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Abstract: Gas–liquid mixtures are present in numerous industrial applications, such as in the process
industry, oil production and transport with natural gas, deep-sea extraction, and irrigation. Any
pump may have to carry multiphase flows. However, the present document is related to non-
miscible liquid/gas flow transport analysis in centrifugal pumps because which topic can be a more
challenging task compared with axial and mixed flow machines due to specific body force and
buoyancy actions and large density differences between the phases. The present document first
introduces the main usual gas–liquid two-phase definitions and simplifications. A dimensional
analysis introduces the main flow variables and parameters that are used for pumps. Basic physical
aspects of flow motion in an impeller channel are explained, and a rapid description of two-phase
flow patterns in radial flow pumps is described. Finally, a review of simplified empirical and
semi-empirical analytical models is proposed with their limitations.

Keywords: two-phase; pumps; dimensional analysis; analytical models

1. Introduction

The capability of pumps to convey a two-phase mixture depends, in the first place,
on whether gas and liquid form a homogenous mixture or to what extent the two phases
separate. Fine gas bubbles dispersed in a liquid can be considered as a quasi-homogenous
mixture. The bubbles are supposed to be entrained by the liquid flow, but there is some
slip between the phases, which may cause additional losses.

However, in a straight channel, pressure gradients in the flow direction are usually
moderate, and the pressure field in a rotating impeller strongly influences the phase
distribution. A gas bubble always moves in a pressure field to the location of the lowest
pressure. Transporting mixtures with high fractions of gas by pumps is a challenging
task since gas and liquid tend to separate because of their large density differences. This
can be very inefficient or even impossible when phase separation is re-enforced due to
intense pressure gradients perpendicular to the main flow direction, such as in centrifugal
machines compared with axial ones. Depending on the inlet shape impeller design (e.g.,
purely two radial blades or 3D blade shapes), different phase velocities occur close to the
suction surface region at the impeller inducer part. Because a negative pressure gradient
prevails, the bubbles move more quickly than the water. Thus, in the space just after this
region, the distributions of the void fraction obtained are higher and uneven. The change
in the pressure distribution owing to air admission is also particularly evident in the inlet
region of the impeller. These changes bring about an alteration of the whole flow pattern
in the impeller and cause a drop in pump performance. With larger gas volume fractions,
bubbly flow is no longer possible since small bubbles tend to coalesce to form larger gas
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accumulations (as in slug or plug flow in a pipe). When gas accumulates in the pump, the
delivery can be disrupted, and the pump becomes “gas-locked”.

Liquid droplets that are transported inside a mainstream gas can also be considered a
homogeneous mixture but are not considered here.

2. Two-Phase Parameters for Pump Applications

The parameters that are usually used for pumps are listed below. These parameters
are deduced from basic two-phase definitions but with several assumptions. All details are
given in Appendix A.1.

1. Gas fraction x:

x =
.

mG/
( .
m G +

.
mL
)
, assuming steady state condition. (1)

2. Void fraction α:

α =
QG

QG + QL
, assuming steady state condition. (2)

3. Slip ratio between phases SV:

SV =
VG
VL

or SV =
WG
WL

depending on the absolute or relative frame. (3)

4. Mass flux G:

G =
( .
m G +

.
mL
)
/A in

(
kg/s/m2

)
(4)

5. Homogeneous two-phase density ρtp:

ρtp = αVρG + (1− αV)ρL (5)

3. Dimensional Analysis Application in Pumps

When a two-phase gas–liquid mixture is present in any rotating machine, the increase
of pressure in the pump ∆ptp can be written as a function of several variables listed below:

- A characteristic length of the pump, i.e., the impeller diameter dimp;
- The rotational speed n;
- The gas and liquid flow rates, respectively, QG and QL;
- The gas and liquid densities ρG and ρL;
- The gas and liquid kinematic viscosities υG and υL;
- The surface tension σ;
- The gravitation acceleration.

∆ptp = F
(
dimp, n, QL, QG, ρL, ρG, υL, υG, σ, g

)
(6)

This suggests that inlet pressure and temperature are not considered here, not because
they are not important parameters but because their influences are neglected in the present
approach. Therefore, cavitation effects are excluded here, although they effectively belong
to the two-phase flow category that also affects pump performances but are governed by
different physics.
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If one takes dimp, n and ρL (*) as fundamental variables, it is possible to define eight
non-dimensional groups and write:

∆ptp/ρL((ndimp)
2) =

F′QL/(nd3
imp), QG/(nd3

imp), ρG, /ρL, (nd2
imp)/υL, (nd2

imp)/υG,
n2dimp/g, ρLn2d3

imp/σ

(7)

(*) Note that the liquid density appears here instead of the density mixture (that must
also be defined). The liquid phase is consequently supposed to be the primary flow that
governs the main resulting pressure field in the pump.

- nd2
imp/υGL is related to the liquid phase Reynolds number. Typical values reach

2 × 106, which means that viscous effects are mostly concentrated inside boundary
layers. Viscous effects can be neglected compared with inertia terms.

- nd2
imp/υG is related to the gas phase Reynolds number, and typical values are close to

1 × 105.
- ρLn2d3

imp/σ is related to the Weber number. Typical values are around 3 × 106. This
means that the surface tension effects can be considered negligible compared with
liquid inertia effects.

- g
n2dimp

is related to the ratio between gravitation and centrifugal forces, often rep-

resented by the Froude number. The order of magnitude is about 5 × 10−2. The
centrifugal acceleration can be considered the most important one compared with the
gravitational one inside the rotating parts of the pump.

