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Abstract: The application of the bidirectional encoder model to detect fake news has been widely
applied because of its ability to provide factual verification with good results. Good fact verification
requires the most optimal model and has the best evaluation to make news readers trust the reliable
and accurate verification results. In this study, we evaluated the application of a homogeneous
ensemble (HE) on RoBERTa to improve the accuracy of a model. We improve the HE method using
a bagging ensemble from three types of RoBERTa models. Then, each prediction is combined to
build a new model called RoBERTaEns. The FEVER dataset is used to train and test our model. The
experimental results showed that the proposed method, RoBERTaEns, obtained a higher accuracy
value with an F1-Score of 84.2% compared to the other RoBERTa models. In addition, RoBERTaEns
has a smaller margin of error compared to the other models. Thus, it proves that the application of
the HE functions increases the accuracy of a model and produces better values in handling various
types of fact input in each fold.

Keywords: fact verification; fake news; FEVER dataset; homogeneous ensemble; RoBERTa; RoBERTaEns

1. Introduction

Nowadays, fact verification models have been developed and implemented using
machine learning [1–5]. These developments have improved the research aimed at detecting
fake news in recent years [6–10]. Generally, a bidirectional encoder-based model has been
developed to detect fake news to verify a fact. For example, the Bidirectional Encoder
Representations from Transformers (BERT) [11] model has been successfully implemented
to detect fake news [12,13] and fact verification [14,15]. Another model developed from
BERT to detect fake news, called RoBERTa [16], has been successfully implemented [17,18].
RoBERTa has been implemented to verify a fact [19]. Some researchers found a new
challenge in machine learning models to optimize and improve the performance of better
methods, including applying ensemble models [20]. An ensemble is a classifier mechanism
running concurrently that combines the predicted results of the components. Several cases
of ensemble research carried out homogeneously have increased accuracy values in a
model [21,22].

Ensemble deployments are becoming popular due to the advantages of using a single
model across multiple datasets and machine learning tasks. In a simple case, by using an
ensemble, a network is trained using a large dataset to check the result of the accuracy,
loss, etc., in the validation set [23]. It is conducted to improve accuracy as a parameter to
measure the success of the ensemble application for a model development [20]. Good fact
verification requires the most optimal and has the best evaluation model. The goal is to
make the news readers trust the reliable and accurate verification results.

One study [24] stated that RoBERTa has a higher accuracy value than the other models
in verifying facts. Based on several previous studies, it has been proven that the homo-
geneous ensemble (HE) can improve model performance. This paper combined HE with
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the RoBERTa model to claim a fact. We evaluated the application of the HE on RoBERTa
to prove that the application of an ensemble can be used to improve the accuracy of a
model. To obtain optimal results, we modified the algorithm structure of RoBERTa in the
training and testing stages. Modifications made in the training phase can be used to set
three samples on RoBERTa to improve model performance. Improved model performance
using three samples has been proven [25]. Afterwards, the evaluation results of each model
were summed.

Model accuracy and F1-Score were used to measure the performance of the method.
In the experimental process, we combined three models of RoBERTa. We found no research
related to fact verification by combining ensembles with the model, and we were interested
in contributing to this topic to improve model performance in fact verification. Therefore,
the results of the fact verification were expected to have better verification.

In summary, our contributions in this paper are as follows:

1. Improving a RoBERTa model by implementing the HE from three best parameters
settings in RoBERTa, we call it RoBERTaEns.

2. Implementing one of the HE methods, i.e., bagging ensemble to RoBERTa, the kind of
bagging ensemble used was called Sum.

3. Testing and comparing the performance of BERT, RoBERTa, XL-Net, and XLM models
with RoBERTaEns to obtain the best model performance.

