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Abstract: Grooved liquid annular seals have a significant influence on the design of turbomachines.
Corresponding lubrication film models need to account for the different friction behavior of the
grooves compared to plain seals. However, there is a lack of reliable and validated models for this
purpose. Thus, the applicability of a friction factor model is explored and a calibration method is
presented. A single square groove is investigated by means of 96 steady-state RANS simulations for
different operation conditions and groove geometries. The results are used to calibrate the friction
model and successfully verify it in terms of the pressure drop over the groove. For validation,
two full grooved seals with relatively large square grooves were investigated by experiment. The
friction model was incorporated in a lubrication model and compared to the measurement data for
the pressure difference and the resulting force for specified leakage and eccentricity. The model
predictions for the pressure difference can be considered very good. The force predictions show
significant deviation, but can be considered acceptable given the low force magnitudes and measure-
ment uncertainty. The results offer a general validity to our friction model approach, assumptions
and the calibration method.

Keywords: grooved annular seal; labyrinth seal; friction model; fluid film lubrication; bulk flow

1. Introduction

Liquid annular seals and journal bearings have a significant influence on the design of
turbomachines like centrifugal pumps. Firstly, increasing power density and operational
flexibility necessitate a precise rotordynamic design of a turbomachine and thus accurate
knowledge of the forces acting on the rotor. The added mass, damping and stiffness of a
seal or bearing influence resonance frequencies and stability. Secondly, the axial leakage
flow through such an annulus is of importance for the volumetric efficiency of the pump
and internal hydraulics, e.g., axial thrust balancing devices or pressure balancing ducts.

For the prediction of the rotordynamic coefficients and the leakage flow, integro-
differential fluid film/lubrication models (i.e., bulk flow models) are generally used. In
contrast to CFD, these models are used as fast design tools and for optimization appli-
cations. The recently developed Clearance-Averaged Pressure Model (CAPM) [1–4] is a
two-dimensional lubrication model for incompressible flow in plain annular gaps covering
the full parameter space (laminar and turbulent flow, superposed axial flow, low to high
eccentricity). The CAPM has been validated for plain cylindrical geometries at turbulent
flow [3] and at laminar flow [1].

While the behavior of these plain cylindrical geometries can be predicted reliably,
this does not apply to grooved (labyrinth) or damper seals which are characterized by a
profiled stator. The change in friction behavior affects both leakage and the forces on the
rotor. Considering the lack of validated and reliable models, it is necessary to investigate
generic grooved seals. Since a grooved seal is just a series of single grooves, the flow and
friction behavior of such a single groove is investigated by means of CFD simulations in
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the present paper. The considered grooves can be regarded as rather large compared to the
mean gap height and are of square cross-section.

The main characteristic feature of the flow in such a groove is the free turbulent
shear layer which has theoretical similarity to a wall boundary layer. Thus, an empirical
approach with the wall friction model of Hirs [5] is feasible and explored in the present
paper. Necessary extensions due to the shear layer and a elaborate calibration method are
presented to account for additional dependencies on operation conditions and the scaling
with rotor eccentricity and groove geometry. The results can help the understanding of
the friction behavior of grooved seals and can be easily included in lubrication models for
plain annular seals like the CAPM.

Finally, the calibrated friction model for the grooves in conjunction with the CAPM
is validated against experimental data for two different grooved seals by means of the
pressure difference and the load bearing capacity of the seals for different flow numbers
and eccentricities.

The methods and results shown in this paper are an extension of our conference paper
published in the “Proceedings of the 15th European Turbomachinery Conference” [6]. In
comparison to the conference paper, we extended the CFD study for model calibration
from 24 to 96 cases to include varying groove geometry, added a corresponding section
about geometry scaling and validated the model with experimental data.

Literature

After some earlier attempts by other researchers, Iwatsubo and Sheng [7] and Florjancic [8]
were the first who derived substantial lubrication models for liquid labyrinth seals. Their
models were based on a multi-control volume bulk flow approach. Later, the three control
volume approach of Florjancic [8] was employed and modified by several researchers [9–12].

The model of Florjancic [8] was inspired by findings related to gas labyrinth seals in
centrifugal compressors, e.g., Wyssmann et al. [13] or Scharrer [14]. The key aspects of
the model are the following: The seal geometry of a singular land and groove are divided
into three control volumes based on physical effects. Firstly, in the land part, the typical
bulk flow approach is used. Secondly, a free shear layer exists over the groove. Thirdly, a
singular vortex is assumed inside the groove.

For the circumferential direction, a so-called jet shear stress model was introduced by
Wyssmann et al. [13] for the shear layer. It is based on a solution of a plane turbulent mixing
layer for the profile of the mean velocity and Prandtl’s mixing length turbulence model with
an empirical correlation for the mixing length. Wyssmann et al. [13] only considered the
shear stress in the circumferential direction in this way and neglected the axial component.
In contrast, Florjancic [8] considered both the circumferential and axial component of the
mixing layer. He regarded the result of the jet shear stress model as an effective magnitude
which needed to be decomposed into its corresponding vector components. For this, he
used the bulk velocity components in the same manner as for the model by Hirs [5] for
the wall shear stress. This approach was used by all subsequent researchers mentioned
above and is an essential part of coupling the control volumes over and inside the groove
for multi-control volume models.

