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Abstract: Computational Fluid Dynamics is one of the most relied upon tools in the design and anal-
ysis of components in turbomachines. From the propulsion fan at the inlet, through the compressor
and combustion sections, to the turbines at the outlet, CFD is used to perform fluid flow and heat
transfer analyses to help designers extract the highest performance out of each component. In some
cases, such as the design point performance of the axial compressor, current methods are capable
of delivering good predictive accuracy. However, many areas require improved methods to give
reliable predictions in order for the relevant design spaces to be further explored with confidence.
This paper illustrates recent developments in CFD for turbomachinery which make use of machine
learning techniques to augment prediction accuracy, speed up prediction times, analyse and manage
uncertainty and reconcile simulations with available data. Such techniques facilitate faster and more
robust searches of the design space, with or without the help of optimization methods, and enable
innovative designs which keep pace with the demand for improved efficiency and sustainability as
well as parts and asset operation cost reduction.

Keywords: machine learning; computational fluid dynamics; turbomachinery; uncertainty quantifi-
cation; physics informed neural networks

1. Introduction

Turbomachines, and in particular Gas Turbines (GT), have been widely used in the
last decades for propulsion, both aviation and marine, power generation and mechanical
drive; while Steam Turbines (ST) have been used mostly for large scale power generation,
both standalone and in conjunction with GT in combined cycles [1]. GT technology is
nearing maturity and efficiency, reliability, availability, and operating range are now close
to entitlement. Consequently, further improvement becomes increasingly complex and
expensive. Most of these units are fossil fuels fired, and the increasing pressure to reduce
their carbon footprint [2] calls for changes that require innovations in many technology
areas to drastically reduce, or zero, emissions and interface seamlessly with renewable
resources. Some examples to cite a few are:

• Fuel flexibility (methane, hydrogen, ammonia, oxi-combustion, and a blend of these
with low NOx emissions),

• Part load performance (when operating below 50% of nominal power),
• Fast start-up and shut-down (which should take less than a minute to allow interfacing

with intermittent renewables),
• Better efficiency (higher firing temperatures and pressures and improved materials

properties),
• Reduced maintenance (for operation in remote areas close to wind or solar farms),
• Improved interface with bottom cycles (operated with steam or organic fluids),
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• Interfacing with Carbon Capture and Sequestration (CCS).

Consequently, designers are faced with the prospect of moving away from well-
established comfort-zone designs, either by applying conventional design to uncharted
applications, or by designing new units in uncharted design spaces [3]. All of these chal-
lenge the entire design process, from the early conceptual to the preliminary and detailed
design stages.

In the specific areas of aerodynamics, aeromechanics (both forced response and flut-
ter), heat transfer, and combustion, design systems are evolving from correlation-based
designs, relying heavily on companies’ proprietary experimental data, to more complex
multidimensional and multidisciplinary approaches that require Computational Fluid
Dynamics (CFD) [3,4]. Correlation-based designs are naturally bound to the investigated
design space envelope and are not suited for exploring design opportunities outside this
space. As a more complex design verification tool based on first principles, CFD has
the potential to investigate any design space. Unfortunately, conventional CFD such as
steady and unsteady Reynolds-averaged Navier–Stokes (RANS and URANS), which are
the main subject of this paper, also suffer from fundamental weaknesses. These can be
imputed primarily to turbulence and heat transfer models, and secondly to the geometry
and operating condition simplifications often made to reduce the computational effort [5,6].
To overcome such deficiencies, most companies develop so-called “best practices” to run
CFD and minimize the deviation from measured data, which apply only to the design
space in which reliable data are available. Consequently, conventional CFD reliability as
a general design tool, although much more powerful compared to correlation-based and
simple 1D and 2D methods, is undermined and design safety margins are applied as a
measure of the “ignorance” of designers and the tools [6].

In previous years, scale resolving simulations such as Large Eddy Simulation (LES)
and Direct Numerical Simulation (DNS), as opposed to time-averaging methods like
(U)RANS, emerged as a viable design aid (see, for example, applications to low-pressure
turbines [7–9], and combustion systems [10]). Figure 1a shows where each method lies
on the trade-off between accuracy and computational expense and Figure 1b shows the
correlation of these methods to the energy spectrum. LES resolves the majority of the fluid
flow energy spectrum and models only the finer dissipation scales where the assumption
of quasi-isotropic turbulence is acceptable [11]. Despite their undeniable superiority to
(U)RANS, LES with appropriate grid resolution is still computationally prohibitive for
wall-driven and statistically periodic flows such as those in multistage compressors and
turbines, while it is more common for the wall-bounded and statistically steady flows
present in combustion chambers [12]. Scale resolving simulations offer superior resolution
allowing designers to determine not only what is happening in the fluid flow, but also why it
is happening [6,11]. This distinction has unlocked an alternative use of scale resolving sim-
ulations as accurate datasets to benchmark and improve (U)RANS models. It is important
to remember that the most popular two-equation model, k-ε [13], was originally developed
and calibrated for boundary layers and free jet flows, and has since been applied with a
fair degree of accuracy to much more complex flows. Therefore, LES and DNS provide the
perfect databases to improve lower-order models, especially when using different forms of
machine learning (ML).

Improved (U)RANS predictability, as well as both Hybrid-LES (HLES) and LES in nar-
rower application ranges, allows the design space to be extended with less fear of running
into inaccurate predictions. A potential by-product of such improvement is represented by
design optimization methods, from simple airfoils aero and aeromechanics [14], to more
advanced multidimensional topology optimization [15] that can ultimately be used with
more confidence while overcoming the excessive computational effort of scale-resolved
simulations. With this premise, this paper attempts to describe current research activities to
evolve CFD methods with the aid of high-fidelity simulation and ML, to further improve
accuracy in both academic and industrial applications.
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(a) (b)

Figure 1. Comparison of the different approaches for modelling turbulence: (a) Computational
expense against accuracy for each approach; (b) the correlation of each method to the energy spectrum,
highlighting which portion of the spectrum is resolved or modelled in each case.