- ρG
ρL

is close to 10−3, if an air–water mixture is considered. This suggests that the most
important effects on the pressure field are dominated by the liquid phase, as already
mentioned. Note that, in some cases, this density ratio may be controlled and may not
be neglected.

By taking all the above assumptions and simplifications, one can write:

∆pT,tp/ρL((ndimp)
2) = F′′ (QL/(nd3

imp),
ρG
ρL

) (8)

For all other terms depending on QL
QG

, another variable β = QG
QL

is introduced so that:

αV =
QG

QG + QL
(9)

αV

(
1 +

1
β

)
=

β

1 + β
(10)

Therefore, β = αV
1−αV

and (1− αV)(1 + β) = 1.
Relation (8) can be written as follow:

∆pT,tp/ρL((ndimp)
2) = F′′′ ((1 +

QG
QL

)× nd3
imp, αV) (11)

or:
∆pT,tp/ρtp((ndimp)

2) = F′′′ ((1 +
QG
QL

)×QLnd3
imp, αV) (12)

with ρtp = (1− α)ρL + αρG (13)

This means that the pressure increase in a pump under two-phase conditions mainly
depends on the flow coefficient and the local void fraction.

Note that the local void fraction can change inside the pump, being dependent on
the flow coefficient. The separation of the variables that is proposed in this dimensional
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analysis is thus questionable. In Section 5.1, the method proposed by Mikielewicz for
correlating performance characteristics for pumps under two-phase flows leads to the same
identification of these two major parameters.

4. Pumps Two-Phase Performance Representation—Basic Physical Aspects

Investigation on two-phase flows in pumps is often compared with single-phase
liquid conditions using the inlet pump void fraction ε instead of the local one α, which is
generally not known and is a result of how the flow mixture evolves inside each pump
fixed or rotating parts.

The total head coefficient ψT and flow coefficient ϕ are introduced as follows:
ψT = gHT

U2
2

= F1(ϕ, α), for incompressible flow and iso thermal condition.
or

ψT =
gHT

U2
2

= F1(ϕ, ε) (14)

The pump performance curves usually consider the pump as a «black box».
Figure 1 gives an example of such curves. (Data from Gamboa and Prado [1]). The

pump head decreases for increasing inlet void fraction values ε. Pump surging corresponds
to the beginning of the sharp head decrease, the location of which depends on the liquid
flow rate. Gas lock areas are related to constant head values on the left-hand side.
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Figure 1. Experimental results of two-phase electric submersible pump (ESP) stage performances at
best efficiency (be) point. Non-dimensional head versus liquid flow rate for several inlet void fraction
values ε. (Data from Gamboa and Prado [1]).

Depending on the pump design and the operating point, the mean cross-section void
fraction α inside the pump is always observed to be higher than the inlet value ε.

The way the liquid flow rate (that is finally delivered by the pump) is changing directly
depends on the loss level inside the pump channels, which is also related to the increase in
the inlet void fraction. Estevam et al. [2] and Barrios [3] propose the so-called “two-phase
mapping” plot (Figure 2) to show how the liquid flow rate can be related to the gas flow
rate in association with flow patterns that have been identified by several authors and
described in the next section.

4.1. Two-Phase Flow Patterns Inside a Pump

The description and identification of local flow patterns inside a pump are considered
using an analogy with what has been observed in horizontal or vertical pipes (Section 5.2),
even if the physical phenomena that act on the main flow in pumps are different for pipes
(no rotational effects).
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Figure 2. Example of two-phase mapping (Data from Estevam et al. [2] and Barrios [3] for ESP pumps.

Four different flow patterns are detected. Summarized by Verde et al. [4], the schematic
representation of each flow pattern is shown in Figure 3 (increasing inlet void fraction
from left to right). For small intake void fraction, the flow regime presents tiny and evenly
dispersed bubbles inside impeller channels, as shown in Figure 3a. Under this regime, the
bubbles are deemed to move together with the liquid phase also inside the impeller (the
slippage between gas and liquid is small).
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Figure 3. Flow two-phase regime patterns inside the impeller with increasing inlet void fraction
(from left to right sides): (a) bubbly; (b) agglomerate bubbly; (c) gas pocket; (d) segregated. (Data
from Verde et al. [4]).

As the intake void fraction increases, the tiny bubbles are prone to collide and aggre-
gate to form bigger ones. In contrast to the bubbly flow regime, the phase slippage between
gas and liquid, corresponding to a bubbly agglomerate regime (shown in Figure 3b), can no
longer be neglected. Thus, depending on the intake void fraction, the local void fraction α,
under bubbly flow, becomes higher than ε. A further increase in inlet void fraction induces
more severe collision and aggregation of bubbles so that large gas pocket forms, including
agglomerated bubble flow (Figure 3b), gas pocket flow (Figure 3c) and segregated flow
(Figure 3d). The intensity of pump performance degradation is directly influenced by the
flow pattern within the impeller. The occurrence of the gas pocket flow pattern is linked
to the intensification of the deterioration of pump performance and the appearance of
operation instabilities. Moreover, the segregated flow patterns correspond to the most
severe performance degradation, which makes the pump incapable of generating pressure.

Each flow pattern can generally be associated with specific modifications of pump
performance deterioration in relation to liquid flow rate change. More details can also be
found in the review paper by Zhu and Zhang [5].