While there have been some attempts to use and calibrate a Hirs model for damper
seals, e.g., Childs and Fayolle [15], little research has been conducted for grooved seals.
Thus, in the present paper, an empirical Hirs approach for a grooved seal is derived.

2. Materials and Methods

In this section, the theory and fundamentals of the present paper are described. We first
introduce the model CAPM for the dynamics of the fluid film in the annular seal, and then
we derive the extensions of the friction model for grooved seals. Afterwards, we present
the simulations we used to calibrate the friction model, and finally, we shortly describe
the test rig we used for experimental validation of our models. Definitions not mentioned
in the text can be found in the nomenclature. Throughout the paper, symbols with a tilde
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represent dimensional quantities, and ones without a tilde represent the corresponding
nondimensional quantities.

2.1. Clearance-Averaged Pressure Model

The Clearance-Averaged Pressure Model (CAPM) [1,3,4,16] is an integro-differential
model and solver for incompressible flow in narrow plain annular gaps. Since the model
takes into account all non-linearities including the convective inertia terms, it is valid
for laminar and turbulent flow conditions as well as high eccentricity. The CAPM in-
cludes Reynold’s equation as limiting case for negligible fluid inertia as well as a 2D bulk
flow model for high Reynolds numbers. Furthermore, for turbulent flow with moderate
Reynolds numbers, power law ansatz functions are used as velocity profiles which can
improve the convective inertia terms.

The CAPM model geometry of a plain annular gap is depicted in Figure 1. The rotor
(radius R̃, rotational speed Ω̃) can be dislocated with the eccentricity ε̃ and misaligned
with the tilt angle γ. However, in this study, we only consider parallel rotor positions,
i.e., γ = 0. The seal has the length L̃ and the outer radius R̃ + ˜̄h, where ˜̄h is the mean gap
height. The local gap height h̃ is a function of the circumferential and axial coordinate due
to eccentricity and/or misalignment.
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Figure 1. Model geometry of the Clearance-Averaged Pressure Model (CAPM) for plain annular gaps.

The total axial volume flow though the annular gap due to an axial pressure difference
∆ p̃ is characterized by the mean axial velocity ˜̄Cz. The fluid enters the gap with the
circumferential velocity ˜̄Cϕ which can vary due to preswirl. The flow is assumed to be
incompressible and of Newtonian fluid (kinematic viscosity ν̃, density $̃). We exclude
cavitation from our analysis.

To be able to calculate rotordynamic coefficients, the rotor is assumed to perform an
orbital motion with rotational frequency ω̃ around the bearing centerline, cf. [17]. Thus,
the CAPM is based on a cylindrical coordinate system (r̃, ϕ, z̃) in a rotating reference frame
with the same rotational speed ω̃ as the orbit motion. With this, the absolute velocity ~̃c can
be stated with the relative velocity ~̃w as

~̃c ≈ ~̃w + ω̃R̃~eϕ . (1)

This method enables the elimination of the time dependency of the variables caused
by the orbital motion of the rotor and reduces the problem to a quasi-steady state. However,
in this study, we do not consider an orbit motion or rotordynamic coefficients, i.e., ω̃ = 0.

The considered control volume for the model extends over the complete gap height
and infinitesimal segments in axial and circumferential directions. Due to ψ � 1, the
pressure gradient ∂p/∂s ≈ 0 in the direction of the gap height is negligible [18,19]. On
this basis, the steady-state governing equations of the CAPM are given by Lang [16]. The
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nondimensional (see nomenclature) continuity equation, the circumferential and axial
momentum equation for this control volume read

∂

∂ϕ

(
h
∫ 1

0
wϕ ds

)
+

φ

L
∂

∂z

(
h
∫ 1

0
cz ds

)
= 0 , (2)

∂

∂ϕ

(
h
∫ 1

0
w2

ϕ ds
)
+

φ

L
∂

∂z

(
h
∫ 1

0
wϕ cz ds

)
= −h

2
∂p
∂ϕ

+
1

2 ψ
τsϕ

∣∣1
0 and (3)

φ
∂

∂ϕ

(
h
∫ 1

0
wϕ cz ds

)
+

φ2

L
∂

∂z

(
h
∫ 1

0
c2

z ds
)
= − h

2L
∂p
∂z

+
1

2 ψ
τsz|10 . (4)

To close Equation system (2) to (4), ansatz functions for the velocity profiles wϕ(s, ϕ, z)
and cz(s, ϕ, z) have to be defined so that the integrals over the gap coordinate s can be
evaluated. While any ansatz functions can be used (e.g., power law profiles, cf. [16]), we
use bulk velocities averaged over the gap height in the present paper. Thus, we obtain
wϕ ≈ w̄ϕ(ϕ, z) and cz ≈ c̄z(ϕ, z). Furthermore, the wall shear stress terms

τsϕ|10(ϕ, z) = τsϕ, rotor − τsϕ, stator and (5)

τsz|10(ϕ, z) = τsz, rotor − τsz, stator (6)

have to be provided. For turbulent flow, Lang used the well-known friction factor model
by Hirs [5] which is common for bulk flow models, too.