2. Application of Machine Learning Methods to CFD for Turbomachinery Design

The accurate prediction of flow fields is key to the development of new technologies
and products in the critical early phase where a wide design space needs to be explored.
Such necessity does not apply only to turbomachines, but to each application in which a
fluid flow is required to store or convert various forms of energy into various forms of power.
Industry, more than academia, has always faced the challenge of handling heterogeneous
datasets with varying levels of fidelity. These range from simple scaled-down tests, to full-
scale full-system tests, as well as field data from the results of associated computational
design tools. Moreover, the quality of both experimental and computational tools is
continuously improving (for example advanced ceramic probes for high-pressure high-
temperature flows, or LES with appropriate discretization for real geometries and operating
conditions) as is the cost of running experiments and high-fidelity simulations. Given the
sheer size of the heterogeneous datasets present in industry, an updated engineering
approach based on ML methods is required to leverage the available data efficiently.
With an eye on the application of improved prediction methods, several key avenues
currently being explored to various extents, but which nevertheless are worthy of due
consideration, are described below:

1. How can ML indicate ways to improve accuracy at various levels of physics resolution?
With reference to Figure 1a, DNS can be used to improve the subgrid-scale (SGS)
model in LES, which can be used to improve Reynolds-averaged models in (U)RANS.
In particular, we focus on Artificial Neural Networks (ANNs) and Gene Expression
Programming (GEP) based methods that use data from DNS or LES to improve the
accuracy of (U)RANS in some respect.

2. Are ML methods a viable strategy for reduction of computational cost associated with
a single CFD simulation by accelerating the convergence of solvers?

3. Uncertainty quantification (UQ) is employed during the design of new products
to determine the impact of different sources of uncertainty on the performance of
a design. Computing the statistical moments of an uncertain Quantity of Interest
(QoI) does not generally admit analytical solutions, but instead requires meta-models
that are not only accurate but can scale well with the number of uncertain system
parameters. These models must also be able to handle large, heterogeneous datasets
containing data with varying levels of uncertainty. Furthermore, the results of the
uncertainty analysis must be clearly communicated to multi-disciplinary teams who
are stakeholders in the project. How can ML based methods be used to address
these challenges?

4. Finally, is the model able to incorporate multi-fidelity data and help match scarce
experimental measurements affected by errors? Is the model generalisable to a range
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of flow features (for instance adverse or favourable pressure gradients), geometries
(wall-bounded vs. wall-driven) and flow conditions (statistically steady vs. statisti-
cally periodic)?

To facilitate the discussion of these points, reference is made to Figure 2, showing
an instantaneous snapshot of the thermal field in proximity to the trailing edge of a
high-pressure turbine (HPT). The figure summarizes the different sets of information
available, including the flow field computed employing CFD methods with different levels
of resolution.

Figure 2. Data and constraints contributing to the definition of the flow field. The picture illustrates a
snapshot of the mixing of cold and hot streams.

3. Turbulence Modeling with Machine Learning

The modelling of turbulence effects in the internal flows of turbomachines is particu-
larly complex due to the interaction of a wide range of frequencies and the associated flow
structures. Although captured sufficiently in simple cases by classical (U)RANS methods,
regions of high anisotropy and wide ranges of interacting length scales cause the inherent
assumptions relied upon in the development of the RANS closures to break down. The aim
of machine learning in this context is to improve the accuracy of CFD calculations without
resorting to high-fidelity, scale resolving and computationally expensive techniques. This
simple premise has driven the development of a vast range of techniques over the last
10 years each underpinned by a simple philosophy; use data generated from experiments
and, mostly, from high-fidelity simulations to inform on uncertainty and corrections to
existing LES, HLES, and (U)RANS data, and eventually to develop improved models.

In this scenario, with reference to Figure 2, the flow field (a) is available from high-
fidelity simulations with a good degree of accuracy, as well as inlet conditions (b) and
boundaries (c) while discrete measurements points, (e), may be available only to validate
the high-fidelity data. The constraints from theory, (d), are generally considered in the
model learning phase. Approaches can then be largely split into two distinct categories:

1. Those that find corrective functions for the Reynolds stress or other quantities of
interest and apply these in one predictive step to the baseline model. This involves
introducing the corrected Reynolds stress into lower-order closures (DNS to LES or
HLES, and LES to (U)RANS) as a static field from which the velocity and pressure
field can be converged.

2. Those that make inherent changes to lower-order closures (mostly (U)RANS), either
through terms in the turbulence equations or by learning nonlinear models for the
Reynolds stresses based on mean flow features, as discussed in [16]. These models are
then inferenced at every iteration in a subsequent (U)RANS calculation.

Each approach has merits and deficiencies although it is considered that, at con-
vergence, they both yield similar results. Methods using the first approach can learn
discrepancies and make corrections to the quantity of interest in an environment com-
pletely removed from CFD. Just one additional solver is required to predict the mean flow
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variables which solves the RANS equations injected with a static Reynolds stress field. This
modularity keeps implementation simpler and allows the CFD engineer and the machine
learning engineer to operate individually. The second approach requires the machine
learning and the RANS calculations to be more intrinsically linked [17]. As the model must
be inferenced at every step, the machine learnt model must be implemented in the RANS
solver. This can introduce a significant amount of overhead code as different models may
need different implementations. However, once developed, the model is self-contained
and can be run independently.

3.1. The Energy Spectrum in Turbomachinery

Figure 3 illustrates the typical energy plot as a function of the wavenumber (K) for
homogeneous turbulence. The solid black line shows a peak that corresponds to the
maximum energy eddies that, moving to the right, progressively transfer energy to smaller
eddies down to the Kolmogorov scale at which viscous dissipation becomes dominant.
Figure 4 sketches the range of different modelling paths, which will be illustrated with the
help of Figure 3.

Figure 3. Energy spectrum for turbomachinery showing the different scales at which deterministic
frequencies can contaminate the canonical spectrum.

3.2. DNS to Improve LES

A well-resolved DNS constitutes a formidable dataset to develop turbulence models
as it resolves the majority of the Kolmogorov scales at which turbulence is substantially
isotropic. The resolution in LES in terms of K sits in the inertial scale range, as close as
possible to the Kolmogorov scale limit to minimize the importance of the SGS model.
While the open literature offers a wide range of models [18], a good example of the
development of an SGS model with the help of ML based on a DNS database is described
by Park and Joi [19], who used a Neural Network trained on a DNS of a Reτ = 178 flow.
They proved that the resulting SGS model could be applied to channel flows at much
larger Reynolds numbers. With reference to Figure 4, this is the branch A in which the
conservation of a generic quantity f requires the introduction of the additional SGS term in
its transport equation

D f
Dt

=
∂ f (µ,O fi)

∂xj︸ ︷︷ ︸
resolved

+
∂ f (µSGS,O fi)

∂xj︸ ︷︷ ︸
SGS spatial average

. (1)
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In case the resolution in space and time is enough for DNS, the diffusion process
depends on the viscosity µ, which is a fluid property. When the resolution is not enough, it
is necessary to introduce the SGS viscosity µSGS that is a flow property averaged over the
length scale of the spatial grid resolution.

Figure 4. Schematic of the branches by which higher-fidelity scale-resolving simulations can be used
as datasets to inform the development of lower-order models.