These deteriorations also depend on pump design, flow rate ratio, rotational speed,
and inlet void fraction. Inlet bubble diameter is not considered here. A statistical analysis
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based on two-phase experimental results performed on several conventional centrifugal
pumps close to design conditions (Jiang et al. [6]) gives approximate estimations of the
maximum admissible inlet void fraction for which homogenous assumption remains valid
inside the impeller. This is illustrated in Figure 4, where three colored straight lines are
shown for small, intermediate, and strong head slopes versus inlet void fraction. The first
two slopes correspond to a quasi-homogeneous flow pattern inside the impeller channel.
Keeping such a pattern up to an inlet void fraction of 7% is only possible for a few cases
(3D twisted impeller inlet shapes and high rotational speeds).
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Figure 4. Pump head degradation ratio versus inlet void fraction. Each curve and symbol correspond
to individual published results at pump design point from different authors that can be found in
Jiang et al. [6].

A head ratio of 50% is reached for a maximum admissible inlet void fraction εdegrad of
11–12% at design conditions, as shown in Figure 4. This can be observed for high rotational
speeds (above 2500 rpm) or for large impeller outlet radius R (up to U2 = 25 m/s). However,
for low rotational speeds and 2D blade designs, stronger slope is observed (blue line)
corresponding to rapid churn and slug flow patterns inside the impeller or even at the
impeller inlet pipe. These cases are only able to pump flow mixtures up to 3 to 5% for the
same head degradation level. This is summarized in Figure 5.
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4.2. Analogy with Flow Pattern inside a Tube

The flow pattern observed in Figure 3 is often compared with those found in vertical
or horizontal tubes, such as in Figure 6, extracted from Baker [7]. This analogy is purely
descriptive, as already pointed out in the previous section. However, such a flow pattern
must be detected and well-known at the inlet pipe tube of any pump working under
two-phase mixtures, especially when horizontal inlet pipes are used. Depending on the
liquid flow rate, the inlet pump flow pattern may not always be a homogeneous bubbly
flow regime as frequently supposed or set for inlet boundary conditions.
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For a given pump and a given inlet flow coefficient, the flow rate and the head depend
on the rotational speed. If, for any purpose, the flow rate becomes lower than the rated
one, inlet pipe two-phase flow conditions can jump from a homogeneous bubbly regime to
plug or even stratified regimes. Thus, the rotational speed may also have an indirect effect
on pump performances due to variable inlet two-phase patterns, as described above. In
many experimental results, it is very difficult to distinguish whether the pump performance
is affected by non-homogeneous inlet conditions or because of the internal void fraction
variation. Shaoa et al. [8] presented an analysis related to this problem, but this is rarely
investigated in the open literature.

4.3. Physical Mechanism—Single Phase Conditions

Let us consider the equilibrium of forces acting on a single-phase particle located at
point M inside a centrifugal impeller passage. For steady-state conditions, when neglecting
shear stresses and momentum exchange between streamlines, the pressure gradient equals
the sum of the inertia and centrifugal forces that result from the flow turning plus the
centrifugal forces due to both rotation and the Coriolis forces.
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This can be expressed on the blade-to-blade plane (see Figure 7) using the streamline
coordinates (s, n, b), where s is along the streamline, n is normal to the streamline in the
blade-to-blade surface, and b is the binormal perpendicular to s and n:(

1
ρ

)
→

grad
p = − →

W

(
δW
δS

)
· →

iS
±
(

W2

Rb

)
· →

in
+ω2 →

R
−2ω →

W
sin ϕ· →

in
(15)
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The right-hand side terms, respectively, correspond to the streamwise inertia force,
the centrifugal force due to the curvature, the centrifugal force and the Coriolis force. The
positive sign of the curvature term corresponds to a convex streamline, while the negative
sign corresponds to a concave streamline.

Considering backswept blades designs, the radius of the curvature Rb is large, and
the Coriolis term is bigger than the centrifugal term. A transverse pressure gradient is
generated with the high pressure on the pressure side due to the Coriolis force term.

In the meridional plane shown in Figure 8, where the curvature 1/Rm is large at inlet
regions of impellers, while the absolute tangential velocity is small (the tangential velocity
component is normal to the meridional plane (Z, R)), a pressure gradient from shroud
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to hub balances the centrifugal force due to the streamlined meridional curvature. The
balance of forces along the normal direction nm leads to:(

1
ρ

)
∆p

δnm
= (V2

θ /R)cos ϕ− (V2
m/Rm) (16)
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Hence, the inviscid balance of forces leads to a velocity increase from hub to shroud.
The impeller flow is controlled by the inviscid forces in the inlet region, where viscous
effects are not yet developed. In the radial parts of the impeller, both terms on the right-
hand side of Equation (16) will become small and tend to zero.

4.4. Physical Mechanism—Forces Acting on a Single Bubble inside the Main Core Flow in an Axial
and a Centrifugal Impeller

For an arbitrary pressure field, a gas bubble always tends to be pushed by the main
surrounding liquid flow. This result is related to the fluid dynamic drag FD, which the
liquid exerts on the bubble, as shown in Figures 9 and 10.
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Assuming that the bubble is mainly affected by the drag force and the pressure
gradient force, along with its motion, the force balance on the bubble at a given instant is:

mBδ →
VB

δt
=→

FP
+ →

FD
(17)

The left-hand term contains the bubble mass and can be neglected due to the difference
between bubble and liquid densities.

Consequently, the velocity of a gas bubble relative to the liquid with a pressure field
expressed by the gradient δp

δsB
can be expressed by the following relation:

(VL −VG)
2 −

(
− δp

δsB

)(
2dB
ρL

)
CD (18)

where CD is the drag coefficient, and dB is the bubble diameter. Detailed development can
be found in Part C.

In an axial flow impeller passage, the relative velocity deceleration induces less pres-
sure gradient towards the outlet compared with radial machines. A stronger pressure
gradient may have an influence when the bubble trajectory departs from its original one.
Secondary flows also impact bubble trajectories and velocity change due to the combination
of meridional and blade-to-blade curvatures (Gülich [9], chapter 5).