2. Related Works

The impact of fake news that is widespread in society becomes a challenge in the
world of journalism when one must label a fact from the results of claims of whether
news or information is true or false based on evidence. Nowadays, fact verification has
become a very challenging task in the realm of Natural Language Processing (NLP) [26,27],
and the research community has paid much attention to research issues related to fact
verification [28–31]. There are three types of labelling a fact [32]: (1) If there is an evidence
supporting a claim, the facts are labelled with SUPPORTS; (2) If there is an evidence refuting
a claim, the facts are labelled with REFUTES; (3) If there is no evidence to support or refute
the claim, the facts are labelled with NOT ENOUGH INFO.

There have been many studies related to fact verification for making a model and
dataset [31,33] to test various types of models [34] for fact verification [35]. Many stud-
ies have tested various datasets to verify facts. For example, a study comparing two
datasets [36], i.e., the Fake News Challenge (FNC) dataset and the FEVER dataset using the
Recognizing Textual Entailment (RTE) model. One of the results of the research has been
reviewed by using the FEVER dataset on the train and evaluation domains, and the accu-
racy of the FEVER dataset was better than the FNC. The FEVER dataset had an accuracy of
83.43% on the test results. Other studies have also implemented the FEVER dataset for fact
verification [15,34]. The FEVER dataset has the subtasks of document retrieval, sentence
retrieval, and claim verification [37].

In addition to comparing datasets, a comparison of models to obtain the best accuracy
in verifying facts has been carried out by several researchers [14] who compared three
models, such as (1) BERT [11]; (2) Enhanced LSTM (ESIM) [38]; and (3) the Neural Semantic
Matching Network (NSMN) [39]. The research results prove that BERT has the best results,
with an accuracy of 61%, for fact verification. Furthermore, a different study [16] developed
the BERT model by changing the BERT training structure, resulting in a new model called
RoBERTa.

The results of the research were conducted by comparing three models, such as (1) BERT;
(2) Generalized Autoregressive Pretraining for Language Understanding (XL-Net) [40]; and
(3) RoBERTa. This study shows that the result of RoBERTa has a higher accuracy than BERT,
with an accuracy of 92.5%. These results attracted researchers to develop the RoBERTa model
in order to produce novel or better classifications, one of which is a study implementing
Natural Language Inference on the RoBERTa model [41]. The model architecture that has
been developed is given in Figure 1.
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Figure 1. Architecture diagram of predicate-aware RoBERTa model.

The application of HE in several studies proves an improvement in model perfor-
mance [25,42]. HE has a model architecture built with multiple base learners and is
generated from a single learning algorithm, in contrast to a heterogeneous ensemble that is
built with different algorithms. Many researchers in their research more commonly use HE
compared to the heterogeneous one [43]. For example, recently, several studies have proven
HE models to improve model performance. The study applied a tree-based HE model
with feature selection to predict diabetic retinopathy. The results showed that HE was
established to enhance the performance of the Support Vector Machine (SVM) model [42].
Another study [25] also developed a model by applying the HE to improve the evaluation
performance of the Decision Trees, Logistics Model Tree, and Bagged Multi-layer Percep-
tron algorithms. As a result, an effective HE gave satisfactory results, with an average
accuracy of 98.1%. The existence of various evidence of improving model performance
by applying the HE makes us interested in examining the application of the HE on the
RoBERTa model. The bagging ensemble method used in this study was Sum [44].

Many researchers have carried out the implementation of RoBERTa by combining
datasets with the aim of verifying facts. A study concerning fact verification by combining
the FEVER dataset and RoBERTa as a model for fact verification has been carried out [45].
This combination obtained an accuracy of 95.1% by using the F1-Score calculation. F1-Score
is the average harmonic value obtained from the precision model. The majority of F1-Scores
are used to evaluate the machine learning [46–48] model, especially for NLP [49]. With the
application of the HE, the model applied for fact verification is expected to improve the
performance of the RoBERTa model. One of the interesting results of the related works that
we studied refers to the RoBERTa model and has an updated RoBERTa model explicitly
by applying the HE. Our HE application is called RoBERTaEns. The application of HE in
the transformer family has been applied [50,51] to detect hate speech. Meanwhile, the HE
applied in our research focused on fact verification.