3.3. DNS and LES to Improve HLES

Branch B covers the so-called hybrid-LES (HLES) approach in which models switch
to RANS where the grid resolution in space is insufficient. This approach requires cum-
bersome interfacing of LES, which is a space-averaged method, with RANS, which is a
time-averaged method. Weatheritt and Sandberg [20] used machine learning, in particular
Gene Expression Programming (GEP), to tune their HLES approach with the help of a
companion LES and obtained very encouraging results for the flow past twin cylinders.

3.4. DNS and LES to Improve (U)RANS

Potentially the most common path by which machine learning has been employed
in CFD to date is via inference of (U)RANS turbulence closures from higher-fidelity DNS
and LES databases. To this end, Weatheritt and Sandberg [21] developed a novel form of
GEP capable of regressing tensorial expressions. As a symbolic regression technique, GEP
provides explicit algebraic expressions for the quantity of interest which in this case is the
anisotropy. Using the explicit algebraic Reynolds stress (EASM) framework of Pope [22],
they learnt improved nonlinear expressions for the anisotropy which showed promise in
predictive circumstances where the included physics is similar. The GEP methodology
has since been applied to flows relevant in the turbomachinery space, looking at the HPT
cascade [23] and extended the approach to develop nonlinear scalar-flux models for heat
transfer analysis by developing a general form of the scalar-flux based on functional depen-
dence [24]. Applying GEP to LES data of a jet in crossflow representative of film cooling
techniques, they observed significant improvement in the prediction of the scalar-flux term,
culminating in adiabatic effectiveness values more accurately reproducing experiments for
a range of blowing ratios.

Hammond et al. [25] looked to further the GEP methodology introduced by Weatheritt
and Sandberg to validate its capability on more complex 3D flows, such as those generated
by topology optimisation. Using a topology optimised heat exchanger duct as a test case
for a complex internal cooling system, they showed an improved assessment of the aerody-
namic blockage when compared to DES reference data. This analysis is performed with
the intention of applying data-driven closures in fluid optimisation methods, to achieve
designs representative of high-fidelity flow prediction at a fraction of the computational
cost. Whilst GEP has the merit of providing the user with an explicit expression which
can be easily assimilated and assessed, the functional forms that can be expressed are
sometimes limited. ANNs provide the option of greater flexibility and are potentially able
to perform wider searches of the parameter space. Frey et al. [26] built on the work of
Ling et al. [27] and used relatively shallow neural networks trained on DNS data to improve
the eddy viscosity term in the Boussinesq approximation. They applied this approach to a
serpentine channel representative of internal cooling channels in turbine blades. Using a
hierarchical agglomerative clustering algorithm to separate regions of the flow for training,
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they showed that improved results were achieved when the separation regions around
each bend were excluded from training. This was attested to the importance of accurately
predicting turbulent mixing in the flow preceding the separation point and just outside the
rear part of the bubble.

Therefore, ML can be used to develop Reynolds-averaged models using LES (and
DNS when available) by using both different forms of ANNs and GEP, as discussed in [28].
However, different ways to evaluate the fit of the model when introduced in RANS [17]
may also be explored, as summarized in Figure 5. Zhao et al. [17] observed that it was
convenient to verify the trained τML

i,j by using the updated flow field resulting from a new
RANS calculation with the latest candidate constitutive flow as opposed to testing it with
the frozen velocity field from LES. Obviously, the training effort increases significantly,
but it overcomes the problems of the nonlinear response of the NS equations to changes in
the constitutive law.

Figure 5. Training verification strategies which can broadly be split into two main categories: frozen
training and RANS-in-the-loop.

Additionally, as turbomachinery flows are inherently unsteady, it is necessary to
distinguish between RANS and URANS. In this class of models, fine-scale high frequency
motion effects are entirely filtered out and replaced with the so-called Reynolds-stresses
that apply to both turbulent diffusion of momentum and thermal energy.

The filtering process assumes a canonical spectrum, similar to the black line in Figure 3
representative of isotropic turbulence decay. In turbomachines, the energy spectrum may
change due to several possible reasons listed in Figure 3. Combustion systems generate
“broad-band” large-scale unsteadiness that alters the fundamental process of extracting
energy from the mean flow field, and large-scale flow structures are also generated in
axial compressors and turbines post-stall. In this case, RANS may be accurate as long
as the broad-band low frequency energy is small, although it is unclear if the Reynolds-
averaging process based on the canonical spectrum will still work, and an unsteady RANS
that resolves the low frequencies may be a better choice. This is represented by branches
C and D in Figure 4. The energy spectrum of 3 may also change due to the large scale
“deterministic” unsteadiness generated by stator–rotor interaction, trailing edge vortex
shedding, and shock buffeting.

Stator–rotor interaction is driven by the blade-passing frequency that depends on the
airfoil count and the rotational speed, and it generally sits outside the inertial range. There-
fore, the so-called spectral gap (the gap between the deterministic frequency and the fre-
quency range that defines the inertial range) is preserved and the Reynolds-averaging pro-
cess is appropriate [11,29]. In spite of the spectral gap, complex constitutive laws may still
be required to capture the airfoil–wake interaction, as documented by Michelassi et al. [30]
due to curvature and pressure gradient effects. This scenario is represented by branches E
and F in Figure 4.
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With high frequencies, like in high-pressure turbine trailing edge vortex shedding
or in supersonic flows with shock buffeting, the deterministic contribution may sit inside
the inertial range and the spectral gap vanishes. Consequently, there is a strong interac-
tion between the deterministic unsteadiness and the turbulence energy cascade. In this
scenario, Reynolds-averaging will wrongly filter the deterministic contribution, and it
will fail (branches E and F). In this case, the conservation of a generic quantity f can be
formulated as

D f
Dt

=
∂ f (µ,O fi)

∂xj︸ ︷︷ ︸
laminar

+
∂ f (µt,O fi)

∂xj︸ ︷︷ ︸
Reynolds average

. (2)

Similarly to Equation (1), the molecular viscosity µ depends on the fluid, while the turbulent
viscosity µt is a flow property averaged in time.

To overcome the difficulties that a turbulence model has to mimic both deterministic
and stochastic unsteadiness, Akolekar et al. [7] and Lav et al. [31] adopted different ap-
proaches. In [7], the authors applied GEP to develop a RANS turbulence closure based
on several phase-locked averaged flow fields from the LES of a low-pressure turbine with
discrete incoming wakes. The results showed a substantial improvement compared to
a standard two-equation model, although the gap with LES was still evident. In [31],
the authors used the LES past an infinite plate to reproduce the vortex shedding typical
of a low-pressure turbine. The developing wake has both large stochastic unsteadiness
(i.e., turbulence) and large coherent unsteadiness due to the shedding of discrete vortices.
The authors proposed a triple decomposition in which the flow field is split into a steady
time-averaged flow, a periodic component extracted by FFT, and a stochastic component
in a way similar to the so-called Partially-Averaged Navier–Stokes (PANS) equations. They
concluded that the best match with LES was obtained by running URANS with a turbulence
model trained only on the stochastic component of the LES flow field.