Gas bubble trajectory was experimentally and numerically investigated in a centrifugal
impeller by Stel et al. [10] and, more recently, by Ofuchi et al. [11]. Stel et al. [10] found
that the bubble trajectories inside the impeller passage are very sensitive to the bubble
diameter. When the bubble diameter increases, its trajectory tends to move towards the
blade pressure side when leaving the inter-blade second throat area.

Liquid and bubble streamlines also differ depending on the inter-blade location. Other
factors, such as rotational speed, flow rate and impeller design parameters, influence bubble
trajectories. Bubble deformation has also been observed with larger consequences on drag
and trajectories.

However, in real situations, air–liquid mixture contains several bubbles that interact
together and make their behavior more complicated. Depending on the flow rate ratio,
strong deceleration can occur on the pressure side close to the blade inlet section at a high
flow rate. At a low flow rate ratio, strong deceleration occurs on the impeller suction
side, generally after the inlet impeller throat area. For both cases, bubbles tend to coalesce
together, and a critical gas volume fraction can be reached, creating channel gas blockage
and head degradation. Bubble coalescence creates an increase in bubble diameter and/or
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bubble interactions. The physical analysis performed for a single bubble is no longer valid
if phase separation occurs. Momentum exchange between each phase and slip ratio effects
must be considered.

Finally, note that the drag force is proportional to the bubble surface, whereas the
pressure force is proportional to the bubble volume. If the bubble diameter increases, the
pressure force increases faster than the drag force. Each bubble trajectory tendency is
thus reinforced.

5. Simplified Approaches for Pumps Two-Phase Performance Prediction
5.1. Semi-Empirical Correlation

Mikielewicz et al. [12] developed a method for correlating pump performance char-
acteristics in two-phase flows producing a “Head- Loss Ratio” which corresponds to the
apparent loss of head in a two-phase condition divided by the loss of head in a single-
phase condition.

For each phase, Euler equations are developed so that head loss can be extracted from
the theoretical head and real one for two-phase conditions.

The theoretical head coefficient obtained with two-phase flow conditions can be
written as follows:

ψt,th,tp = 1− ftp,2 ϕ tan β2 assuming no inlet tangential absolute velocity (19)

Introducing the two-phase function, a:

a =

(
α

1− α

)
·ρG
ρL

(20)

ftp is so defined as:

ftp =
(1 + a)

(
1 + as2

v
)

1 + asv2 (21)

Note that ftp = 1, when sv = 1.
It is generally assumed that most of the head losses due to two-phase flow patterns

mainly occur inside the impeller passage and in the volute but with less extent.
The total two-phase losses are defined as the sum of wall friction losses plus separation

flow losses. The separation flow losses can be approximated as being proportional to the
square of the actual flow rate Qtp minus the best efficiency one Qbe.

This leads to the following:

∆pLOSS
tp,sep = Ksep

{(
QL
Qtp

)
−
(

Qbe
Qtp

)}2
Q2

tp (22)

Ksep is a constant for separated loss correlation that can be obtained or predicted for
single-phase conditions.

The expression for the total pressure loss for a given pump can be written as:

∆pLOSS
t = ∆pt,th,tp − ∆pt,tp (23)

which is expressed as the difference between the two-phase theoretical pressure increase in
the pump ∆pt,th,tp and the actual pressure increase ∆pt,tp.

∆pLOSS
t = fsp

(
R·L
A2

)
dhyd

(
ρtp

ρL

)2
Q2

tp

(ρL
2

)
+ K′

{(
1− α

1− α + αsV

)
−
(

Qbe
Qtp

)}2
Q2

tp (24)

In the above expression, the first term of the second member is directly related to the
pressure losses due to wall friction and the second one to separation losses.
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- fsp corresponds to the usual single-phase friction factor that depends on the pump
Reynolds number and the wall roughness factor, as can be found on the well-known
Moody diagram.

- L is an approximated channel length (impeller or volute).
- A is a characteristic pump area.
- dhyd is the hydraulic diameter (impeller or volute).

- R =
(

1−x
1−α

)2

- QL
Qbe

= 1−α
1−α+αsV

.

Note that for an air–liquid mixture and for sV = 1, x is of the order of 10−4 when
α< 30%. Therefore, R can be approximated by R′∼ 1/(1− α)2.

This means that the two-phase pressure losses due to friction can be modified by a
factor 1/(1 − α)2

For a given pump operating point, let us consider that the two-phase pump head fits
the system resistance curve so that:

Htp = Ksp (QG + QL)2, which suggests that the pump head is only proportional to the
square of the total volume flow rate.

Then, it can be approximated by:
Htp = Ksp (1 + β)2 QL

2 = Ksp. QL
2(1/(1 − α))2 = KspQL

2R′, which is equivalent to the
previous relation except for high void fractions.

The final expression of the Head ratio H*, as proposed by Michielewicz et al. [12], can
be written as:

H∗ =
∆HLOSS

t,tp

∆HLOSS
t,sp

=
∆Ht,tp,th−∆Ht,tp
∆Ht,sp,th−∆Ht,sp

=

( 1+a
1+as )

2
+ K

{(
1−α

1−α+αsV

)
− ( Q∗

Qtp
)

2
}

/
{
(1− α)(1 + a)(1 + K

(
1− Qbe

Qtp

)2
)

} (25)

In this last relation, K is a combination of the geometrical constant of any one pump
and a function of the flow regime, which directly depends on α.