RoBERTaEns is formed from three RoBERTa-based models with different epoch set-
tings and batch sizes. RoBERTa-m1 with epoch 5 and batch size 32, RoBERTa-m2 with epoch
30 and batch size 20, and RoBERTa-m3 with epoch 50 and batch size 32. The best epoch
and batch size settings are from the research conducted in [52–54]. We chose RoBERTa
because it has a better accuracy results based on several previous studies. We need the
highest accuracy of the claim results to verify the facts to impact the news readers’ trust in
the news.
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3. Methods

This section presents the proposed HE modification. As mentioned in Section 1, the
main idea of applying the HE to RoBERTa is to improve the performance of the model.
The more optimal the model, the more effective fact verification results for better fact
verification. Algorithm modification in the RoBERTa model was applied at the training and
prediction stages. At the training phase, we applied the HE to obtain the model predictions
from the datasets. At the testing phase, we calculated the performance of the obtained
model using accuracy, recall, precision, and F1-Score.

Furthermore, to calculate the significant value of the model, we used the 95% Confi-
dence Interval (CI) [55]. CI indicates the probability that a parameter is below the mean
value and measures the level of uncertainty or certainty in the sampling method. Cross-
validation 10-fold times [56] were used for classification performance measurement in
machine learning to obtain the CI values.

3.1. System Overview

RoBERTaEns reads input in sentences and encodes the sentences from the input. The
sentences that have been encoded are matched with the data in the FEVER dataset. For
example, “The chairwoman of Lockheed Martin and the President are currently the same
person” which has the label “Supports” on the dataset. Each model with predefined
parameters was combined with the HE using the bagging ensemble method. The bagging
ensemble method that we used for classifying predictions was Sum. The bagging ensemble
method is one of the HE methods that serves to create a better classifier by combining the
respective predictions to form the final prediction. Figure 2 shows the process of applying
the HE to RoBERTa to improve model performance.

Figure 2. Block diagram of RoBERTaEns model.

Combined models created a higher learning rate for exploring parameters, and there
is a potential for higher accuracy rates. A higher learning rate impacts the performance of
the model in the sense that it takes less time due to the combination of the models [43]. It
means that the application of the HE to the model potentially improves performance by
requiring a shorter time than the time before HE was applied to the model. The results of
the fact verification prediction are issued after the predicted value of the ensemble model is
obtained. Each RoBERTa model was combined at the verification and prediction phases.

This section describes a method of improving our classification by applying the
HE to RoBERTa. The first phase of the model read tokenized input sentences with a
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[CLS] token at the beginning and a [SEP] token at the end of the sentences. [CLS] stands
for classification and represents the sentence-level classification of news samples, [CLS]
performed sentence representation during pretraining tokens used to decide sentence order.
Furthermore, [SEP] separated sentences and made it easier for the model to know that the
input consisted of several sample news sentences. The implementation of RoBERTaEns
is conducted by combining the results of each RoBERTa with different epoch and batch
size settings. The merging process was carried out using the bagging ensemble method.
Each model produced model accuracy and labeled the verification of facts obtained from
the classification. News classification was obtained from the output value of the neurons
generated by the model. There are two output neurons generated: refutes and supports.
The output neuron with the highest value indicates that the classification is in the highest
neuron value class. If the resulting neuron output is the same value, it suggests that the
news being tested is in another class, i.e., Not Enough Info (NEI). After obtaining the results
for each model, the bagging ensemble works by combining the prediction results in each
model and forming a new fact verification label. Figure 3 describes the flow diagram of the
RoBERTaEns algorithm.

Figure 3. RoBERTaEns Flowchart.