In the past, Van de Wall et al. [32] extended the Reynolds stresses that model the
effect of stochastic unsteadiness due to turbulence on the mean flow field, to the so-called
deterministic stresses meant to model the effect of deterministic unsteadiness due to stator–
rotor interaction on the mean flow field, represented by branch G in Figure 4. Therefore,
the resulting conservation equation becomes

D f
Dt

=
∂ f (µ,O fi)

∂xj︸ ︷︷ ︸
laminar

+
∂ f (µt,O fi)

∂xj︸ ︷︷ ︸
Reynolds average

+
∂ f (µDET,O fi)

∂xj︸ ︷︷ ︸
deterministic average

, (3)

in which the deterministic average term is averaged over the low frequency periodic flow
and accounts for the unsteadiness generated by stator–rotor interaction. While µ is a fluid
property, both µt and µDET are flow properties as discussed for both Equations (1) and (2).

4. Acceleration of the CFD Solver

The second avenue for ML which has received significant attention in the context
of CFD is through the acceleration of solvers. The computational cost of running a CFD
simulation, neglecting mesh generation, is driven by: the total number of elements; the
time taken to solve the system of equations (the algorithm); and the number of time steps.
These factors are driven by the approach used, from RANS at one end through to DNS
at the other. As discussed in the previous sections, RANS models struggle to accurately
describe large scale separations (i.e., compressors near stall, flow in the secondary airflow
system, and internal coolant systems). For this reason, attention turns to scale-resolving
LES and DNS despite computational expense considerations rendering them infeasible for
design space exploration, uncertainty quantification and optimisation methods (although
advances in the latter are being made using data-driven turbulence modelling, see [33] for
example). The trade-off between required regional mesh resolution and computational
expense has been explored by many authors [34–36]. Whilst such approaches are feasible
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in low and high-pressure turbines without consideration of the full coolant system, it is
still prohibitive to analyse component-to-component interactions on a regular basis [37].
As such, ML methods currently under development may be able to provide the necessary
relaxation to computational constraints to shift scale-resolving simulations into a range
more suited to industrial design processes.

The directions explored can be split into two broad categories: spatial discretization
and temporal discretization. Spatial discretization approaches aim to speed up the solver
by leveraging coarse meshes with ML to provide super-resolution of the missing details.
In contrast, temporal discretization approaches use ML to forecast the temporal evolution
of a numerical scheme with speeds much faster than the time stepping of the underlying
CFD algorithm. Both approaches will be discussed in detail in the following sections.

4.1. Spatial Discretization Acceleration

The idea behind the acceleration of solvers by considering spatial discretization is
conceptually simple. As mentioned, one of the main driving factors of computational time
in a CFD simulation is the total number of elements. To reduce computational time then, it is
intuitive to reduce the number of elements. However, this comes with a deterioration of the
prediction accuracy. Recently, several formulations [38,39] have been proposed that use ML
to improve the accuracy of prediction on coarse meshes with the result of a massive speed
up in simulation time for the same accuracy. The ML component in the solver is trained
on high-fidelity simulation and the methodology described acts as a general multiscale
framework that can be used to speed up scale resolving LES and DNS simulations.

A secondary advantage of super-resolution methods is the improvement that can be
made in overall I/O cost. The datasets generated by DNS are very large. For instance, up to
20Tb of data may be stored per time step for wall-bounded flows with Re = 104, present in
low-pressure turbine stages. The overall I/O cost can be significantly reduced by storing a
fraction of this dataset and using super-resolution to reconstruct the missing data.

The approach presented by Kochkov et al. [38] aims to predict the accurate evolution
of a CFD simulation, using a mesh with an order of magnitude coarser resolution in each
spatial dimension and learned interpolation to achieve a computational speed up around
40 times. However, the success of this technique is highly dependent on the availability of
large datasets of high-resolution data. One approach with aims to mitigate the need for
large high-resolution training sets is offered by Gao et al. [39]. They aim to reconcile sparse,
noisy training datasets using convolutional neural networks where the physics are injected
by constraining the network to match conservation laws and boundary conditions; this
method is based on PINNs which will be described in detail in Section 6.

4.2. Temporal Discretization Acceleration

The other avenue by which ML can be utilised to accelerate CFD solvers is through
forecasting the temporal evolution of the solution. A detailed comparison of such methods
is offered by Fotiadis et al. [40] who investigate the performance of four different neural
networks for solving the inviscid 2D shallow water equations, equivalent to compressible
wave propagation problem. The authors compared three recurrent networks (LSTM,
ConvLSTM, PredRNN++) and one feed-forward U-Net model.

The LSTM (long-short term memory) model was initially proposed for the prediction
of wave propagation by Sorteberg et al. [41]. Their network comprised a convolutional
encoder and decoder structure with three LSTM blocks in between. The vector output
of the encoder branch is then propagated forward in time by the LSTMs before being
decoded to obtain the forecasted fields. Both the ConvLSTM and PredRNN++ models use
convolution operations inside a recurrent cell to find a connection between temporal and
spatial modelling. PredRNN+ also utilizes spatial memory that traverses the stacked cells in
the network, hence increasing short-term accuracy [42]. Whilst CovLSTM and PredRNN++
have been empirically demonstrated as suitable for short-term spatio-temporal prediction,
accuracy inevitably deteriorates in longer-term forecasting.
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The final model compared by the authors, U-Net, has been used in various spatio-
temporal prediction problems. For instance, to infer optical flows, motion fields and velocity
fields [43–45]. The model is trained end to end and is conditional on its own prediction.
The fact that the input of the network depends on its former predictions allows a significant
improvement in the long-term accuracy.

4.3. Reduced-Order Models

Many of the approaches proposed in the literature for accelerating fluid simulations
use the fact that the underlying model is a surrogate of the real one, with an approximate
solution of Navier–Stokes equations. To give a real advantage, these so-called Reduced-
order models (ROMs), which have been used for many years in turbomachinery flows,
must be faster than the original Navier–Stokes equations [46]. There are two main aspects
of a ROM: the identification of different scales and the identification of a suitable formu-
lation within which to describe them. Machine learning methods, mainly through image
recognition development, have expanded both areas in recent years. In turbomachinery,
the segregation of scales is evident, particularly in multistage simulations, wakes, boundary
layers, and local separations where a range of length scales exist simultaneously.