The independent variables ϕ and z then are discretized in a finite differencing scheme
and the system of coupled nonlinear partial differential equations is solved by means
of a SIMPLEC algorithm [20]. The results are the pressure field p(ϕ, z) and the velocity
fields w̄ϕ(ϕ, z) and c̄z(ϕ, z). The solution also produces the flow number φ representing
the leakage volume flow with prescribed pressure difference ∆p or vice versa. As the outlet
boundary condition at z = 1, we only prescribe a constant pressure. At the inlet z = 0, the
Lomakin effect has to be considered by means of Bernoulli’s equation with a pressure loss
coefficient [1].

To obtain the resulting forces on the rotor, we make use of an additional Cartesian
coordinate system (x̃, ỹ, z̃) which is also shown in Figure 1. The x̃-coordinate always aligns
with the direction of eccentricity. The lateral force components Fx and Fy are calculated by
integrating the pressure over the rotor surface. The resulting force magnitude on the rotor
(load capacity) is given by

F =
√

F2
x + F2

y . (7)

2.2. Hirs’ Bulk Flow Friction Factor Model

The findings of Hirs [5] on wall friction in turbulent lubrication films laid the founda-
tions for current bulk flow models for incompressible flow. He showed that

• the correlation of Blasius [21] for wall friction factors can be used for both bounding
walls of a lubrication film, even if there is relative wall motion, with the use of effective
bulk Reynolds numbers;

• the empirical parameters of the Blasius correlation only depend weakly on the type of
flow (Poiseuille, Couette, superposition of both);

• the effective wall shear stress can be separated into the directional components analo-
gously to the bulk velocity components.

In the following, the typical model equations and our extensions are presented.
The nondimensional effective wall shear stress magnitude is defined as

τwall :=
2 τ̃wall

$̃Ω̃2R̃2
=
√

τ2
sϕ, wall + τ2

sz, wall . (8)
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The shear stress is needed per wall, and in the case of a journal bearing or annular seal,
the subscript represents wall ∈ {rotor; stator}. The bulk velocity w̄wall (averaged over gap
height) relative to the possibly moving walls is defined as

w̄wall :=
˜̄wwall

Ω̃R̃
=
√

w̄2
ϕ, wall + φ2 w̄2

z, wall . (9)

Typically, only the rotor wall moves in the circumferential direction so that relative
axial velocities are equal to the mean absolute velocity w̄z, rotor = w̄z, stator = c̄z and the stator
circumferential velocity is w̄ϕ, stator = c̄ϕ. The rotor relative velocity is w̄ϕ, rotor = c̄ϕ − 1.

The Fanning friction factor is defined as

fwall :=
2 τ̃wall

$̃ ˜̄w2
wall

=
τwall

w̄2
wall

, (10)

and with the local effective wall Reynolds number

Rewall :=
h̃ ˜̄wwall

ν̃
= h w̄wall Re, (11)

we can establish a Blasius power law correlation for the friction factor

fwall = m Ren
wall = m (h w̄wall Re)n, (12)

in which m and n are empirical parameters. Guiding values (converted to our definitions
above) for the parameters are given by Childs [17] with m = 0.066 and n = −0.25; Lang [16]
gives values of m = 0.076 and n = −0.24 determined by CFD for hydraulically smooth
surfaces. The parameters can depend on the Reynolds number, wall roughness and—as
we show below for grooved seals—on other parameters. Of course, it is possible to use
wall-specific parameters mwall and nwall if the friction behavior is different.

Hirs assumed that the shear stress components point directly in the opposite direction
of the wall relative bulk velocities, i.e., the angles between the vector components of
wall shear stress and bulk velocity are the same. With the included angle θ between
circumferential component and magnitude, the condition can be stated as

θτ, wall
!
= θw, wall (13)

or ∣∣∣∣∣ τsz, wall

τsϕ, wall

∣∣∣∣∣ !
=

∣∣∣∣∣φ w̄z, wall

w̄ϕ, wall

∣∣∣∣∣ . (14)

The nondimensional wall shear stress components read

τsϕ, wall = ±τwall cos θτ, wall = ± fwall w̄2
wall cos θτ, wall and (15)

τsz, wall = ±τwall sin θτ, wall = ± fwall w̄2
wall sin θτ, wall, (16)

where the sign depends on the specific wall and flow direction. If Condition (13) is met,
Equations (15) and (16) are equal to

τsϕ, wall = ± fwall w̄wall w̄ϕ, wall and (17)

τsz, wall = ± fwall w̄wall φ w̄z, wall, (18)
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which is the common form successfully used in lubrication models for plain seals and
bearings. However, as shown below, we see that Condition (13) is generally not justified for
grooved seals. For this reason, we introduce an empirical correction factor for the angle,

Λwall :=
θτ, wall

θw, wall
. (19)

and the shear stress components become

τsϕ, wall = ± fwall w̄2
wall cos(Λwall θw, wall) and (20)

