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Abstract: Road markings and signs provide vehicles and pedestrians with essential information that
assists them to follow the traffic regulations. Road surface markings include pedestrian crossings,
directional arrows, zebra crossings, speed limit signs, other similar signs and text, and so on, which are
usually painted directly onto the road surface. Road markings fulfill a variety of important functions,
such as alerting drivers to the potentially hazardous road section, directing traffic, prohibiting certain
actions, and slowing down. This research paper provides a summary of the Yolov5 algorithm
series for road marking sign identification, which includes Yolov5s, Yolov5m, Yolov5n, Yolov5l, and
Yolov5x. This study explores a wide range of contemporary object detectors, such as the ones that
are used to determine the location of road marking signs. Performance metrics monitor important
data, including the quantity of BFLOPS, the mean average precision (mAP), and the detection time
(IoU). Our findings shows that Yolov5m is the most stable method compared to other methods with
76% precision, 86% recall, and 83% mAP during the training stage. Moreover, Yolov5m and Yolov5l
achieve the highest score, mAP 87% on average in the testing stage. In addition, we have created a
new dataset for road marking signs in Taiwan, called TRMSD.

Keywords: Yolov5; road marking; machine learning; object recognition

1. Introduction

Traffic signs are used to control traffic, alert drivers to potential danger ahead pro-
viding useful information to make driving safer and easier [1]. To provide unambiguous
information, traffic signs are designed using several fundamentally distinct design styles.
In addition, the background with many different buildings and shop signs makes it hard
for the system to identify the street signs automatically. Thus, it becomes difficult to locate
the road signs in many environments [2]. Road markings alert drivers to dangerous areas
on the road, indicate traffic directions, suggest they slow down, and perform other useful
tasks. There are various types of landmarks that are used for vehicle localization purposes,
among which one of the most common types of landmarks is road surface markings.

Automatic detection of road markings has been used for autonomous vehicle guid-
ance [3] or for lane detection systems [4], which is a common active safety feature of
commercial cars. In recent years, various strategies for identifying road signs have been
developed [5,6]. Most of the strategies deal with single images with live backgrounds [7].
Ref. [8] described a method for detecting road signs using a color index system. The first
step in the process of designing road signs involved depicting each model in terms of a
color histogram. An investigation on four distinct varieties of road markings was carried
out by Qin and colleagues [9] using a machine vision approach. The images of the marking
outlines were then retrieved from the photographs after being created at random using
image processing techniques.

Due to the high computational capability, various deep learning methods were re-
cently proposed for recognizing road markers. Following the calculation of the geometric
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characteristics and pixel distribution of road markings by Soilan et al. [10], a two-layer feed-
forward network was used to extract pedestrian crossings and five different arrow classes.
In the study by Wen et al. [11], a pixel-level U-net segmentation network was created to
extract road markings. Chen et al. [12] introduced a deep learning model based on a dense
feature pyramid network, which, to extract the path markers, was trained from start to
finish. Cheng et al. [13] proposed using road markings as an intensity threshold technique
based on normalization of unsupervised intensity and a deep learning strategy [14].

Current state-of-the-art detection frameworks, such as single shot detector (SSD) [15]
and You Only Look Once (Yolo) [16], can be inferred in real time while maintaining
robustness for the task of road marking detection. Yolo has demonstrated an impressively
quick detection speed, even though sacrificing its accuracy. Since then, Joseph et al. made
a few minor adjustments and came up with Yolov2, Yolov3, Yolov4 [17], and Yolov5 [18]
as a result. Yolo V4, based on cross stage partial network (CSPNet) [19], was proposed
for object detection. In that research, a network scaling approach was used to modify the
depth, width, and resolution of the network, as well as the network’s topology, resulting
in the construction of Scaled-Yolo V4. Yolo V4 is designed for real-time object detection
on general GPU. To obtain the best speed and accuracy trade-off, C.Y. Wang et al. [19]
re-designed Yolo V4 to Yolo V4-CSP.