It can be shown that a shallow linear autoencoder acts as a Proper Orthogonal Decom-
position (POD) method, while, increasingly, deep nonlinear autoencoders are being used.
After the appropriate system is defined, the dynamics of these systems need to be defined.
Several ML methods can be utilised here, including sparse identification of nonlinear
dynamics, SINDy that has been used for a wide range of applications, from laminar and
turbulent flows to wakes [47].

A further approach has been provided by CFDNet [48]. Standard CFD solvers are used
to warm up the solutions and CFDNet then forecasts the evolution, before leaving the CFD
solver to construct the final output. The authors explained how these three steps (warmup,
inference, and refinement) contribute to generating an ML framework capable of dealing
with unseen cases. The refinement case uses the CFD solver to refine the inference output
of the neural network, ensuring that the model is consistent with physics. A more general
version of this framework is proposed by Leer and Kempf [49]. The authors proposed
a combination of a minimalistic multilayer perceptron (MLP) and a radial-logarithmic
filter mask (RLF) to generate a surrogate model able to predict internal and external flows.
The RLF encodes the geometry into a compressed form to be interpreted by the MLP and
allows fast estimation of flow fields for various applications.

Whilst all the above methods show promising features, it should be highlighted that
they are, for the most part, applied only to simple canonical situations. For wide scale
integration in the field of turbomachinery, their capabilities must now be demonstrated
consistently on complex cases representative of flows present in an industrial setting.

5. Uncertainty Quantification and Management

A potential area of application for the machine learning methods discussed in the
previous sections is in the quantification and management of uncertainties during the
design process. In order to develop a robust design that can deliver good performance
across a range of operating conditions, it is necessary to consider the uncertainties affecting
the system [50]. Figure 6 illustrates the importance of this for industry, through a probability
density function (PDF) that represents the variation between the measured and quoted
performance. Examples of performance metrics include the efficiency, life, or operability
of a product. The quoted performance, Fquoted, is defined as the predicted performance,
Fpredicted, minus a safety margin that includes all uncertainties, Fquoted = Fpredicted − ∆F1.
The safety margin is introduced to avoid falling below contractually accepted limits, ∆FL
(for example 4% on power). The tail of the PDF left of the vertical grey line indicates cases
in which a unit does not meet the performance acceptance limit. The red curve assumes
∆F1 = 0 and the risk of not meeting the quoted performance is large. The blue curve sets
∆F1 > 0 to reduce such risk. In other words, the average expected performance is penalized
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by shifting the red curve to the right. The amount of shift is directly proportional to the
overall uncertainty. The more truncated tails of the green curve show the case in which
uncertainty is reduced, or controlled, and the performance prediction is more accurate.
The probability mass to the left of the grey line is identical for both the blue and green
curves, i.e., both distributions have the same risk of not meeting contractual performance;
however, the safety margin of the green curve is smaller (∆F2 < ∆F1) and therefore it is
possible to quote a higher performance with the same risk.

Figure 6. Effect of uncertainty on quoted performance. The red line corresponds to an uncertain
parameter with no saftety margin and high probability of failing performance standards. The blue
line shows the same uncertain parameter with a large saftey margin ∆F1 required to reduce failure
probability to an acceptable level. The green line shows how the safety margin ∆F2 achieving same
failure probability can be reduced by reducing the overall uncertainty.

The uncertainties affecting a product are typically divided into two categories: aleatoric
and epistemic. Aleatoric uncertainties refer to uncertainties arising from random fluctu-
ations in the environment. In the context of turbomachinery, these might arise from:
uncertain operating conditions [51]; variations or imperfections introduced in the geometry
during manufacturing or caused by wear [52]; and noise present in experimental mea-
surements [53] (constraints (b), (c), and (e) in Figure 2). On the other hand, epistemic
uncertainties refer to uncertainties introduced by the simplifications necessary to model a
real world system. In addition to numerical effects introduced by truncation, uncertainties
introduced by applying theoretical assumptions, a lack of available data, or constraints
to a turbulence model come under this category (point (d) in Figure 2). While aleatoric
uncertainties are irreducible, in principle, epistemic uncertainties are reducible and could be
minimised, for instance by collecting more data or developing models that more accurately
capture the physics.

5.1. Quantifying Aleatoric Uncertainty

The goal of Uncertainty Quantification (UQ) is to estimate the impact of uncertainties
on the performance of a product, which might be expressed as a probability distribution
or a confidence interval for a given Quantity of Interest (QoI). We first consider the for-
ward propagation of aleatoric uncertainties, in which a joint density over the uncertain
parameters affecting the system, ξ, is available. At a minimum, the designer is concerned
with estimating the first two statistical moments of a QoI, i.e., the mean and standard
deviation performance of a design operating in uncertain conditions [54]. Reliability analy-
sis, in which the relatively low probability of the uncertain conditions leading to failure
is estimated, is something of an exception to this as this probability will be determined
by the distribution tails [55,56]. Nevertheless, the example of estimating the mean and
standard deviation of a QoI is instructive, as it illustrates the need for accurate meta-models
of expensive CFD simulations for UQ in an industrial setting.
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Evaluating the first two statistical moments of an uncertain QoI entails solving the
integral for the mean:

E(w) =
∫

w(ξ) f (ξ)dξ, (4)

and for the variance:
Var(w) =

∫
(w(ξ)−E(w))2 f (ξ)dξ, (5)

where w represents the QoI and ξ ∈ <nu the uncertain parameters with joint density
f (ξ). These integrals are unlikely to admit an analytical solution. Numerical methods
such as stochastic collocation may be employed for low-dimensional uncertain spaces [57];
however, these become computationally intractable for large scale problems. In such
cases, Monte Carlo sampling is a popular strategy for approximating these integrals and is
particularly effective if the computational model w(ξ) is cheap to evaluate. An accurate
assessment of the aleatoric uncertainties affecting a product requires the evaluation of n
Monte Carlo samples, perhaps on the order of n ≈ 105–106, with the confidence of the
estimate of the mean converging as n−

1
2 [58]. Given the computational costs associated

with a single CFD simulation, the statistical assessment of a design using direct Monte
Carlo sampling is impractical; a surrogate model or meta-model of the system is required.
This meta-model is trained using a limited dataset of CFD simulations, after which the
meta-model may be evaluated at what is assumed to be negligible cost. Methods such as
non-intrusive Polynomial Chaos Expansions (niPCEs), while effective for low-dimensional
uncertain spaces [59], suffer from the curse of dimensionality, where the minimum number of
simulations required to determine the coefficients of the expansion grows rapidly with nu.
While there is current research targeted at mitigating this aspect of niPCEs (see, e.g., [60,61]),
at present, niPCEs are generally infeasible for the high-dimensional problems faced by
industry. On the other hand, intrusive Polynomial Chaos Expansions, which require
alterations to the CFD code, are criticised for being difficult to implement in an industrial
context, although again academics working to mitigate this critique (see, e.g., [62,63]).
Addressing these issues presents an opportunity to employ machine learning methods,
which have been demonstrated to scale well to high-dimensional spaces, as meta-models
that can be used to accelerate simulations, allowing for the accurate statistical assessment
of the uncertainties affecting a product.