τsz, wall = ± fwall w̄2
wall sin(Λwall θw, wall) . (21)

We find that this friction factor model can also be applied to grooved seals. The
cross-section of a single groove and the control volume of interest CV is shown in Figure 2a.
While the upper side is at the rotating wall as usual, the wall shear stress is yet influenced
by the flow in the groove. The stator side of the control volume intersects the fluid in
the groove on the height of the land wall. Here, a turbulent shear layer similar to a wall
jet [22,23] is forming in the axial direction. In the circumferential direction, an asymmetric
turbulent Couette flow due to the rotor movement is forming. Since free shear layers are
theoretically similar to boundary layers [23], the Hirs/Blasius approach can also be suitable
for modeling the Reynolds stress at the stator side. However, additional dependencies on
operation conditions and groove geometry for fwall and Λwall have to be considered, which
we explore in the present paper.
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Figure 2. (a) Model geometry of a single groove with control volume CV. (b) Computational domain
with exemplary streamlines colored by velocity magnitude.

2.3. Entrance Pressure Loss after the Groove

The axial turbulent shear layer over the groove leads to entrainment, which means
that the fluid outside the boundary of the jet is accelerated in the direction of the jet due to
turbulent mixing. This diffusive turbulent momentum transport leads to a broadening of
the velocity profile into the groove and at the same time to a general deceleration of the jet.
But since the continuity condition must be fulfilled from groove inlet to outlet, the flow
is accelerated again out of the groove into the gap. Hence, a flow separation with a vena
contracta forms. This results in an additional Carnot entrance pressure loss ∆pe after each
groove of a seal.

Integration of the shear stress at the rotor wall and in the turbulent free shear layer
(stator side of control volume CV in Figure 2) results in an axial pressure loss ∆pshear,
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assuming the difference in the convective terms is negligible. Thus, the total axial pressure
loss ∆pg from the inlet z = 0 to the outlet z = d of a single groove can be written as

∆pg :=
2 ∆ p̃g

$̃Ω̃2R̃2
= p(0)− p(d) = ∆pshear + ∆pe. (22)

For our investigations, we define a pressure loss coefficient as

ζ :=
2 ∆ p̃e

$̃ ˜̄c2
z

=
∆pe
φ2 c̄2

z
. (23)

An alternative definition with the magnitude of the mean velocity vector could be
defined as

ζ ′ :=
2 ∆ p̃e

$̃|~̃̄c|2
=

∆pe
c̄2

ϕ + φ2 c̄2
z

. (24)

The corresponding pressure drop can be “smudged” over the groove to obtain an
additional virtual axial shear stress

τz, e :=
∆pe

d
=

ζ

d
φ2 c̄2

z = fz, e φ2 c̄2
z (25)

with the friction factor fz, e := ζ/d. This eliminates the need of Bernoulli’s equation as
the interface condition between different grooves, cf. [11], and converts the corresponding
pressure discontinuity into a continuous slope which is beneficial for use in bulk flow
models due to their differential nature.

2.4. Eccentricity and Geometry Scaling

Due to the eccentricity ε and the rotor tilt γ, the gap height h and the velocity compo-
nents w̄ϕ and c̄z become fields dependent on the coordinates ϕ and z. The friction model
has to account for the eccentricity scaling and in extension for the groove geometry scaling.
Typically, fluid friction scales better with local flow variables in contrast to global param-
eters. This is also represented by Hirs’ model, where the wall Reynolds number Rewall,
Equation (12), and the calculation of the shear stress components, Equations (17) and (18),
are accomplished by local variables.

Thus, we assume that the scaling with eccentricity of the friction on the rotor wall
above a groove and the fluid friction due to Reynolds stress in the shear layer on the
stator side of the groove is similar to the usual Hirs model. For this, we need to define an
additional local flow number

φl(ϕ, z) :−
˜̄cz

2 ˜̄cϕ
=

φ

2
c̄z

c̄ϕ
(26)

as the ratio of the local mean absolute velocity components. The factor 1/2 is added so
that φl = φ for the concentric case, since, in this case, by definition c̄z = 1 and c̄ϕ = 0.5.
Analogously, we define the local groove parameters

dl(ϕ, z) :− d̃
h̃
=

d
h

(27)

and

tl(ϕ, z) :− t̃
h̃
=

t
h

. (28)
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With regard to our results presented below, we find the following dependencies on
the operation conditions as power laws:

frotor = mrotor (Rerotor)
nrotor , (29)

fstator = mstator (Restator)
nstator with mstator = α1φ

β1
l , (30)

Λrotor = α2φ
β2
l , (31)

Λstator = α3φ
β3
l , (32)

fz, e = α4φ
β4
l . (33)

Finally, we assume approximately linear dependencies of the power law parameters
on the square groove geometry (d = t), closing our theory:

mrotor = γ1 dl + δ1, (34)

nrotor = γ2 dl + δ2, (35)

nstator = γ3 dl + δ3, (36)

α1 = γ4 dl + δ4, (37)

β1 = γ5 dl + δ5, (38)

α2 = γ6 dl + δ6, (39)

β2 = γ7 dl + δ7, (40)

α3 = γ8 dl + δ8, (41)

β3 = γ9 dl + δ9, (42)

α4 = γ10 dl + δ10, (43)

β4 = γ11 dl + δ11. (44)

The 22 coefficients γi and δi with i = 1 to 11 are assumed to be constant empirical
model parameters which need to be calibrated in the specific parameter range of interest.