The Yolov5 model that was made available to the public in May of 2020 has several
advantages. It is lightweight, quick, and able to run on the mobile platform. Additionally, it
can support a greater variety of applications. As a result, the purpose of this experiment is
to evaluate Yolov5, which is supposed to increase both the accuracy and the efficiency. The
model’s architecture is entirely determined by the model-configurations file. The ultralytics
are compatible with a variety of Yolov5 designs and these models are referred to collectively
as P5. Yolov5 models are distinguished from one another principally by the size of the
parameters that they make use of, which are as follows: Yolov5n (nano), Yolov5s (small),
Yolov5m (medium), Yolov5l (large), and Yolov5x (extra-large). When using this design for
teaching purposes, it is advised to use images with a resolution of 640 pixels by 640 pixels.

The main contribution of this research is as follows: (1) The Yolov5 series of object
identification algorithms, including Yolov5s, Yolov5m, Yolov5n, Yolov5l, and Yolov5x, are
summarized in this research work. (2) This research investigates a variety of modern object
detectors, including those used to identify road marking signs. Performance metrics track
crucial data including the mean average precision (mAP), detection time (IoU), and the
quantity of BFLOPS. (3) We create a new dataset called the Taiwan road marking sign
dataset (TRMSD).

The organizational structure of the paper is as follows. In Section 2, we review the
most recent publications in the field and describe our approach. Section 3 summarizes the
experimental results. Section 4 focuses on discussing our findings, and Section 5 describes
our conclusions and future research goals.

2. Materials and Methods
2.1. Road Marking Sign Identification

The identification of road markings is an essential task of intelligent transportation
systems [20]. Road markings are as vital as road signs; not only do they help to provide
a more secure environment for drivers but also provide drivers and other motorists with
information that would not be able to be transmitted via traditional signs. Road markings
can either be advisory, such as the reminder to keep the lines clear, or enforceable, such
as yellow lines, box junctions, and stop lines. A large body of works has been created to
tackle the challenge of automatically recognizing road markings. Previous researchers used
various image processing approaches to identify road markings and signs. For instance,
Foucher et al. [21,22] described a method for detecting and recognizing various painted
road markings, including lanes, crosswalks, arrows, and other related road markings. These
markings were all applied to the road. They presented a method for the recognition of road
markings that was comprised of two stages: the first stage was the extraction of marking
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elements, and the second stage was the identification of related components based on a
single pattern or recurring rectangular patterns [23]. Another method for the detection and
identification of road markings was presented by Ding et al. [24]. In order to recognize and
categorize five different road markings, HOG characteristics and a support vector machine
(SVM) were applied. The technique for recognizing symbol-based road markings that was
published by Greenhalgh et al. [25] made use of HOG features in addition to a support
vector machine.

2.2. Yolov5 Architecture

There are five distinct architectures for the Yolov5, including Yolov5s, Yolov5m,
Yolov5n, and Yolov5l. The primary distinction is based on the quantity of feature ex-
traction modules and convolution kernels that are dispersed over the network at various
predetermined locations. Figure 1 presents a diagrammatic representation of the internal
network that Yolov5 possesses. The Yolov5 design incorporates a number of different tech-
nologies, including automatic learning bounding box anchoring, mosaic data improvement,
and cross-stage partial networking. This design makes use of the most effective algorithm
optimization methods that were developed recently for convolutional neural networks. It
is built on the Yolo detection architecture.

Yolov5 has four main components: input, backbone, neck, and output [26]. The back-
bone model’s primary responsibility is to single out significant elements within the input
image for analysis. When it comes to extracting rich, important characteristics from input
photos, Yolov5 relies on cross stage partial networks (CSP) and spatial pyramid pooling
(SPP) as its primary building blocks. SPP is beneficial for identifying the same item in
multiple sizes and scales, which is important when it comes to the correct generalization of
a model concerning object scaling. The feature pyramid architectures of the feature pyra-
mid network (FPN) [27] and path aggregation network (PANet) [28,29] are utilized in the
construction of the neck network. Powerful semantic features are distributed throughout
the FPN structure, beginning at the top feature maps and working their way down to the
lower feature maps. At the same time, it is the responsibility of the PAN structure to ensure
the transmission of reliable localization features from lower feature maps to higher feature
maps. PANet is utilized as a neck in Yolo v5, which allows for the generation of a feature
pyramid [30,31].

Yolov5 is quite similar to Yolov4, although there are a few key differences between
them: (1) Yolov4 is distributed using the Darknet framework, which is written in the
programming language C. PyTorch serves as the underlying infrastructure for Yolov5. (2) In
Yolov4, the configuration file is a a.cfg file, while in Yolov5, the configuration file is a a.yaml
file. The cross stage partial network is the full name of CSP Net, which is a solution that
primarily addresses the issue of a significant quantity of calculation in reasoning from the
point of view of the design of network structures. According to the author of CSP Net, the
issue of unnecessary inference calculations can be traced back to the network optimization
gradient information repetition [32].

