosphere: The Application of a Global Model. J. Geophys. Res. Atmos. 1994,

99, 20773–20783.
41. Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, S. Terrestrial Vegetation and Water Balance—Hydrological Evaluation

of a Dynamic Global Vegetation Model. J. Hydrol. 2004, 286, 249–270. [CrossRef]
42. Haxeltine, A.; Prentice, I.C. A General Model for the Light-Use Efficiency of Primary Production. Funct. Ecol. 1996, 10, 551–561.

[CrossRef]
43. Ramankutty, N.; Foley, J.A.; Norman, J.; McSweeney, K. The Global Distribution of Cultivable Lands: Current Patterns and

Sensitivity to Possible Climate Change. Glob. Ecol. Biogeogr. 2002, 11, 377–392. [CrossRef]
44. New, M.; Lister, D.; Hulme, M.; Makin, I. A High-Resolution Data Set of Surface Climate over Global Land Areas. Clim. Res. 2002,

21, 1–25. [CrossRef]
45. Batjes, N.H. ISRIC-WISE Derived Soil Properties on a 5 by 5 Arc-Minutes Global Grid (Ver. 1.2); ISRIC-World Soil Information:

Wageningen, The Netherlands, 2012.
46. Xian, G.; Homer, C.; Demitz, J.; Fry, J.; Hossain, N. Change of Impervious Surface Area between 2001 and 2006 in the Conterminous

United States. Photogramm. Eng. Remote Sens. 2011, 77, 758–762.
47. Hockstad, L.; Hanel, L. Inventory of U.S. Greenhouse Gas Emissions and Sinks; U.S. Environmental Protection Agency: Washington,

DC, USA, 2018.
48. Worth, M.; Guerrero, S.; Meyers, A. 2016 Freight Quick Facts Report (No. FHWA-HOP-16-083); U.S. Federal Highway Administration:

Washington, DC, USA, 2016.
49. U.S. Travel Association. U.S. Travel Answer Sheet. 2018. Available online: https://www.ustravel.org/system/files/media_root/

document/Research_Fact-Sheet_US-Travel-Answer-Sheet.pdf (accessed on 5 October 2022).
50. Kuhle, E.; Sloan, M. Impact of the U.S. Consumer Propane Industry on U.S. and State Economies in 2015. Propane Education

and Research Council. 2017. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=
2ahUKEwjFm8iGo5ryAhWLXc0KHWY8BG8QFnoECAUQAw&url=https://propane.com/wp-content/uploads/2019/02/20
15-Propane-Industry-Impact-on-US-and-State-Economies-FINAL-2.pdf&usg=AOvVaw2ppdiBUyhoRaUB4b8y6WLv (accessed
on 30 September 2022).

51. Jones, C.; Kammen, D.M. Spatial Distribution of US Household Carbon Footprints Reveals Suburbanization Undermines
Greenhouse Gas Benefits of Urban Population Density. Environ. Sci. Technol. 2014, 48, 895–902. [CrossRef] [PubMed]

52. U.S. Environmental Protection Agency. Greenhouse Gas Inventory Data Explorer. 2018. Available online: https://cfpub.epa.gov/
ghgdata/inventoryexplorer/#agriculture/allgas/source/all (accessed on 12 October 2022).

53. Kellogg, R.L. Profile of Farms with Livestock in the United States: A Statistical Summary; U.S. Department of Agriculture, Natural
Resources Conservation Service: Washington, DC, USA, 2002.

54. U.S. Energy Information Administration. Energy-Related Carbon Dioxide Emissions by State, 2005–2016. 2019. Available online:
https://www.eia.gov/environment/emissions/state/analysis/ (accessed on 7 October 2022).

55. Gurney, K.R.; Liang, J.; Patarasuk, R.; Song, Y.; Huang, J.; Roest, G. The Vulcan Version 3.0 High-Resolution Fossil Fuel CO2
Emissions for the United States. J. Geophys. Res. Atmos. 2020, 125, e2020JD032974. [CrossRef] [PubMed]