2.5. Simulations

A number of 96 three-dimensional steady-state RANS simulations for incompress-
ible flow of Newtonian fluid and constant fluid material properties are carried out in
OpenFOAM v2006 to analyze the flow and calibrate the empirical model parameters. The
plane computational domain is shown in Figure 2b and represents a single rectangular
groove of a concentric annular seal neglecting the curvature. This simplification can be
justified by the small relative gap height of ψ = 0.0026. The groove is assumed to have a
square cross-section with d = t. A purely computational depth 2 d is introduced to capture
three-dimensional flow effects. The gap before and after the groove have each a length of
l = 60, which assures fully developed velocity profiles at the beginning of the groove.

Due to the concentric/plane geometry and the fully developed flow, by definition, c̄z = 1
and c̄ϕ = 0.5. The simulations do not offer direct insight into the effects of eccentricity.
However, the simulations seem to be suited to calibrate the model which takes care of the
eccentricity and groove geometry scaling. This can be accomplished because the local variables
are equal to the global variables in the concentric case, i.e., φl = φ, dl = d and tl = t.

A Low-Reynolds approach with y+ ≈ 1 and the k-ω-SST turbulence model are used
in the simulations. Depending on the effective Reynolds number, the used structured grids
have around 0.9 to 1.4× 106 cells for a grid-independent solution. In the circumferential
direction, a periodicity boundary condition is used. At the inlet, a mean axial velocity
corresponding to the flow number φ and a mean circumferential velocity of c̄ϕ = 0.5 is
prescribed. The rotor wall translates in a circumferential direction with velocity cϕ = 1.

The varied parameters are (i.) the Reynolds number

Re ∈ {3215; 6430; 9645} (45)
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governing the circumferential velocity of the rotor wall, (ii.) the flow number

φ ∈ {0.25; 0.5; 0.75; 1; 1.25; 1.5; 1.75; 2} (46)

governing the axial volume flow and (iii.) the square groove geometry width

d ∈ {10; 15; 20; 30} . (47)

The corresponding combinations result in 96 simulation cases.
The simulations are used to determine the surface averaged wall shear stress com-

ponents on the rotor τsϕ, rotor and τsz, rotor (cf. control volume CV in Figure 2), the surface
averaged Reynolds stress components above the groove τsϕ, stator and τsz, stator as well as
the total axial pressure drop ∆pg over the groove (excluding the inlet and outlet channels)
with a Bagley method [1].

2.6. Annular Seal and Journal Bearing Test Rig

For experimental validation, we used our test rig for annular seals and journal bear-
ings [3,24–26]. A schematic is shown in Figure 3, which we describe here shortly. In the
center, the annular gap is located. The seal geometry can be varied by exchangeable rotor
sleeves and stator rings. The rotor is driven by a motor with variable speed and supported
by two active magnetic bearings (AMB). The magnetic bearings allow for precise posi-
tioning and arbitrary lateral movements of the rotor, i.e., adjustment of eccentricity ε, tilt
angle γ and orbit frequency ω. Furthermore, the magnets are equipped with Hall sensors
to measure the magnetic flux density and calculate the resulting bearing force and thus
the hydrodynamic forces Fx and Fy exerted on the rotor by the fluid film in the annular
gap. The position of the rotor is measured in the gap with eddy-current distance sensors
integrated in the stator ring.
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Figure 3. Schematic depiction of the annular seal and journal bearing test rig.

The inlet chamber is simplified in the schematic for clarity. In fact, it consists of two
connected chambers from which the first leads to the seal entrance and the second to
a by-pass outlet. The water is injected tangentially to the first chamber through twelve
nozzles around the circumference. With a valve the part of the volume flow exiting through
the by-pass can be adjusted. By means of this method, the mean circumferential velocity of
the fluid in the inlet chamber as well as the leakage volume flow through the seal can be
adjusted. The mean circumferential velocity is measured with an angled Pitot tube.

Furthermore, the fluid temperature, the volume flow through the seal represented by
the flow number φ, the by-pass volume flow, the static pressure in the inlet chamber and
the axial pressure difference over the seal ∆p are measured. Cavitation is prevented by
applying a static system pressure.
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3. Results

In this section, we first present the results of the friction factor model for the groove
geometry d = t = 30 as representative case. Then, we compare the four different groove
geometries and present the linear regressions for the empirical model parameters. Finally,
we present a comparison of measurement data and model prediction for validation.

3.1. Calibration of the Friction Factor Model for a Single Groove Geometry

In this section, we investigate the exemplary case d = t = 30 with varying operation
conditions. Qualitatively, the the method and results are the same for the other three
groove geometries.