Using the structure of Yolov5 as an example, an initial image with dimensions of 608× 608× 3
is input into the focus structure, as shown in Figure 1. Next, the slicing operation is used to change
the image into a feature map with dimensions of 304 × 304 × 12, and this is followed by 32
convolution operation kernels, which result in a final feature map with dimensions of
304 × 304 × 32. The information presented in Table 1 provides an overview of all of
Yolov5’s models, including the inference speed on CPU and GPU, as well as the number of
parameters with an image size of 640 [33,34].
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Table 1. An overview of YoloV5 models.

Model Name Params
(Million)

Accuracy
(mAP 0.5)

CPU
Time (ms)

GPU
Time (ms)

Yolov5n 1.9 45.7 45 6.3
Yolov5s 7.2 56.8 98 6.4
Yolov5m 21.2 64.1 224 8.2
Yolov5l 46.5 67.3 430 10.1
Yolov5x 86.7 68.9 766 12.1

The vast majority of annotation tools produce their results in the Yolo labeling format,
which generates a single text file containing annotations for each image. Each text file has
one bounding box, abbreviated as “BBox”, with annotation for each of the objects that are
displayed in the image. The annotations are scaled appropriately to the image, and their
values range from 0 to 1 inclusively [35]. The following equations are the basis for the
adjustment procedure for the Yolo format calculation.

dw = 1/W (1)

x =
(x1 + x2)

2
× dw (2)

dh = 1/H (3)

y =
(y1 + y2)

2
× dh (4)

w = (x2 − x1)× dw (5)

h = (y2 − y1)× dh (6)

H indicates the height of the image, dh refers to the absolute height of the image, W
serves as the width of the image, and dw represents the absolute width of the picture.

Based on Table 1, Yolov5n is a newly announced nano model that is the smallest in
the family. It is designed to be used for edge computing, Internet of Things devices, and
has support for OpenCV deep neural networks. When saved in INT8 format, it is less
than 2.5 MB, and when saved in FP32 format, it is roughly 4 MB. It works wonderfully
for applications on mobile devices. Next, Yolov5s is the smallest model in the family
and has approximately 7.2 million parameters. It is an excellent choice for performing
inference on the CPU because of its tiny size. This is the medium-sized model, Yolov5m,
which has a total of 21.2 million different parameters [36]. Due to the fact that it strikes a
healthy mix between speed and accuracy, it is possibly the model that is most suited for
the majority of datasets and training [37]. Moreover, the Yolov5l model has 46.5 million
different parameters and is the largest member of the Yolov5 family. It works wonderfully
for datasets in which we need to identify more discrete items. Furthermore, the Yolov5x
is the largest of the five models, and it also has the highest mAP value of the five. It is
considerably slower than the others and contains 86.7 million parameters [6].

3. Results
3.1. Taiwan Road Marking Sign Dataset (TRMSD)

In addition, we carried out this experiment utilizing images obtained from various
video and image sources in order to simulate the road marking signs that are used in
Taiwan. Eighty percent of images in the dataset are used for training, while the remaining
twenty percent are used for validation. Figure 2 shows the Taiwan road marking sign
dataset (TRMSD) sample image and Table 2 displays the TRMSD statistics. Furthermore,
to prevent an imbalance in the data, we use images with a range of 391–409 for each class.
Thus, our dataset consists of 6009 images in total, each with a size of 512 × 288.
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Figure 2. TRMSD sample image.

Table 2. TRMSD Dataset.

Class ID Class Name Total Image

P1 Turn Right 405
P2 Turn Left 401
P3 Go Straight 407
P4 Turn Right or Go Straight 409
P5 Turn Left or Go Straight 403
P6 Speed Limit (40) 391
P7 Speed Limit (50) 401
P8 Speed Limit (60) 400
P9 Speed Limit (70) 398
P10 Zebra Crossing 401
P11 Slow Sign 399
P12 Overtaking Prohibited 404
P13 Barrier Line 409
P14 Cross Hatch 398
P15 Stop Line 403

Our experiment consisted of 15 classes (P1–P15), including Go Straight Turn Left, Turn
Right, Turn Right or Go Straight, Turn Left or Go Straight, Speed Limit 40, Speed Limit 50,
Speed Limit 60, Speed Limit 70, Zebra Crossing, Slow Sign, Overtaking Prohibited, Barrier
Line, Cross Hatch, and Stop Line.