Therefore, H∗ is principally a function of void fraction and flow coefficient but also a
function of rotational speed and slip ratio.

The main assumption about this one-dimensional approach is that each phase enters
the rotor with the same absolute angle and leaves the impeller with the same relative angle.
It is always possible to verify this assumption, but only when pumping external losses (disk
friction and leakage losses) are correctly evaluated from experimental torque measurements
(Gülich [9]).

The more homogeneous the flow regime, the more closely the relative losses approach
the single-phase values. Therefore, the existence of flow regimes other than homogeneous
is the principal determining factor for the prediction of the characteristics in two-phase
flow. This includes the problem of loss prediction due to bubble diameter variation, bubble
agglomeration and phase separation with associated slip ratio evaluation.

5.2. Analytical Approaches

Analytical approaches have been developed based on one-dimensional hypothesis
considering the flow as:

(a) An average mixture of homogeneous bubbly flow.
(b) Considering separated phases called the two-phase modeling.

Both approaches lead to solving differential equations allowing for essentially de-
termining the evolution of the local void fraction and slip velocity with flow rate; there-
fore, it gives more detailed flow features compared with the semi-empirical approach
presented earlier.
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All detailed development of these methods can be directly found in the related ref-
erences that are given below. However, the main definitions, assumptions and closure
relation that undergo each model are presented in Appendix A.

(a) One-Dimensional Two-Phase Bubbly Flow Modeling

An analytical method was proposed by Furuya et al. [13] with an inviscid flow as-
sumption to investigate the head degradation due to two-phase pumping. The method is
applied in a control volume bounded by two successive streamlines separated by a distance
dn, where the momentum equation is developed, then integrated from the impeller inlet
to outlet sections assuming that the trajectory of liquid is identical to that of bubbles. A
simple interfacial force is introduced using the momentum equation applied to a bubble.
The final differential equation is written as follows (see Appendix B):

.
(m L

2
/(ρLd2

n))
(

1
1−α

){(
1

1−α

)
δα
δs − ( 1

dn
)( δdn

δs )
}
+

.
(mG

2
/(ρGd2

n))((1− α)/α2)
{
(1/α) δα

δs − ( 1
dn
)( δdn

δs )
}
+

0.5ρL

{ .
(mG/ρGdnα)

2[(
1
α

)
δα
δs + ( 1

dn
)( δdn

δs )
]}

+
.
(mL/(ρLdn(1− α)))

2[(
1

1−α

)
δα
δs − ( 1

dn
)( δdn

δs )
]
=

(ρL − ρG)(1− α)rω2sin βcos ϕ

−(3/8)(CD/RB)ρL

[ .
mL/(ρLdn(1− α))−

.
(mG/ρGdnα)

]∣∣∣ .
mL/(ρLdn(1− α))−

.
(mG/ρGdnα)

∣∣∣
(26)

With the following mass conservation equations:

.
mtp = (

.
mG +

.
mL)

.
mtp = dn(1− α)WLρtp

.
mL = dn(1− α)WLρL

.
mG = dnαWGρG

This differential equation contains only one variable α. All other quantities here are
either constant or known as a function of s. Therefore, if the boundary conditions at the
impeller inlet section are known, the ordinary differential Equation (26) can be solved for
α along s. Once α(s) is obtained, all other parameters can be solved. Furthermore, each
phase’s relative velocity is determined from the mass conservation equations.

The comparison with experimental data proposed by Furuya et al. [13] shows that head
degradation is mainly caused by a higher acceleration in the liquid phase and deceleration
in the gas phase than in the case of single-phase flows. Because no relative outlet deviation
angle model is proposed (neither slip factor), the results only appear valid when bubbles
remain in the main core flow (or close to the suction side of the impeller), which corresponds
to flow patterns observed in axial and mixed flow machines.

(b) One-Dimensional Two-Fluid Modeling (Minemura et al. [14])

This approach is like the one proposed by Furuya et al. [13] but introduces analytical
functions for wall friction losses, shock losses, rapid expansion, mixing losses at the impeller
outlet on one side, and slip coefficient on another side to determine the effective absolute
tangential velocity used for theoretical head evaluation. It is so potentially more applicable
to centrifugal pumps.

In addition, several models for interfacial friction coefficient and virtual mass coeffi-
cient are proposed and further adapted when applied in real cases.

The constitutive equations allow for calculating the effective performance change op-
erating under two-phase flow conditions using the velocities and void fractions calculated
under bubbly flow with slippage between the two phases. It is demonstrated that the
head is scarcely affected by bubble diameter in the impeller and friction factor between
the two phases for a reduced range of void fraction (α below 25%), whereas it was more
affected by the outlet relative velocity differences using the Furuya’s approach but for a
wider range of α.
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Minemura et al. [14] also presented the results of their model, looking at the evolution
of the main parameters along the impeller passage of a centrifugal pump. The following
Figures 11 and 12 give interesting comprehension of what should locally occur on the
slip ratio, head coefficient and void fraction inside the impeller, such as in Figure 11 (for
best efficiency point), and dimensionless loss variations versus inlet void fraction for two
different flow coefficients, such as in Figure 12.
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In Figure 11, the void fraction reaches maximum values after the impeller’s first throat
area and remains almost constant (about three times the inlet value). A significant increase
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can be detected when the inlet void fraction ε is bigger than 0.06. A rapid decrease of the
velocity ratio is also observed and corresponds to the increase of the head loss coefficient.