The wall shear and Reynolds stress at the rotor and stator side of the control volume
CV (Figure 2) are evaluated from the simulations and averaged over the surfaces. The
friction factors Equation (10) and the fitted Blasius correlations Equation (12) over the
effective wall Reynolds numbers are shown in the double logarithmic diagram of Figure 4
(log is the decadic logarithm). On the rotor side, three groups of the data points for the
three global Reynolds numbers can be seen, but a single fit is sufficient. On the stator side,
a clear dependence on the flow number mstator(φ) can be seen. Thus, a fit for each flow
number is made. The powers nstator(φ) vary only very slightly so that the average n̄stator is
used for all lines in Figure 4b.
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Figure 4. Effective friction factors on (a) rotor and (b) stator with power law fits.

The stator coefficient mstator over the flow number φ is shown in Figure 5a. The
curve suggests an asymptotic behavior for higher values of φ. This seems physically
reasonable since both the friction factor and the wall Reynolds number are dominated by
the axial component. The function can be approximated well with a power law. It has to
be mentioned that the fit fails for φ→ 0, but this is an unrealistic operation condition for
annular seals. However, for this case, a polynomial could be used.

As expected, the values mrotor, nrotor, mstator(φ) and n̄stator identified for the friction
over a groove differ significantly from the values given by Childs [17] and Lang [16] for
plain seals mentioned above. This results in a slightly lower friction factor at the rotor
compared with a plain gap. However, the stator friction factor for the groove is significantly
higher. This difference to the plain seal increases with higher flow numbers and higher
wall Reynolds numbers.

As previously described, angle correction Equation (19) has to be considered. The
results for both rotor and stator are shown in Figure 5b. A slight dependence on the flow
number is recognizable. Beginning with φ = 0.5, this dependence can also be described
with a power law, while the values for φ = 0.25 show differing behavior. Thus, these values
are excluded from the fitting curves shown in the figure, which might add some model
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error at low flow numbers. Furthermore, the dependence on the Reynolds number can
be neglected.
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Figure 5. (a) Flow number dependence of the stator friction factor coefficient. (b) Angle correction
factors for rotor and stator.

The shear stress components in circumferential and axial direction on rotor and stator
are shown in Figure 6. The circular markers represent the CFD results and the square
markers represent the results of the extended Hirs model with all the fits presented above. It
can be seen that the empirical model can represent the actual shear stress very well in almost
all cases. For the rotor side, some slight deviation can be seen for the axial component. The
cases for a low Reynolds number and a high flow number produce the highest magnitude
in shear stress. Here, the fit shown in Figure 4 results in a noticeable difference.

0 0.5 1 1.5 2

10
4

0

0.02

0.04

CFD

MODEL

0 0.5 1 1.5 2

10
4

0

0.02

0.04

0 0.5 1 1.5 2

10
4

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2

10
4

0

0.02

0.04

0.06

0.08

𝑅𝑒rotor 𝑅𝑒rotor

𝑅𝑒stator 𝑅𝑒stator

𝜏 𝑠
𝑧
,s
ta
to
r

𝜏 𝑠
𝜑
,s
ta
to
r

𝜏 𝑠
𝑧
,r
o
to
r

𝜏 𝑠
𝜑
,r
o
to
r

(a) (b)

(c) (d)

Figure 6. (a,b) Circumferential and axial shear stress components on the rotor side. (c,d) The same
on the stator side.
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Besides that, it has to be mentioned that excluding the outliers for φ = 0.25 in the
angle correction fit does not result in significant model error since the absolute values of
the shear stress components are low. In contrast, the relative model deviation averaged
over all cases can be significantly reduced by using the velocity correction, especially on
the stator (groove) side and in circumferential direction.

Finally, the virtual friction factor fz, e due to the entrance pressure loss after the groove
has to considered. The friction factor over the flow number is shown in Figure 7a. Similar
to the other curves, a dependence on the flow number φ and no significant dependence on
the Reynolds number Re is seen. The data points can be approximated well with a power
law, too. In Figure 7b, the total axial pressure loss over the groove ∆pg is shown. Again,
the circular markers show the data from the CFD simulations while the square markers
show the model results calculated with the fitting curves and Equation (22). The fraction of
the entrance pressure loss ∆pe relative to the total pressure loss ∆pg is between 16% and
33% for all 24 cases, decreasing with increasing flow number.
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Figure 7. (a) Flow number dependence of the virtual friction factor due to the entrance pressure loss.
(b) Total axial pressure loss over the groove.

This verification shows that the calibrated model laid out above can make accurate
predictions for the pressure loss in all cases compared to CFD. It has to be mentioned that
the axial pressure loss ∆pg is only a verification for the entrance pressure loss and the axial
shear stress components. However, the same prediction accuracy for the shear stress in
circumferential direction can be expected regarding Figure 6.

3.2. Geometry Scaling

While the results presented above are all taken from the case d = t = 30, the qualita-
tively same behavior is shown by the other geometries, d = t = 10; 15; 20. It is found that
all coefficients of the power laws are dependent on the groove geometry to some extent.