3.2. Training Result

The training process and result are explained in this section. We divided our dataset
into a training subset and a testing subset: 70 percent for training and 30 percent for testing.
Figure 3 describes the training process for batch 0 and batch 1. The anchor boxes are
generated by Yolov5 with the help of a genetic algorithm. This procedure is referred to
as the auto anchor process, which recalculates the anchor boxes in order to better match
the data in the event that the default ones are inadequate. To generate k-Means evolved
anchor boxes, this is combined with the k-Means algorithm. This is one of the reasons that
Yolov5 performs so admirably even on a wide variety of datasets. Figure 4 describes the
Yolov5 validation process for batch 0 and batch 1. During the training phase of Yolov5,
four individual images are spliced to form a larger image. Each of the four individual
images is subject to a random processing step during the splicing phase, which results in
varying dimensions and configurations for each individual image. To make an analysis
of our model, we will use the validation script. Using the “task” option, one can decide
whether the performance is evaluated across the training dataset, the validation dataset, or
the test dataset.
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By default, all the results are logged into the runs/train directory, and a new experi-
ment directory is created for each subsequent training, with the names runs/train/exp2,
runs/train/exp, etc. We can view the mosaics, labels, predictions, and augmentation effects
by looking at the train and val jpgs. It is important to note that an Ultralytics mosaic data
loader is needed for training, and this device merges four photos into one mosaic while
training. The weights are saved after 50 epochs during the training stage.

The last stage in training is called fine-tuning, which is completely optional. It involves
unfreezing the entire model that we obtained in the previous step and then retraining it on
our data using a very small learning rate. This has the potential to achieve considerable
improvements by gradually adjusting the previously trained features on the fresh data. The
hyperparameters-configurations file is where the learning rate can be modified to suit our
needs. For the sake of demonstrating the tutorial, we will use the hyperparameters that are
defined in the built-in hyp.finetune.yaml file. These hyperparameters have a significantly
lower learning rate than the default. The weights will initially be set to the values that were
saved on the stage before this one. Once finished training, it is stored using the standard
PyTorch protocol, which entails using the.pt file extension.

Transfer learning is an efficient method for retraining a model on new data without
retraining the entire network. Instead, a portion of the initial weight is assigned, while
the remainder is used to calculate losses and is modified by the optimizer. It uses fewer
resources than standard training and allows for shorter training periods, although it can
result in a decrease in the accuracy of the units being trained. In our model, we use transfer
learning while training with the Yolov5 series model.

During the training phase, we watch the mAP@0.5 to assess how well our detector
performs on the validation set; a greater number indicates better performance. The dataset
yet another markup language (YAML) file is possibly one of the most essential aspects of
the Yolov5 training. This file provides the class names with the path to the data that is used
for training and validation. For the training script to be able to detect the image paths, the
label paths, and the class names, we need to supply this file path as an argument when we
are running the training script. The information is already included in the dataset. Table 3
describes the training process of the Yolov5 series. Yolov5m, Yolov5l, and Yolov5x achieve
the same average of mAP at approximately 83%, followed by Yolov5s with an average
of mAP 81%. Based on the training results, it can be concluded that Yolov5m is the most
stable method compared to other methods with 76% precision, 86% recall, and 83% mAP.
Furthermore, Class P6 and Class P9 achieve the highest accuracy for all models with mAP
in the range of 99% to 100%.

Table 3. Training Performance of Yolov5 series.