In Figure 12, one can observe that the head of friction loss is the maximum among all
the losses and remarkably increases near the breakdown condition. The void fraction at the
impeller exit region is so large that the liquid phase velocity is much greater than the gas
phase velocity. All other losses are rather small for both flow rates. The sudden change in
loss curve evolution corresponds to a given threshold value of ε that is chosen to match the
experimental results. The first abrupt change corresponds to the bubble drag coefficient
from homogeneous to slug flow pattern proposed by Hench and Johnston [15], and the
second one, from slug to churn flow pattern, is proposed by Zuber and Hench [16].

5.3. Surging Criteria Detection

An interesting model to predict the operational conditions that cause two-phase
pump surging is proposed by Barrios and Prado [17]. In this approach, surface tension
and rotational speed are involved in determining the flow patterns and in predicting the
occurrence of stagnant bubbles at the channel intake. These two variables were not present
in the models presented in previous sections of the present paper. This model depends on
two important variables, namely the stagnant bubble size and the bubble drag coefficient.
A bubble size correlation is presented with a new correlation for the drag coefficient as a
function of rotational speed and Reynolds number. Not many authors refer to such a work.

6. Conclusions

The present part A brings together the main two-phase flow definitions usually used
for pumps and different approaches based on correlation and one-dimensional models that
are proposed in the open literature.

Close to the best efficiency point, these models can predict pump performances under
two-phase flow conditions accurately when homogeneous conditions are present. For
off-design conditions and high inlet void fraction, the only way to predict the performances
within an error of ±20% is to adapt interfacial loss and deviation outlet angle models.

For centrifugal pumps, because of strong 3D effects, the one-dimensional approach is
limited to a small range of void fractions and is very dependent on bubble sizes that govern
interfacial losses. Radial impeller flow channels display significant non-uniformity in void
fraction distributions in the transverse as well as in meridional directions. This means that
chum-turbulent flow and low-void fraction bubbly flow may co-exist at a given location.

This is the reason why an appropriate 3D CFD approach is necessary to obtain a better
local flow understanding (see Part C) in association with the local experimental analysis
presented in Part B.
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Nomenclature

a two-phase function, a =
( α

1−α )ρG
ρL

A cross area

b
outlet impeller width- binormal direction
(intrinsic coordinate system)

CD Reynolds dependent drag coefficient
d diameter
D total derivative
Fx function
G mass flux
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g gravitational acceleration
H head
H∗ head loss ratio
h enthalpy
K constant
.

m mass flow rate per unit time
m mass

n
direction normal to s (intrinsic coordinate
system)

n rotational speed
p pressure
Q volume flow rate
R radius
r radial vector direction

s
direction of a streamline. (Intrinsic
coordinate system)

SV phase slip ratio
t blade pitch, time
U rotating velocity
V absolute velocity
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Nomenclature 

a two-phase function, 𝑎 = ቀ ഀభషഀቁఘಸఘಽ  

A cross area 
b outlet impeller width- binormal direction (intrinsic coordinate system)𝐶஽ Reynolds dependent drag coefficient  
d diameter 
D total derivative 
Fx function 
G mass flux 
g gravitational acceleration 𝐻 head 𝐻∗ head loss ratio 
h enthalpy 
K constant 𝑚ሶ  mass flow rate per unit time 
m mass 
n direction normal to s (intrinsic coordinate system) 
n rotational speed 
p pressure 
Q volume flow rate 
R radius 
r radial vector direction 
s direction of a streamline. (Intrinsic coordinate system) 
SV phase slip ratio 
t blade pitch, time 
U rotating velocity 
V absolute velocity 
Ʋ volume 
W relative velocity 
x gas fraction—gas quality 
z axial direction 
α local void fraction, absolute flow angle 
β gas to liquid ratio, relative flow angle 
δ derivative 
Δ increment, difference 
ε inlet void fraction 
φ flow coefficient, 𝜑 = ொଶగோమ௕మ௎మ = ொଶగఠோమమ௕మ 

φ meridional angle 

volume
W relative velocity
x gas fraction—gas quality
z axial direction
α local void fraction, absolute flow angle
β gas to liquid ratio, relative flow angle
δ derivative
∆ increment, difference
ε inlet void fraction
ϕ flow coefficient, ϕ = Q

2πR2b2U2
= Q

2πωR2
2b2

ϕ meridional angle
µ dynamic viscosity
υ kinematic viscosity = µ/ρ
ζ loss coefficient
θ tangential direction
ρ density
ψ head coefficient, ∆ψ =

g∆H
U2

2

η efficiency
ω angular velocity
σ surface tension
Indices
be best efficiency
B bubble
cs cross sectional
degrad related to 50% head decrease.
D drag
G gas
H homogenous
hyd hydraulic
imp impeller
L liquid
LOSS related to losses
m meridional
opt optimum
p due to pressure gradient
ps pressure side
R resultant
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rel relative to the liquid phase
ss suction side
sp single phase
t total
th theoretical
tp two-phase
v volumetric
0 related to α = 0
1 impeller inlet section
2 impeller outlet section

Appendix A

Appendix A.1. Two-Phase Basic Definitions

The following basic definitions are obtained in any channels in which gas and liquid
phases exist, whether they are separated or not.

(a) Gas Fraction (or Gas Quality) x

x = mG/(mG + mL) (A1)

For steady state,
x =

.
mG/(

.
mG +

.
mL). (A2)

(b) Void Fraction

α =
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L) (A3)

If steady state is assumed, then:

αV = QG/(QG + QL), is called thevolumetric void fraction (A4)

Q corresponds to the volume flow rate of each phase.
With 1D flow assumption, one can write:

αcs = AG/(AG + AL) (A5)

αcs is thus called the cross-sectional void fraction. AG is the area of the cross-section of
a channel occupied by the gas phase, and AL is that of the liquid phase. For simplicity, the
cross-sectional void fraction is called α.