https://doi.org/10.1080/00933104.2011.10473454
https://doi.org/10.1080/13504622.2012.717218
https://doi.org/10.1016/j.envsoft.2022.105481
https://doi.org/10.1016/j.envsoft.2015.10.008
https://doi.org/10.1016/j.envsoft.2012.09.011
https://doi.org/10.3390/rs13050968
https://doi.org/10.1029/2009GB003765
https://doi.org/10.1016/j.jhydrol.2003.09.029
https://doi.org/10.2307/2390165
https://doi.org/10.1046/j.1466-822x.2002.00294.x
https://doi.org/10.3354/cr021001
https://www.ustravel.org/system/files/media_root/document/Research_Fact-Sheet_US-Travel-Answer-Sheet.pdf
https://www.ustravel.org/system/files/media_root/document/Research_Fact-Sheet_US-Travel-Answer-Sheet.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjFm8iGo5ryAhWLXc0KHWY8BG8QFnoECAUQAw&url=https://propane.com/wp-content/uploads/2019/02/2015-Propane-Industry-Impact-on-US-and-State-Economies-FINAL-2.pdf&usg=AOvVaw2ppdiBUyhoRaUB4b8y6WLv
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjFm8iGo5ryAhWLXc0KHWY8BG8QFnoECAUQAw&url=https://propane.com/wp-content/uploads/2019/02/2015-Propane-Industry-Impact-on-US-and-State-Economies-FINAL-2.pdf&usg=AOvVaw2ppdiBUyhoRaUB4b8y6WLv
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjFm8iGo5ryAhWLXc0KHWY8BG8QFnoECAUQAw&url=https://propane.com/wp-content/uploads/2019/02/2015-Propane-Industry-Impact-on-US-and-State-Economies-FINAL-2.pdf&usg=AOvVaw2ppdiBUyhoRaUB4b8y6WLv
https://doi.org/10.1021/es4034364
https://www.ncbi.nlm.nih.gov/pubmed/24328208
https://cfpub.epa.gov/ghgdata/inventoryexplorer/#agriculture/allgas/source/all
https://cfpub.epa.gov/ghgdata/inventoryexplorer/#agriculture/allgas/source/all
https://www.eia.gov/environment/emissions/state/analysis/
https://doi.org/10.1029/2020JD032974
https://www.ncbi.nlm.nih.gov/pubmed/33133992


Multimodal Technol. Interact. 2024, 8, 30 33 of 33

56. Basu, S.; Lehman, S.J.; Miller, J.B.; Andrews, A.E.; Sweeney, C.; Gurney, K.R.; Xu, X.; Souton, J.; Tans, P.P. Estimating US Fossil Fuel
CO2 Emissions from Measurements of 14C in Atmospheric CO2. Proc. Natl. Acad. Sci. USA 2020, 117, 13300–13307. [CrossRef]
[PubMed]

57. Massachusetts Audubon Society. iPlan/LEM Pilot Project Final Report. 2022. Available online: https://www.rieea.org/wp-
content/uploads/2022/07/LEM-Project-Final-Report_021921.pdf (accessed on 16 March 2024).

58. Massachusetts Audubon Society. iPlan: Mapping the Future: A Curriculum Guide for Mass Audubon Educators. 2022. Available
online: https://www.i-plan.us/images/pdf/Mass%20Audubon%20iPlan%20Curriculum%20Catalog%202022.pdf (accessed
on 16 March 2024).

59. Shaffer, D.W.; Nash, P.; Ruis, A.R. Technology and the New Professionalization of Teaching. Teach. Coll. Rec. 2015, 117, 1–30.
[CrossRef]

60. Ruis, A.R.; Tan, Y.; Brohinsky, J.; Yang, B.; Wang, Y.; Cai, Z.; Shaffer, D.W. Thin Data, Thick Description: Modeling Socio-
Environmental Problem-Solving Trajectories in Localized Land-Use Simulations. In Proceedings of the Advances in Quan-
titative Ethnography: Fifth International Conference, ICQE 2023, Melbourne, VIC, Australia, 8–12 October 2023; Springer:
Berlin/Heidelberg, Germany, 2023.

61. Barab, S.A.; Luehmann, A.L. Building Sustainable Science Curriculum: Acknowledging and Accommodating Local Adaptation.
Sci. Educ. 2003, 87, 454–467. [CrossRef]

62. Ligmann-Zielinska, A.; Church, R.L.; Jankowski, P. Spatial Optimization as a Generative Technique for Sustainable Multiobjective
Land-Use Allocation. Int. J. Geogr. Inf. Sci. 2008, 22, 601–622. [CrossRef]

63. Aerts, J.; Van Herwijnen, M.; Janssen, R.; Stewart, T. Evaluating Spatial Design Techniques for Solving Land-Use Allocation
Problems. J. Environ. Plan. Manag. 2005, 48, 121–142. [CrossRef]

64. Shirabe, T. A Model of Contiguity for Spatial Unit Allocation. Geogr. Anal. 2005, 37, 2–16. [CrossRef]
65. Hay, F.J. Corn for Biofuel Production. 2019. Available online: https://farm-energy.extension.org/corn-for-biofuel-production/

(accessed on 6 October 2022).
66. Blair, R.B. Land Use and Avian Species Diversity along an Urban Gradient. Ecol. Appl. 1996, 6, 506–519. [CrossRef]
67. Pleasants, J. Milkweed Restoration in the Midwest for Monarch Butterfly Recovery: Estimates of Milkweeds Lost, Milkweeds