Exemplary plots of the coefficients α2 and mrotor over the groove geometry are shown
in Figure 8. The markers represent the power law coefficients determined from the
96 simulation cases and the lines are determined by linear regression. The two specific
coefficients are chosen because they represent the best and worst fit in terms of root-mean-
square error (RMSE) weighted with the mean of the data nodes. The RMSE for all eleven
regressions is listed in Table 1. While the two coefficients mrotor and nrotor show a certain
(still acceptable) deviation from a linear function, the other nine coefficients qualitatively
are approximated very well by a linear regression. This might indicate that for the two
rotor coefficients, another function would be better suited. Nonetheless, we would not
infer a nonlinear function from the limited data points and accept the fit deviation. The
result values of the 22 regression parameters are also listed in Table 1.
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Figure 8. (a) Best linear regression in terms of RMSE. (b) Worst linear regression in terms of RMSE.

Table 1. Values of the empirical model parameters and RMSE of the linear regression weighted with
the mean of the data nodes. The RMSE values are divided by 10−2.

Parameter i γi δi RMSE

mrotor 1 −5.50169× 10−4 4.55039× 10−2 8.67
nrotor 2 8.29452× 10−4 −2.10281× 10−1 4.22
nstator 3 1.56513× 10−3 −1.05801× 10−1 3.46

α1 4 −6.71908× 10−4 4.10284× 10−2 2.35
β1 5 1.77676× 10−3 3.05624× 10−1 1.23
α2 6 −2.54227× 10−3 1.14587 0.12
β2 7 3.17150× 10−3 −1.38088× 10−1 1.47
α3 8 −2.51494× 10−3 1.28976 2.55
β3 9 3.73518× 10−3 −2.13077× 10−1 3.05
α4 10 −1.22346× 10−5 6.35627× 10−3 2.20
β4 11 2.28375× 10−2 −1.24824 1.01

3.3. Theory vs. Experiment

For validation, two full grooved seals are investigated. The periodic seal geometry is
shown schematically in Figure 9. The total seal length can generally be calculated with

L
ψ

= (N + 1) b− d . (48)

Also, the ratio of the seal surface covered by grooves to the total cylinder surface is
calculated with

χ :− N
d̃
L̃
=

Ndψ

L
. (49)

Seal 1 has a number of N = 6 square grooves of dimensions d = t = 30. The profile
width is b = 90, i.e., the land has double the width compared to the groove. Seal 1 has
a length of L = 1.56 and a surface ratio of χ = 0.3. Seal 2 has N = 20 square grooves of
dimensions d = t = 15. The profile width is b = 30, which means that the groove and land
widths are equal. The length is L = 1.60 and the surface ratio is χ = 0.49. For both seals,
the mean relative gap height is ψ = 2.6× 10−3.

The seals are investigated experimentally by means of the test rig described in
Section 2.6. The global Reynolds number is constant, Re = 4000. The flow number
φ and the eccentricity ε are varied. The inlet circumferential velocity is constant with
C̄ϕ, plenum = 0.5 for all cases. The measurement uncertainty (95% CI) for these parameters
is δL = ±1.0× 10−4, δψ = ±0.05× 10−3, δRe = ±75, δφ = ±0.01 and δC̄ϕ, plenum = ±0.03.
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Figure 9. Model of the full periodically grooved seal.

The model predictions are computed with the CAPM in conjunction with the new
friction model described and calibrated above. It is possible to discretize the whole seal and
to designate the grooves and lands as separate regions where the specific friction models
are applied locally. On the lands, the basic Hirs model is used, while on the grooves, the
extended model is applied. It is also possible to compute a surface averaged value of an
effective mean shear stress over a profile element which does not rely on the designated
land and seal regions.

While the treatment of the shear stress is unproblematic and robust, it turns out that a
second physical constraint has to be applied. Since the grooves are rather large, the pressure
is not only constant in the cross-section. It is also constant in the whole groove over the
circumference, i.e., ∂p/∂ϕ = 0 in the grooves. This condition can be easily enforced in the
solver but leads to a discontinuity in the pressure field at each transition between land and
groove for eccentric cases. This discontinuity leads to divergence of the iterative solution
algorithm in its current form.

Because of this problem, we use a separated and sequential calculation process. Each
land and each groove is discretized on its own and solved separately, which is similar to
a two-control-volume model. At the first land inlet, the typical pressure loss boundary
condition is applied. Then, the pressure and velocity field boundary conditions are propa-
gated from each outlet to the next inlet until the end of the seal. The individual pressure
differences and force components for each segment can be simply summed up over all
lands and grooves to obtain the wanted total values for the complete seal. However, this
method is only possible for a fixed flow number φ.

The results for Seal 1 are shown in Figure 10. In Figure 10a, the pressure difference ∆p
over the eccentricity ε is shown for different flow numbers φ. The markers represent the
measurement values with standard uncertainty (95% CI) as error bars. The lines represent
the CAPM predictions. It can be seen that ∆p decreases slightly with increasing eccentricity
and increases strongly with increasing flow number. The CAPM over-predicts the pressure
difference slightly in in all cases, but it can be considered to be in very good agreement with
the experiment. Additionally, it predicts the scaling with ε and φ qualitatively very well.
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Figure 10. Validation data for Seal 1. (a) Pressure difference over eccentricity. (b) Load over eccentricity.