One can see that the volumetric void fraction introduces the notion of two consecutive
cross-sections separated by a small-time difference ∆t.

(c) Cross-Sectional Void Fraction

The most widely utilized void fraction definition is the cross-sectional average void
fraction, which is based on the relative cross-sectional areas occupied by the respective
phases. They are predicted using several types of approaches, such as the following:

- Homogeneous model, which assumes the two phases travel at the same velocity.
- One-dimensional models which account for differing velocities of the two phases.
- Two-dimensional models incorporating the normal distribution of the local void

fraction and velocities.
- Models based on the physics of specific flow regimes.
- Empirical and semi-empirical methods.
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Appendix A.2. Homogeneous Model and Velocity Ratio

(a) Homogeneous Void Fraction

From the definition of the cross-section void fraction of a channel of area A, the mean
gas and liquid velocities VG and VL are given below by using the gas quality x and the
volumetric flow rates of the gas and the liquid, respectively, QG and QL

VG =
QG
Aε

=

( .
m
ρG

)
(

x
ε
) (A6)

VL =
QL

A(1− ε)
=

( .
m
ρL

)
(

1− x
1− ε

) (A7)

The basis of the homogeneous model is that it assumes that both phases travel at the
same velocities. Thus, equating the above equations for equal velocities VG = VL leads to

εH = (
x

ρG
)/(

(1− x)
ρL

+

(
x

ρG

)
) (A8)

or
εH = 1/(1 +

1− x
x

)(ρG/ρL) (A9)

The homogeneous void fraction model is reasonably accurate for limited cases. The
best agreements are found for bubbly and dispersed droplets or mist flows. Note that for
bubbly flow, the continuous phase is liquid, and the gas is the entrained one. For the mist
flow, the continuous phase is the gas, and the entrained phase is the water.

When approaching the critical pressure of a given mixture, the difference between
each phase’s densities disappears. The homogeneous void fraction model is also valid at
very large mass velocities and high vapor qualities.

(b) Velocity Ratio: SV.

The velocity ratio is a concept used in separated flow models, where it is assumed that
the two phases travel at two different velocities VG and VL. It is also often referred to as the
slip ratio. Moreover, a discontinuity cannot physically exist between the phase velocities
since a boundary layer is formed at the interfaces of both phases. The slip ratio describes
the relative mean velocities of the co-existing phases for simplicity.

SV = VG/VL (A10)

Then ε = 1/(1 +
(

1− x
x

)
SV

(
ρG
ρL

)
)

and x =
1

1 + 1−ε
ε

(
ρL
ρG

)SV

SV =

(
1− ε

ε

)(
x

1− x

)
(ρL/ρG)

For equal velocities, the expression of ε reverts to the same expression obtained for
the homogeneous model expression.

The value of the velocity ratio depends on the mixture configuration. For upward
and horizontal co-current flows, VG is nearly always greater than VL. For vertical down
flows, VG may be smaller than VL due to gravity effects. Numerous analytical models
and empirical correlations have been proposed for slip ratio determination in the open
literature.

(c) Mass Flux G.
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G =
.

m/A (A11)

(d) Homogeneous Two-Phase Density ρtp

ρtp = αVρG + (1− αV)ρL = ρL +
1

ρG − ρL
+ 1/

[
(

SVρG(1− x)
ρL(ρG − ρL)x

)x
]

(A12)

Appendix B.

An analytical method was proposed by Furuya [13] in 1985, with an inviscid flow
assumption, to investigate the head degradation due to two-phase pumping. The method
was applied in a control volume where momentum equation is developed, then integrated
from impeller inlet to outlet sections assuming that the trajectory of liquid is identical to
that of bubbles (here denotes by subscript G) so that the control volume is bounded by two
successive streamlines separated by the distance dn normal to s. One has:

(1− α)ρLWL·δWL/δs + αρGWG·δWG/δs = (ρL(1− α) + αρG)Rω2 − δp/δs (A13)

Equation (13) can be written as:

(δ/δs)
{

(1−α)ρLW2
L

2 +
ρGαW2

G
2 − (αρG + (1− α)ρL)·

(
(rω)2

2 + p
)}

+
{

ρL(W2
L − (rω)2)/2− ρG(W

2
G − (rω)2)/2

}
( δα

δs ) = 0.
(A14)

This relationship explicitly shows the derivative of the void fraction α with s and that
there is a difference between the two-phase velocities. This option makes it possible to have
different outlet relative velocities between each phase. This mainly explains the two-phase
head decrease due to the different absolute tangential velocities of each phase compared
with single-phase conditions. The effects of condensation and compressibility are neglected
for simplicity so that each phase density remains constant. The external force acting on
the control volume is considered equal to the radial force and the pressure force, such as
in Figure 9.

It can be integrated between the inlet (subscript 1) and outlet (subscript 2) impeller
sections, assuming all quantities vary along a streamline. It is equivalent to Bernoulli’s
equation written in the relative reference frame. It leads to the following equation applied
along a streamline for the steady state:{

(1−α2)ρL(W2
2L−U2

2)
2 +

α2ρG(W2
2G−U2

2)
2 + p2

}
−
{

(1−α1)ρL(W2
1L−U2

1)
2 +

α1ρG(W2
1G−U2

1)
2 + p1

}
+∫ 2

1

{
ρL(W2

L−U2)
2 − ρG(W2

G−U2)
2

}
·
(

δα
δs

)
·ds = 0

(A15)

The difference (p2 − p1) can be substituted using the two-phase total head defined as:

∆Ht.tp =

(
p2 − p1

gρ∗tp

)
+

(
V2

L2 −V2
L1
)
·(1− x)

2g
+

(
V2

G2 −V2
G1
)
·x

2g
(A16)

With:
ρ*

tp = mtp/(QL + QG),
QL = dn(1− α)WL,
QG = dnαWG

x =
.