5.2. Quantifying Epistemic Uncertainty

Quantifying the effects of epistemic uncertainty can be difficult [64]. However, quanti-
fying the structural uncertainties in RANS is a key challenge for industrial CFD simulations
as the constraints introduced by theory or experience on a turbulence model are largely
responsible for mismatches between simulations and experiments [5,6]. There are already
works in the literature that have addressed the issue of model form uncertainty in RANS
simulations, which we group into three strategies: perturbation-based; Bayesian-based; or
discrepancy modelling.

Banerjee et al. [65] demonstrated that the three limiting states of the turbulent anisotropy
could be represented as a barycentric map. As an example of the first set of approaches,
Gorlé et al. [66] and Emory et al. [67] proposed a perturbation based method for quantifying
the epistemic uncertainty in RANS turbulent closures. Uniform eigenvalues perturbations
were made to the Reynolds stress anisotropy tensor in the direction of the limiting states of
turbulence (1, 2, and 3 component turbulence) to produce a conservative upper bound to
the upper bound. These perturbations, and the barycentric coordinate system, are illus-
trated in Figure 7. Later versions of this method incorporated machine learning, employing
a random regression forest to vary the size of the eigenvalue perturbation locally according
to the feature importance of a set of 12 dimensionless features [68]. An advantage of the
perturbation based approach is that UQ can be performed without requiring a high-fidelity
dataset to compare the RANS simulations against, as is the case for the other two categories
of approaches.
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Bayesian frameworks have been proposed that treat the parameters of the Reynolds
stress tensor as a set of uncertain parameters [69–71]. Beginning from a set of prior dis-
tributions and a joint PDF for the likelihood, posterior probability distributions for these
parameters are inferred through a calibration process, in which the predictions of the
RANS model are compared against a dataset of high-fidelity observations [72,73]. Figure 7
illustrates this change in perspective using the barycentric coordinate system referenced
above. The workflow for the Kalman inversion scheme in Xiao et al. [72] is represented
schematically in Figure 8. Rather than perturbing the RANS predicted state towards each
of the three limiting cases, in the Bayesian interpretation of the problem, new, physically
realisable states are sampled from a posterior distribution. As has been mentioned, a pre-
requisite for these Bayesian based methods is that a set of high-fidelity data is available to
compare the RANS simulations against. This could be the results of experiments [74,75] or
from DNS data.

Figure 7. Barycentric map of the physically realisable states of turbulence as a combination of three
limiting states of turbulence: one, two, and three components (1C, 2C, and 3C, respectively) and
represented the perspectives for pertubation based and Bayesian based methods of UQ in this space.
Adapted from [67,76]. Copyright 2016 Elsevier B.V.

Figure 8. A schematic illustrating the Kalman inverison scheme: the posterior distribution for the
uncertain parameters in RANS is adjusted to reconcile the ensemble of propagated states as closely
as possible with the observations. Adapted from [72]. Copyright 2016 Elsevier Inc.

Finally, there are those methods that develop a statistical model for the discrepancy
between RANS and high-fidelity data. In the work of Dow and Wang, for instance, the dis-
crepancy between the turbulent viscosity field predicted by RANS and the field inferred
from the DNS data via inverse RANS is modelled as a Gaussian random field [77]. Similarly,
the work of Duraisamy et al. [78–80] uses field inversion and machine learning methods
to develop a functional form of the discrepancies in the model. For further discussion
on the topic of quantifying the model form uncertainty in RANS models, we refer the
reader to the excellent reviews of Duraisamy et al. [81] and Xiao and Cinella [82]. Section 3
of this paper details recent developments in using machine learning to improve RANS
simulations by leveraging high-fidelity data from LES. Often, this is achieved by using
machine learning to estimate a set of invariant quantities that can be combined linearly to
form the anisotropy tensor in the turbulent closure. The majority of these methods do not
consider the uncertainty introduced by this mapping, although some progress has been
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made in this regard. Geneva and Zabaras [83] introduced a Bayesian formulation of the
neural network used by Ling et al. [27] to compute the anisotropy tensor. Through Monte
Carlo sampling of a Bayesian Neural Network, they were able to quantify the uncertainty
in this term and consequently place probabilistic bounds on the estimated pressure and
velocity fields.

5.3. Quantifying Mixed Uncertainty and Visualisation

The methods that have been described so far in this section target the quantification of
aleatoric and epistemic (specifically model form) uncertainty separately. Ultimately, tools
will need to be developed for industries capable of processing both types of uncertainties
simultaneously. This is a challenging problem. However, some progress has been made
in this direction within the turbomachinery space [84]. Quantifying the effects of mixed
uncertainty may require engineers to reconsider how uncertainty is visualised and com-
municated. Rather than specifying a single probability distribution for the QoI, a p-box
approach that can be used to bound families of likely Cumulative Distribution Functions
(CDFs) might be more effective [85,86]. A disadvantage of these methods is that p-boxes
are an abstract concept, the meaning of which is difficult to convey to non-experts. Ling
and Townsend [87] proposed a classification based approach, using ML classifiers such
as Support Vector Machines, to identify the regions of the greatest uncertainty in RANS
simulations of flows over several geometries. An advantage of this method is that the
levels of uncertainty present in a simulation may be presented intuitively, as can be seen in
Figure 9. In risk-averse industries such as aeronautics, new products are heavily scrutinised
by regulators before they can be certified [88]. As part of the process of certification, it
is necessary to justify the design decisions with the evidence that was available to the
designers at the time. For machine learning methods to become incorporated within the
design process, it will be essential for the uncertainty present in these methods to be clearly
indicated, particularly the predictive uncertainty that can account for epistemic uncertain-
ties arising from a lack of data. At present, the majority of machine learning methods
provide point estimations with no way of quantifying the uncertainty in the estimate. As is
discussed in the reviews of Hüllermeier and Waegeman [89] and Psaros et al. [90], moving
away from ‘black-box’ models and accounting for aleatoric and epistemic uncertainty will
be crucial for the massive industrial application of machine learning. The papers review
methods that currently accomplish this, such as Bayesian Neural Networks.
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Figure 9. Perspectives for visualising the results of uncertainty analyses: illustration of a p-box
(top) and representation of RANS uncertainty from Ling and Townsend (bottom, adapted from [87].
Copyright 2015 AIP Publishing LLC.).