3.2. Training

At this stage, the model architecture was combined, and the equation of RoBERTa
was taken from a series of two segments (sequences of tokens), i.e., Question (x) and
Answer (y) in BERT is x1, . . . xNa, y1, . . . yMa. Usually, each segment consists of more than
one natural sentence. Both segments are presented sequentially from a single input to
BERT with tokens: [CLS], x1, . . . xN , [SEP] and y1, . . . yM, [EOS]. The RoBERTa model can
be calculated as follows:

RoBERTasetup = Ma + Na < Ta (1)

where Ta is the parameter controlling the maximum sequence length during training, Ma is
RoBERTa model, and Na is a sequence of Ma. Ma and Na are restricted. Ma is the RoBERTa
model, and Na is the sequence of Ma. Ma reads the input token that is read by the RoBERTa
model. Then, Ma is set to the epoch value and batch size in the model to produce a different
number of tokens. Ma and Na are limited by Ta, so that the total Ma + Na is not more than
Ta, where Ta is the parameter controlling the maximum sequence length of the original
RoBERTa during the training process.

Furthermore, the input value of feature X, label Y, model (Ma), epoch (E) were tok-
enized using RobertaTokenizerFast. In the next step, we initialized and built the model.
After the model was successfully created, it was run with the X and Y settings on the epochs
that have been set. Algorithm 1 shows the training process in RoBERTa.
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Algorithm 1. Pseudocode RoBERTa

1. Input: Training feature X, training label Y, RoBERTa model Ma, epoch E
2. Output: Trained RoBERTa models
3. X← tokenize X with RoBERTaTokenizerFast
4. Y← tokenize Y with RoBERTaTokenizerFast
5. Initiate RoBERTa model Ma argument
6. Construct RoBERTa model Ma architecture
7. Compile RoBERTa model Ma
8. Train RoBERTa model Na with X and Y on E epoch

The combination of the model was carried out on the training model by implementing
the HE into the RoBERTa model. We called it RoBERTaEns. The regulatory architecture in
RoBERTaEns can be calculated as follows:

RoBERTaEnssetup = Mensl + Nensl < Tensl (2)

where Tensl is the total parameter controlling the maximum sequence length during training,
Mensl is the total model, and Nensl is the total sequence of Mensl. Mensl and Nensl are
restricted. Mensl is a model of RoBERTaEns, and Nensl is an order of Mensl. Mensl reads the
total input tokens from each RoBERTa model and sets the epoch and batch size values for
each model to produce a different number of tokens. Mensl and Nensl are limited by Tensl,
so the total of Mensl + Nensl is not more than Tensl, where Tensl is the parameter controlling
the maximum sequence length of RoBERTaEns during training.

RoBERTaEns read the total of that tokenized using RobertaTokenizerFast. Afterwards,
we initialized the model and run the model with the X and Y settings on M-repeated epochs
on the RoBERTaEns with the M = 3. The results of each model in RoBERTa were summed
for being processed in the HE, which aimed to improve model performance. Algorithm 2
shows the training process in RoBERTaEns.

Algorithm 2. Pseudocode RoBERTaEns

1. Input: Training feature X, training label Y, RoBERTaEns models Mensl, epoch E
2. Output: Trained RoBERTa models
3. X← tokenize X with RoBERTaEns TokenizerFast
4. Y← tokenize Y with RoBERTaEns TokenizerFast
5. For i = 1 to M
6. Initiate RoBERTaEns model Mensl argument
7. Construct RoBERTaEns model Mensl architecture
8. Compile RoBERTaEns model Mensl
9. Train RoBERTaEns model Nensl with X and Y on E epoch
10. End

3.3. Parameters

We tested two parameters for setting the model: epoch and batch size. Epoch carried
out the learning process on NLP and batch size iterated on each training process. As
previously discussed, in RoBERTaEns the three models were applied, i.e., RoBERTa-m1,
RoBERTa-m2, and RoBERTa-m3. For each model, the different epochs and batch sizes were
set to prove the best setting for fact verification and chose the best setting results of epochs
and batch sizes for each model tested in previous studies [52–54]. The parameter settings
of each model are summarized in Table 1.
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Table 1. RoBERTa model parameter settings for ensemble.

Model Epoch Batch Size

RoBERTa-m1 [52] 5 32
RoBERTa-m2 [53] 30 20
RoBERTa-m3 [54] 50 32

3.4. Prediction

At this phase, the parameters in the model prediction were modified to adapt and
implement the ensemble model. The predictions in the RoBERTa model were determined by
setting one parameter that had been executed, while RoBERTaEns combined the prediction
results from each run model. The sequence architecture of the RoBERTa and RoBERTaEns
algorithms are shown in Algorithms 3 and 4, respectively.