In Figure 10b, the load F (resulting force magnitude) on the rotor is shown, again
over the eccentricity ε and for the same flow numbers φ. Due to the fact that the large
grooves do not offer any support to the rotor, the magnitude of the load F < 1 can be
considered very small. For the interval 0 ≤ ε ≤ 0.6, the load shows a linear dependence
on ε, which is typical for plain seals and can be expected at a low surface ratio χ. However,
the measured values do not extrapolate to the theoretically correct value F = 0 at ε = 0
due to the uncertainty in the other operation conditions. It seems that a value of ±0.1
is the limit of the general resolution of load measurement of the test rig. While the load
predictions of the CAPM can be considered acceptable for the lower flow numbers, the
model over-predicts the load for φ = 0.7 and 0.8 at higher eccentricity. The slope generally
seems to be slightly excessively steep for the investigated cases.

In Figure 11, the same diagrams are shown for Seal 2. For the lower flow numbers, the
pressure difference is slightly over-predicted again. However, for φ = 0.7, the measured
data are slightly higher than in the model predictions. Due to the higher surface ratio χ,
the load bearing capacity of Seal 2 is even lower than that of Seal 1. The measured load is
mostly above the model curves while the slope of the model seems to be too steep again.
The model predictions indicate a slightly nonlinear progression of the load with increasing
eccentricity. Again, we consider the agreement of the model for ∆p very good and for
F acceptable.
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Figure 11. Validation data for Seal 2. (a) Pressure difference over eccentricity. (b) Load over eccentricity.
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4. Conclusions

The flow in a single groove of a concentric grooved liquid annular seal was analyzed
by means of 96 CFD simulations in the range of Reynolds number Re = 3215 . . . 9645,
flow number φ = 0.25 . . . 2 and groove width d = 10 . . . 30. The friction behavior was
analyzed in the context of two-dimensional fluid film/lubrication models for annular seals.
It was found that the well-known Hirs [5] friction factor model is applicable but needs
elaborate calibration due to additional dependencies on operation conditions and groove
geometry. Furthermore, the entrance pressure loss at the transition from the groove to the
gap was evaluated.

In the classical Hirs model, it is assumed that the ratio of the shear stress components
is equal to the ratio of the wall relative bulk velocity components. In the present paper,
it was shown that this assumption is not justified in the case of grooved seals. Thus, an
empirical angle correction function was introduced. This hints at the fact that the gap
bulk velocities are not ideal scaling velocities for the friction in the turbulent shear layer.
Nonetheless, the gap bulk velocities are the only reasonable choice for a general lubrication
model like the CAPM.

With all the considerations mentioned above, the model was verified with the CFD
simulations and performed very well in all cases predicting the total axial pressure drop
over the groove. For validation, two different full grooved seals with 6 and 20 square
grooves were investigated by experiment. Measurements were taken for the axial pressure
difference over the seal and the load bearing capacity at specified leakage volume flows
and eccentric rotor positions. The experimental data were compared to model predictions
of the fluid film model CAPM in conjunction with the calibrated Hirs friction factor model
for the grooves.

Even though the model slightly over-predicted the pressure difference over the seal
for most cases, the agreement with the experiment can be considered very good. The
measured values for the load were generally very small due to the large grooves which
did not provide any support to the rotor. The model predictions of the load tended to be
generally too high and increasing too much with eccentricity. While the prediction accuracy
of the load certainly needs to be improved, it can be considered acceptable in consideration
of the very low absolute values and measurement uncertainty.

However, the results certainly offer a general validity to our approach of the friction
model, our assumptions as well as the calibration method we developed. In terms of
complexity, four empirical constants are needed for a plain seal with different friction
behavior of rotor and stator. For a grooved seal, 22 constant empirical model parameters
are needed. For further improvement of the model, the transition between groove and
land and vice versa for a full three-dimensional eccentric groove or complete seal could be
analyzed by means of CFD.
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Nomenclature
The following abbreviations are used in this manuscript:

φ := ˜̄Cz/(Ω̃R̃) flow number
Re := Ω̃R̃ ˜̄h/ν̃ Reynolds number
ψ := ˜̄h/R̃ relative mean gap height
ε := ε̃/˜̄h relative eccentricity
L := L̃/R̃ nondimensional seal length
ω := ω̃/Ω̃ orbit frequency ratio
h := h̃/˜̄h nondimensional local gap height
s := s̃/h̃ nondimensional channel coordinate
z := z̃/L̃ nondimensional axial coordinate
cz := c̃z/ ˜̄Cz nondimensional axial velocity component
cϕ := c̃ϕ/(Ω̃R̃) nondimensional circumferential velocity component
p := 2 p̃

$̃Ω̃2 R̃2 nondimensional pressure

~F := 2 ~̃F
$̃Ω̃2 R̃4 L

nondimensional force

d := d̃/˜̄h nondimensional groove width
t := t̃/˜̄h nondimensional groove height
b := b̃/˜̄h nondimensional periodic groove profile width
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