5.4. Multi-Fidelity Methods

Finally, industry usually has a wealth of heterogeneous data from the manufacturing,
assembly, operation, and servicing of components. These data will be affected by uncer-
tainty to various extents (see, e.g., [91]). It would be beneficial if these data could be used
to inform future designs, particularly at the conceptual design phase where the resources
available to evaluate candidate designs are limited, but where the decisions taken have a
significant impact on the final product [92,93]. Exploiting these data are the motivating
philosophy behind the digital twin approach to design, in which sustainable practices
throughout the lifecycle of a product are encouraged [94]. However, using a large hetero-
geneous dataset of historic data is a challenging task due to both the size of the datasets
involved and the varying levels of epistemic uncertainty associated with the collection of
the data. This is especially true if uncertainty must be propagated between computational
models at multiple scales or levels [95]. There is currently a great deal of research within
the UQ community directed at multi-fidelity methods, in which generative models that
are informed by heterogeneous datasets are developed. Approaches based on Gaussian
processes (co-kriging) [96,97], multi-fidelity Polynomial Chaos Expansions [98,99], multi-
level Monte Carlo [100], and different forms of physics informed neural networks such
as those by Wang and Zhang [101] and Yang et al. [102] have all been proposed for the
solution of the PDEs that govern fluid flows. More recently, Pepper et al. [103] presented a
Knowledge-Based Neural Network (KBaNN) capable of computing additive corrections
to the output of a model based on a coarse computational mesh. The KBaNN was able
to generalise to flows that share similar physics. In principle, this approach can be used
to add more advanced modelling features and make it possible to develop a bi-fidelity
method that leverages data from any existing simulation database.

Of these methods, co-kriging has proved to be particularly popular due to the natural
way in which the heterogeneous uncertainties may be handled. An additional advantage
is that the predictive uncertainty may be expressed through the kriging variance (see,
e.g., [104–107] for examples in the aeronautics and turbomachinery spaces). In recent years,
there has also been emphasis placed on developing ML methods for multi-scale [108–110]
or multi-level [111,112] uncertainty propagation. However, many of these papers aim at im-
proving low-fidelity model evaluations with datasets from high-fidelity model evaluations,
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rather than experimental data which is likely to be noisier and more difficult to reconcile
due to unresolved physics in the computational models. One approach might be to focus
on identifying the “worst offenders” in the low-fidelity model to target. For instance,
Lengani et al. used Proper Orthogonal Decomposition (POD) to construct a reduced-order
model of a turbine wake in which the modes that contributed the most to unsteady losses
could be identified [113]. Nevertheless, for a more comprehensive improvement in the
accuracy of simulations, it may be necessary to consider more drastic machine learning
approaches. This new paradigm of machine learning methods might offer a means to
reconcile simulations of a complex flow field with the available experimental data while si-
multaneously satisfying the remaining constraints in Figure 2. These new forms of machine
learning are discussed in more detail in the following section.

6. New Forms of Machine Learnt Tools

The overwhelming complexity of turbulent flows requires a technology step change to
overcome the inherent limits of the approaches followed to date. The so-called turbulence
models required by the (U)RANS approach do not attempt to model turbulence; instead,
they model the effect of turbulence on a Reynolds-averaged flow field. Such models proved
reasonably accurate for engineering applications [5,114], but they have difficulties predict-
ing axial compressor operability [115], heat transfer, aeromechanics, and more generally
any off-design operation of aerodynamic bodies [5]. Therefore, the seamless application of
(U)RANS is model accuracy limited. The obvious cure is to switch from modelling to resolving
the high frequency broad spectrum turbulent motion by LES or DNS. Regretfully, the associ-
ated computational cost of realistic scale-resolving simulation is excessive, and the practical
application of high-fidelity simulations in industry is computational resources limited.

As discussed earlier in this paper, various forms of machine learning have been used to
improve turbulence models—first, for example, GEP and ANNs trained on data from scale-
resolving simulations. More recently, an evolution of ANNs, known as Physics Informed
Neural Networks (PINNs), introduced a step change in the computer simulation of complex
flow fields. Karniadakis et al. [116] provided a detailed explanation of the potential offered
by PINNs. This may be understood with reference to the practical example schematized
in Figure 2, which describes the mixing of cold and hot streams and represents a typical
GT hot-gas-path design problem. The flow field, (a), must obey fundamental conservation
principles such as mass, momentum, and enthalpy balances, under a combined set of inlet
conditions, (b), and boundaries, (c). The combined set of (a), (b), (c) is enough to perform
a computer simulation of the flow and the accuracy of their specification is key to the
quality of the final result. However, the physics models adopted in the simulation may
not necessarily satisfy the constraints dictated by theory and experience, (d), and may
not guarantee a good match with measurements, (e). In this case, the only option left to
a designer is to start a long and tedious set of iterations to determine the impact of the
mesh, model assumptions and boundary conditions on the results, in an attempt to match
measurements better. Following from [116], Cai et al. [117] illustrate a way to overcome this
bottleneck by training a neural network capable of reproducing the flow field of Figure 2
by using all the available sets of information. With reference to the specific fluid dynamics
case of Figure 2, a PINN may be trained to

(a) Obey the basic conservation principles of the time-averaged Navier–Stokes equa-
tions (PDE);

(b) Match inlet operating conditions (IC);
(c) Match boundary and geometrical conditions (BC);
(d) Obey the fundamental turbulence constraints for theory (see, for example, turbulence

invariants formulated by Lumley [118]), (TC);
(e) Match measurements obtained from experiments (ME).
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The overall training process may be followed with the help of Figure 10 in which
a Neural Network is trained to fulfil the constraints that concur in a penalty function Σ,
which measures the quality and maturity of the PINN training process

Σ = πPDEΣPDE + πICΣIC + πBCΣBC + πTCΣTC + πMEΣME. (6)