Algorithm 3. RoBERTa predictions

1. Input: Test feature X, test label Y, trained RoBERTa model Ma
2. Output: Result
3. X← tokenize X with RobertaTokenizerFast
4. Y← tokenize Y with RobertaTokenizerFast
5. results < -predict Na with X and Y

Algorithm 4. RoBERTaEns predictions

1. Input: Test feature X, test label Y, trained RoBERTa models Mensl
2. Output: Final_result
3. Declare Array results
4. Declare Array final_result
5. X← tokenize X with RobertaTokenizerFast
6. Y← tokenize Y with RobertaTokenizerFast
7. For i = 1 to length (Nensl)
8. results← append predict Nensl with X and Y
9. End
10. final_result← sum of results

The proposed model was evaluated using accuracy, precision, recall, and F1-Score.
F1-Score performs a weighted average comparison between precision and recall. True
Positive (TP) is positive news data detected correctly, True Negative (TN) is negative news
data detected correctly, False Positive (FP) is positive news data classified as false by the
system, and False Negative (FN) is negative news data classified as false by the system.
The accuracy can be calculated as follows:

Accuracy =
TP + TN

(TP + FP + TN + FN)
(3)

Precision is used to identify positive cases with high false-positive values, which can
be calculated as follows:

Precision =
TP

(TP + FP)
(4)

In contrast to precision, recall serves to identify positive cases with a high false-
negative value that can be calculated as follows:

Recall =
TP

(TP + FN)
(5)
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The F1-Score provides a harmonic average of precision and recall, which can be
measured as follows:

F1− Score = 2× (Precision × Recall)
(Precision + Recall)

(6)

3.5. Dataset

Our study used the FEVER dataset [31,57] because it yielded good accuracy for fact
verification. In contrast to the other studies [40], which used the SQuaD, MNLI, SST,
and RACE datasets to implement the RoBERTa model. The FEVER dataset is usually
used for research based on fact verification [57,58]. The FEVER dataset has been proven
to have the best performance and it is used in Claim Extraction and Fact Verification
competitions [32,59]. The formation process for collecting the datasets has been carried
out using a semi-automatic technique. Data labeling is done manually at the final stage of
news labeling. The data labels of the claimed-results dataset are Supports, Refutes, and
Not Enough Information. The data collected in the dataset are 10,000 data for the training
phase and 10,000 data for the testing phase.

4. Result and Discussion
4.1. Model Performance Results

The results of RoBERTaEns proved that the application of the HE to RoBERTa im-
proved model performance based on the results of accuracy and F1-Score that were obtained.
RoBERTaEns combines RoBERTa-m1, RoBERTa-m2, and RoBERTa-m3 models to produce the
HE. By testing several RoBERTa models and other models (BERT, XL-Net, XLM), the HE accu-
racy and F1-Score results are higher than the previously applied ensembles. In RoBERTa-m1,
with an epoch setting of 5 and a batch size of 32, the best accuracy, precision, and F1-Score
results were obtained by comparing RoBERTa-m2 and RoBERTa-m3. RoBERTa-m1 had an ac-
curacy value 1.1% higher than RoBERTa-m2, a precision value 2.3% higher than RoBERTa-m2,
and a F1-Score of 0.4%, which is higher than RoBERTa-m2 with an epoch setting of 30 and a
batch size of 20. In addition, RoBERTa-m1 also produced the most of the measurements higher
than RoBERTa-m3, with an accuracy value of 0.5% higher than RoBERTa-m3, a precision value
of 1.2% higher than RoBERTa-m3, and F1-Score value of 0.2% higher than RoBERTa-m3. The
results are summarized in Table 2.

Table 2. Performance of various RoBERTa model.