Remaining and Milkweeds That Must Be Added to Increase the Monarch Population. Insect Conserv. Divers. 2017, 10, 42–53.
[CrossRef]

68. Thogmartin, W.E.; López-Hoffman, L.; Rohweder, J.; Diffendorfer, J.; Drum, R.; Semmens, D.; Black, S.; Caldwell, I.; Cotter, D.;
Drobney, P. Restoring Monarch Butterfly Habitat in the Midwestern US: “All Hands on Deck”. Environ. Res. Lett. 2017, 12, 074005.
[CrossRef]

69. On Average, How Many Pounds of Corn Make One Pound of Beef? Beef Cattle. 3 September 2019. Available online: https:
//beef-cattle.extension.org/on-average-how-many-pounds-of-corn-make-one-pound-of-beef-assuming-an-all-grain-diet-
from-backgrounding-through-to-1250-pound-slaughter-weight-i-have-heard-estimates-ranging-from-6-pounds-corn-1-p/
(accessed on 1 October 2022).

70. Penman, J.; Gytarsky, M.; Hiraishi, T.; Krug, T.; Kruger, D.; Pipatti, R.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. Good Practice
Guidance for Land Use, Land-Use Change and Forestry; Intergovernmental Panel on Climate Change: Hayama, Japan, 2014.

71. Bagley, E.A.; Shaffer, D.W. When People Get in the Way: Promoting Civic Thinking through Epistemic Game Play. Int. J. Gaming
Comput. Mediat. Simul. 2009, 1, 36–52. [CrossRef]

72. Franzmeier, D.P.; Steinhardt, G.C. Indiana Soils: Evaluation and Conservation Online Manual; Purdue University: Lafayette, LA,
USA, 2009.

73. Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; U.S. Department of Agriculture,
Science and Education Administration: Washington, DC, USA, 1978.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1073/pnas.1919032117
https://www.ncbi.nlm.nih.gov/pubmed/32482875
https://www.rieea.org/wp-content/uploads/2022/07/LEM-Project-Final-Report_021921.pdf
https://www.rieea.org/wp-content/uploads/2022/07/LEM-Project-Final-Report_021921.pdf
https://www.i-plan.us/images/pdf/Mass%20Audubon%20iPlan%20Curriculum%20Catalog%202022.pdf
https://doi.org/10.1177/016146811511701205
https://doi.org/10.1002/sce.10083
https://doi.org/10.1080/13658810701587495
https://doi.org/10.1080/0964056042000308184
https://doi.org/10.1111/j.1538-4632.2005.00605.x
https://farm-energy.extension.org/corn-for-biofuel-production/
https://doi.org/10.2307/2269387
https://doi.org/10.1111/icad.12198
https://doi.org/10.1088/1748-9326/aa7637
https://beef-cattle.extension.org/on-average-how-many-pounds-of-corn-make-one-pound-of-beef-assuming-an-all-grain-diet-from-backgrounding-through-to-1250-pound-slaughter-weight-i-have-heard-estimates-ranging-from-6-pounds-corn-1-p/
https://beef-cattle.extension.org/on-average-how-many-pounds-of-corn-make-one-pound-of-beef-assuming-an-all-grain-diet-from-backgrounding-through-to-1250-pound-slaughter-weight-i-have-heard-estimates-ranging-from-6-pounds-corn-1-p/
https://beef-cattle.extension.org/on-average-how-many-pounds-of-corn-make-one-pound-of-beef-assuming-an-all-grain-diet-from-backgrounding-through-to-1250-pound-slaughter-weight-i-have-heard-estimates-ranging-from-6-pounds-corn-1-p/
https://doi.org/10.4018/jgcms.2009010103

	Introduction 
	Overview of the iPlan Modeling Platform 
	Software Availability 
	Research Questions 

	Geospatial Aggregation and Parcelization of User-Defined Regions 
	Approach 
	Validation Methods 
	Validation Results 

	Modeling the Impacts of Land Use on Indicators 
	Approach 
	Validation Methods 
	Validation Results 

	Optimization of Stakeholder Preferences 
	Approach 
	Validation Method 
	Validation Results 

	Use of the iPlan Platform in Educational Contexts 
	Example Uses of iPlan in Classroom Contexts 
	Introduction to Science, Technology, Engineering, and Math (STEM) Disciplinesand Careers 
	Life on Earth, Localized 
	Field Biology 

	Summary of Educators’ Experiences with iPlan 

	Discussion 
	Appendix A
	Land-Use Class Consolidation 
	Map Layer Construction 

	Appendix B
	Appendix C
	Appendix D
	Land-Use Scenario Sampling 
	Computing the Indicator Values for the Land-Use Scenario Sample 
	Optimization of Stakeholder Preferences 

	References