The quantities Σφ represent the deviation from the expected value (for example, the
PDE conservation error), and πφ are a set of weights used to control the severity of the
deviation from each separate constraint. The advantage of training a Neural Network
based model with this approach is its ability to account for all the information, data, and
constraints simultaneously. In fact, the flow field predicted by a PINN trained with this
approach will match the measured data (e) while fulfilling all theoretical constraints and
the boundary conditions. The results reported in [116,117] suggest that this is possible,
although PINNs and their training process are not ready for massive industrial application.
In particular, Cai et al. [117] followed the approach summarized in Equation (6) for the
simulation of a portion of the incompressible vortex shedding flow downstream of a
cylinder. The set-up of the training dataset had to be appropriately selected, but the results
indicated the method was able to capture the most relevant flow features with an L2-norm
error ranging from 1% to≈10% depending on the velocity component. They further verified
their approach on a bow-shock case showing similar accuracy. Eivazi et al. [119] followed a
similar approach for the simulation of a boundary layer with adverse, zero, and favourable
pressure gradients, confirming that the PINN approach could replicate the boundary layer
development with a fair degree of accuracy. The authors also tackled the challenging
problem of periodic hills where a sizeable flow separation develops. The predicted flow
field, which required inlet conditions, geometry, and boundary values of the static pressure
in selected locations, compared well with a reference DNS dataset. In their detailed paper,
Raissi et al. [120] described how the solution of well known PDEs, such as the Schrodinger,
the Allen-Cahn, and Navier–Stokes equations can be reproduced with PINNs. Their
approach differed from that summarized by Equation (6) as they trained the PINN using
200 initial data points randomly sampled from the exact solution available at the initial time
step. They used a relatively light network with four hidden layers and 200 neurons per
layer to ensure a very good match with the reference exact solution. This is illustrated in
Figure 11, highlighting the excellent match between the instantaneous static pressure field
downstream of a circular cylinder predicted by the direct solution of the Navier–Stokes
equations, and by the PINN.

Figure 10. A generalized schematic of the Physics Informed Neural Network (PINN) approach.
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Figure 11. Instantaneous static pressure in the vortex shedding region downstream of circular
cylinder. Reproduced with permission from [120]. Copyright 2018 Elsevier Inc.

Although the applications seen to date are relatively simple, they show the huge
potential of this method that is not to be seen as a viable replacement for CFD models,
but rather as a model capable of incorporating and reconciling multi-fidelity data from
different sources, as summarized by Equation (6).

7. Summary and Outlook

Design systems, and particularly turbomachinery design, are increasingly aided by
first-principle CFD tools and by general multi-disciplinary optimization methods. This
paper summarizes the avenues along which design methods and performance optimization
tools can be further improved.

• In a design optimization loop, the quality of a design is measured by interrogating an
estimator, in this case, CFD. The quality and robustness of the optimal solution are
dictated by the reliability of CFD, the accuracy of which can be boosted by ML.

• Each design iteration, especially when dealing with multidisciplinary verification, is
very computationally intensive. ML can improve optimizer convergence by reducing
the number of iterations and, more importantly, the cost associated with each design
performance analysis.

Along these lines, this paper begins by focusing on the areas in which machine learning
is already making a direct impact on CFD within the space of turbomachinery—specifically,
where data from higher-fidelity simulations are used to train models which augment lower-
fidelity calculations in an attempt to reconcile the model accuracy limiting of (U)RANS with
the computational resource limiting of LES or DNS. Machine learning has been successfully
used mostly to overcome the difficulties stemming from the modelling of turbulence,
the driving mechanism of entropy change. These methods have shown significant promise
with improved prediction observed for flows including but not limited to high and low-
pressure turbines, cooling flows such as jet in crossflow and turbine internal cooling ducts,
waste heat recovery systems, carbon capture and sequestration systems.

Despite their clear potential, it is recognized that at present such methods rarely
consider the epistemic uncertainties introduced by these mappings, whilst also assuming
single-point specification of initial and boundary conditions. In risk-averse industries such
as aviation and marine, as well as power generation for civil and industrial applications
where turbomachines are often employed, this uncertainty needs to be quantified and
managed to support design decisions and allow certification of products by regulatory
bodies. Considering this, current methods are reviewed that account for the uncertainty
of some Quantity of Interest in the presence of both aleatoric and epistemic uncertainties.
The methods shed light on how UQ can be leveraged to provide some level of assessment
of the predictive confidence of these machine learnt models, when applied in previously
unseen cases. Improved accuracy will help determine the effect of single components’
performance on the overall engine (i.e., compressor operability, combustion emissions,
high-pressure-turbine durability, power turbine efficiency) and eventually aid decisions
on the most appropriate corrective action in case of problems. More accurate CFD with a
manageable computational effort will also allow the analysis of component to-component
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interaction, often a cause of unexpected problems (i.e., inlet system and axial compressor
instability, combustion chamber and high-pressure turbine durability, power turbine and
exhaust system noise, aeroacoustic cavity excitation, to cite a few).

These approaches demonstrate an underutilized but highly important aspect of predic-
tive models if they are to be accepted for large scale integration in an industrial setting. They
also bring attention to a fundamental question: how can traditional computational simu-
lation be seamlessly reconciled with the wealth of heterogeneous data often available in
industry, each contaminated by varying levels of resolution in space and time, and aleatoric
and epistemic uncertainty during their collection. This is by no means a straightforward
task. Specification of conservation laws, initial and boundary conditions for some geometry
may be sufficient to run a computational simulation but does not guarantee agreement
with measured data and design experience.

A recent development that offers the potential to unify these two opposing facets of
industrial design comes through the introduction of Physics-Informed Neural Networks
(PINNs). PINNs offer a unique opportunity to combine all sources of available information
in a single constrained optimisation network. Measured data, data from high-fidelity
sources, theoretical physical laws and tried and tested empirical relationships can all be
considered simultaneously by incorporating them, with appropriately selected weightings,
in the loss function of a learning machine. The development of PINNs brings the field
of machine learning in fluid dynamics to a very exciting juncture, where seamless data
fusion appears to present itself as a serious contender. Whilst currently in their infancy and
applied only to relatively simple applications to date, researchers will inevitably exploit
the rich vein that PINNs uncover. This will no doubt come through application to a
multitude of more complex problems, to show their pertinence in a general setting and
provide novel perspectives to old challenges. Whilst this may be a clear direction, a more
thoughtful approach is encouraged at this point, particularly within the industrial setting
of turbomachines.

Future data-driven approaches should endeavor to account for the wealth of prior
knowledge to reduce the vast high dimensional parameter spaces and reduce the computa-
tional complexity of the search for optimal solutions. Predictions using developed models
should also be presented with an uncertainty caveat such that practitioners have confidence
in the results obtained and can justify the design decisions taken as a result. Although fully
replacing current conventional methods will take time, there is already a clear path toward
new methods with a wider validity range—those that, with the help of ML, make the best
use of measurements from both dedicated scaled-down tests and high-fidelity field data,
enforce theory and improve the prediction accuracy of computational tools from early to
detailed design.
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