Model Epoch Batch Size Acc Precision Recall F1-Score

RoBERTa-m1 5 32 77.3% 82.3% 84.0% 83.1%
RoBERTa-m2 30 20 76.4% 80.0% 84.8% 82.7%
RoBERTa-m3 50 32 76.8% 81.1% 84.9% 82.9%

RoBERTaEns 78.4% 82.0% 86.5% 84.2%

In this test, RoBERTa-m3 produced a recall value of 0.9% higher than RoBERTa-m1.
RoBERTa-m3 resulted a recall value of 0.1% higher than RoBERTa-m2. Overall, RoBERTa-m1
was more dominant in obtaining accuracy, precision, and F1-Score. However, the highest
recall was in the RoBERTa-m1 setting with 5 epochs and 32 batch sizes. Combining all models
using the HE on RoBERTa improved the performance of the model for fact verification, i.e., it
achieved an accuracy of 78.4%, a precision of 82%, a recall of 86.5%, and an F1-Score of 84.2%.
The experimental results proved that combining several models can improve accuracy.

Figure 4 visualizes the comparison of the best RoBERTa model with RoBERTaEns
(after the RoBERTa model was applied with HE). In our experiment, the performance of
the RoBERTaEns model has higher accuracy and F1-Score values than other models. It
proved that the implementation of the HE has succeeded in improving the performance of
the model. However, the accuracy and F1-Score of the RoBERTaEns model is higher than
RoBERTa-m1, RoBERTa-m2, and RoBERTa-m3.
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Figure 4. Performance of RoBERTaEns and various RoBERTa models.

In addition, we compared it with the other models, i.e., BERT, XL-Net, and XLM
models. Each epoch and batch size setting in the model followed the setting with the best
results in the comparison process of RoBERTa-m1, RoBERTa-m2, and RoBERTa-m3. The
best epoch and batch size settings are 5 and 32, respectively. As a result, using the same
dataset as RoBERTaEns, i.e., the FEVER dataset, RoBERTaEns has higher accuracy and
better F1-Score than BERT, XL-Net, and XLM. The results of our comparison models are
summarized in Table 3.

Table 3. RoBERTaEns model accuracy results compared to BERT, XL-NET, and XLM.

Model Accuracy Precision Recall F1-Score

RoBERTaEns 78.4% 82.0% 86.5% 84.2%
BERT 77.5% 80.4% 87.5% 83.8%

XL-Net 77.2% 79.3% 89.0% 83.8%
XLM 72.5% 71.9% 96.1% 82.3%

RoBERTaEns indicates that the correct positive prediction results are slightly lower
than the comparison algorithm. However, the accuracy and F1-Score results are still higher
than in BERT, XL-Net, and XLM. These results proved that RoBERTaEns has a measurement
of the quantity that is closer to the actual value and its robustness is better than the three
other models. Additional evidence of the HE’s application on the model has been shown
to improve the performance of the model we developed, i.e., RoBERTaEns. By applying
bagging ensemble, RoBERTaEns improved its performance to produce a better classification.
Figure 5 shows comparison results of the performance metrics.

4.2. Fact Verification Result

We have proven that RoBERTaEns produces a good model based on the model test
performance and that it compares the results with the other models. We documented the
results of the fact verification to find out whether it is claimed to be “Supports”, “Refutes”,
or “NEI”. The output neuron value generated by RoBERTaEns determined the label owned
by the news to be claimed. RoBERTaEns required evidence sourced from datasets. Figure 6
shows an example in our experiment that required scattered evidence from multi-structured
textual sources to conclude. Considering that the RoBERTaEns performance produces the
best performance compared to the other models, the fact verification results generated by
the RoBERTaEns model have a greater chance of producing a more precise fact verification.
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Figure 5. Performance of RoBERTaEns and other Transformer models.

Figure 6. Fact verification result.