(mG/
.

mtp).
Note that:

ρ∗tp = ρtp = (1− α)ρL + αρG, when WL = WG
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By introducing each phase total head increase Ht,G and Ht,L as:

∆Ht,G =
p2 − p1

gρG
+ (V2

G2 −V2
G1)/2g (A17)

∆Ht,L =
p2 − p1

gρL
+ (V2

L2 −V2
L1)/2g (A18)

The two-phase head increase between the inlet and outlet impeller section can be
written as:

∆Ht,tp = (∆Ht,L
.

mL + ∆Ht,G
.

mG)/
.

mtp (A19)

and leads to the final expression given below:

∆Ht,tp = ∆HW,L
t,sp − ∆HW,2 − ∆Hs − ∆Hα (A20)

with:

∆HW,L
sp = (1− x)·

Vsp
U,2L −Vsp

U,1L

g
−

x
(

Vsp
U2,G −Vsp

U,1G

)
g

(A21)

∆HW,L
sp is different to ∆Hsp, defined in Section 5.1. It only reflects that the absolute

tangential velocities at the impeller outlet are different for each phase, such as for jet and
wake pattern for single phase conditions. This implicitly assumes that each phase is well
separated, which is generally the condition obtained for high void fractions. Comparison
with experimental data looks effectively better for void fractions bigger than 30% and for
axial mixed flow pumps.

∆HW,2 represents the phase relative speed modification at the pump exit caused by
two-phase flow condition:

∆HW,2 =
(1− x)U2∆VU,2L

g
+

xU2∆VU,2G

g
with ∆VU,2 = Vsp

U,2−VU,2 (A22)

∆Hs is related to the slip velocity between the liquid and gas phases:

∆Hs = (1− x)
{(

α2

(
W2,G
W2,L

)
− 1
)
·W

2
2,L−U2

2
2g −

(
α1

(
W1,G
W1,L

)
− 1
)
·W

2
1,L−U2

1
2g

}
+

x(1− α2)

{((
W2,L
W2,G

)
− 1
)
·W

2
2,G−U2

2,G
2g

}
+ (1− α1)

{((
W1,L
W1,G

)
− 1
)
·W

2
1,G−U2

1,G
2g

} (A23)

∆Hα is due to the variation in void fraction along the flow passage between the blades.

∆Hα = (1/gρtp)
∫ 2

1

(
ρL
(
W2

L −U2)
2

−
ρG
(
W2

G −U2)
2

)(
δα

δs

)
·ds (A24)

Finally, Equation (A19) can be written as follows, introducing the above set of equations

∆
Ht,tp

HW,L
t,sp

= 1− (∆HW,2 + ∆HS + ∆Hα)/∆HW·L
t,sp (A25)

To calculate all quantities of the right terms of Equation (A24), it is necessary to know
the evolution of the relative velocities for both liquid and gas phases, as well as the void
fraction along the path of the impeller channel.

The addition of an analytical loss model for a bubble is proposed using the momentum
equation, according to Hench and Johnston [13].

The momentum equation applied to a gas bubble is:

ρGWG

(
DWG

Dt

)
= ρGWG

(
δWG

δt

)
+ WG

(
δWG

δs

)
= ∑ Fs (A26)
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This leads to introducing all forces ∑ Fs acting on a bubble listed below:

Pressure force: −VG(
δp
δs );

Centrifugal force: ρGVGrω2sin βcos ϕ;
Drag force: CDρL(WL −WG)·|WL −WG|πR2

B;

Virtual mass force: 0.5ρLVG(
δWG

δt + WG

(
δWG

δs

)
− δWL

δt −WL

(
δWL

δs

)
).

Combining all previous relations, if the bubble’s shape corresponds to a sphere,
one can obtain the following equation that can be used to eliminate the term δp/δs in
Equation (A11).

ρGWG

(
δWG

δs

)
+ 0.5ρLWG

(
δWG

δs

)
−WL

(
δWL

δs

)
=
(

δp
δs

)
+

ρGVGrω2sin βcos ϕ + ( 3
8 )ρL(

CD
RB

)(WL −WG)|WL −WG|
(A27)

The value of CD depends on the bubble Reynolds number.
The final differential equation is:

.
(mL

2
/(ρLd2

n))
(

1
1−α

){(
1

1−α

)
δα
δs − ( 1

dn
)( δdn

δs )
}
+

.
(mG

2
/(ρGd2

n))((1− α)/α2)
{
(1/α) δα

δs − ( 1
dn
)( δdn

δs )
}
+

0.5ρL

{ .
(mG/ρGdnα)

2[(
1
α

)
δα
δs + ( 1

dn
)( δdn

δs )
]}

+
.
(mL/(ρLdn(1− α)))

2[(
1

1−α

)
δα
δs − ( 1

dn
)( δdn

δs )
]
=

(ρL − ρG)(1− α)rω2sinβcosϕ

−(3/8)(CD/RB)ρL

[ .
mL/(ρLdn(1− α))−

.
(mG/ρGdnα)

]∣∣∣ .
mL/(ρLdn(1− α))−

.
(mG/ρGdnα)

∣∣∣
(A28)

With the following mass conservation equations:

.
mtp = (

.
mG +

.
mL)

.
mtp = dn(1− α)WLρtp

.
mL = dn(1− α)WLρL

.
mG = dnαWGρG
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