We compared the performance of RoBERTa with RoBERTaEns after each datum in
our dataset was grouped according to the following categories: Disease, Health, Political,
Government, and Industry. The results of the performance comparison experiment are
shown in Table 4. The F1-Score values for the “Government” and “Disease” categories in
RoBERTaEns obtained the highest scores, with 98.90% and 92.27% respectively. However,
the F1-Score value in the “Health” category had the lowest accuracy, indicating that this
category is difficult to identify in the FEVER dataset. Various reasons for the low value
obtained, among others, the amount of data in this category has a small sample which
can cause errors of fact verification. Overall, we observed that RoBERTaEns has a higher
accuracy and F1-Score values than RoBERTa-m1, except for the “Industry” category. In
this category, the F1-Score obtained by RoBERTaEns has a lower accuracy of 2.28% and
a lower accuracy of 1.75% compared to RoBERTa-m1. We used RoBERTa-m1 to compare
RoBERTaEns because RoBERTa-m1 is better than RoBERTa-m2 and RoBERTa-m3. The
complete results of accuracy (A), precision (P), recall (R), and F1-Score (F) for each topic
category in the RoBERTa-m1 and RoBERTaEns models are shown in Table 4.
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Table 4. Comparison of RoBERTa-m1 and RoBERTaEns by the News Topic Category.

Topic Category Parameters RoBERTa-m1 RoBERTaEns

Disease

A 79.05% 92.17%
P 78.48% 93.27%
R 84.09% 92.27%
F 81.19% 92.77%

Health

A 72.46% 80.66%
P 74.26% 81.29%
R 80.92% 80.52%
F 79.51% 80.92%

Political

A 87.20% 84.00%
P 88.98% 82.60%
R 92.90% 90.71%
F 90.26% 88.90%

Government

A 82.25% 90.66%
P 88.90% 91.86%
R 84.65% 95.43%
F 86.71% 98.90%

Industry

A 74.35% 72.60%
P 78.27% 77.97%
R 80.54% 78.53%
F 79.18% 76.90%

4.3. Error Analysis

The 95% confidence level is based on the CI shown in Table 5 with n (sample data)
of 10,000 using 10-fold cross-validations. All the RoBERTaEns results show the lowest
CI value compared to the other models. It validated our hypothesis that RoBERTaEns
consistently outperformed the other models. These results also indicate that RoBERTaEns
is more robust in handling various types of fact input in each fold.

Table 5. Margin of Error comparison using 95% CI.

RoBERTaEns R-m1 R-m2 R-m3 BERT XL-Net XLM

A 0.01% 0.02% 0.01% 0.01% 0.02% 0.06% 0.10%
P 0.00% 0.04% 0.01% 0.02% 0.05% 0.12% 0.02%
R 0.01% 0.10% 0.01% 0.01% 0.14% 0.04% 0.09%
F 0.00% 0.02% 0.01% 0.00% 0.05% 0.13% 0.05%

5. Conclusions

Our research focuses on developing a new model based on three types of RoBERTa
models for fact verification. We applied the Homogeneous Ensemble (HE) or a system
based on a single classification approach for fact verification on the RoBERTa models with
a FEVER dataset of 10,000 data. Our method is called RoBERTaEns. In this study, we
found that the application of the HE on RoBERTa resulted in better accuracy and a higher
F1-Score than RoBERTa-m1, RoBERTa-m2, RoBERTa-m3, BERT, XL-NET, and XLM. The
experimental results showed that RoBERTaEns improves model accuracy by 1.1% compared
to RoBERTa-m1, 2% compared to RoBERTa-m2, and 1.6% compared to RoBERTa-m3. The
F1-Score results on RoBERTaEns also showed an increased percentage of 1.1% compared
to RoBERTa-m1, 1.5% compared to RoBERTa-m2, and 1.3% compared to RoBERTa-m3.
Regarding the stability of prediction accuracy, the ensemble application has a better fact
verification than the other models. In addition, RoBERTaEns has a smaller margin of error
compared to the other models, and it proves that RoBERTaEns produces more robust values
in dealing with different types of fact input in each fold.
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In future research, we suggest applying another ensemble method to the RoBERTa
model, i.e., the heterogeneous ensemble, and comparing it with the HE. This exploration
could be carried out on different datasets in future studies.
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