Class
Yolov5n Yolov5s Yolov5m Yolov5l Yolov5x

P R mAP@.5 P R mAP@.5 P R mAP@.5 P R mAP@.5 P R mAP@.5

P1 0.63 0.89 0.79 0.66 0.87 0.77 0.63 0.87 0.80 0.61 0.87 0.80 0.61 0.87 0.78
P2 0.62 0.77 0.74 0.66 0.69 0.74 0.65 0.78 0.72 0.64 0.74 0.73 0.91 0.79 0.70
P3 0.53 0.75 0.64 0.55 0.75 0.62 0.60 0.83 0.72 0.54 0.82 0.72 0.60 0.78 0.74
P4 0.45 0.63 0.61 0.41 0.65 0.60 0.43 0.77 0.65 0.40 0.62 0.61 0.40 0.73 0.62
P5 0.42 0.62 0.55 0.37 0.52 0.46 0.42 0.71 0.57 0.41 0.84 0.55 0.37 0.72 0.48
P6 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00
P7 0.81 0.89 0.91 0.82 0.87 0.89 0.89 0.88 0.90 0.78 0.86 0.90 0.79 0.89 0.90
P8 0.84 0.98 0.97 0.82 0.98 0.97 0.87 1.00 0.97 0.90 0.99 0.98 0.89 1.00 0.98
P9 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00
P10 0.95 0.64 0.89 0.83 0.59 0.75 0.93 0.80 0.89 0.95 0.76 0.91 0.92 0.83 0.91
P11 0.84 0.99 0.99 0.89 0.95 0.98 0.86 0.99 0.99 0.88 0.99 0.99 0.92 0.99 0.99
P12 0.78 0.74 0.73 0.66 0.78 0.74 0.69 0.75 0.71 0.69 0.74 0.70 0.75 0.78 0.76
P13 0.64 0.75 0.73 0.58 0.68 0.63 0.76 0.81 0.78 0.72 0.82 0.79 0.70 0.84 0.78
P14 0.81 0.85 0.86 0.792 0.84 0.84 0.87 0.91 0.89 0.88 0.88 0.88 0.86 0.85 0.87
P15 0.79 0.66 0.79 0.86 0.71 0.81 0.84 0.82 0.90 0.91 0.86 0.93 0.83 0.84 0.91
All 0.74 0.81 0.81 0.72 0.79 0.79 0.76 0.86 0.83 0.75 0.82 0.83 0.75 0.86 0.83
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Additionally, we can acquire the precision–recall curve, which is automatically
saved for every validation. Figure 5 depicts the precision and recall for Yolov5m and
Yolov5l. The performance metrics we use to evaluate the performance of our dataset
TRMSD in Yolov5 model experiments include precision, recall, accuracy score, and
F1. Among them, precision and recall are defined in Equations (7) and (8) [38], then
accuracy and F1 are defined in Equations (9) and (10) [39]. A compound loss is computed
for the Yolo family of algorithms, with the score for objectiveness, the score for class
probability, and the score for bounding box regression serving as the inputs. For the
purpose of calculating the loss of class probability and object score, Ultralytics uses the
binary cross-entropy with logits loss function that is available in PyTorch [40]. True
positive (TP) is the number of “yes” in the real situation when the model evaluation
is also “yes”, and true negative (TN) is the number of “no” in the real situation when
the model evaluation is also “no”. False positive (FP) is the number of “no” in the real
situation when the model evaluation is also “yes”; false negative (FN) is the number
of “yes” in the real situation when the model evaluation is also “no” [41]. The mean
average precision (mAP) is a popular indicator for evaluating the performance of object
identification models and defined in Equation (11).

Precision (P) =
TP

TP + FP
(7)

Recall (R) =
TP

TP + FN
(8)

Accuracy (Acc) =
TP + TN

TP + FN + FP + FN
(9)

F1 =
2× Precision× Recall

Precision + Recall
(10)

mAP =
1
N ∑N

i=1 Acc (11)

The Yolo loss function is calculated using the Equation (12) [16].

Yolo Loss Function = λcoord ∑s2

i=0 ∑B
j=0
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Additionally, we can acquire the precision–recall curve, which is automatically saved 
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The performance metrics we use to evaluate the performance of our dataset TRMSD in 
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defined in Equations (9) and (10) [39]. A compound loss is computed for the Yolo family 
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(FP) is the number of “no” in the real situation when the model evaluation is also “yes”; 
false negative (FN) is the number of “yes” in the real situation when the model evaluation 
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Additionally, we can acquire the precision–recall curve, which is automatically saved 
for every validation. Figure 5 depicts the precision and recall for Yolov5m and Yolov5l. 
The performance metrics we use to evaluate the performance of our dataset TRMSD in 
Yolov5 model experiments include precision, recall, accuracy score, and F1. Among them, 
precision and recall are defined in Equations (7) and (8) [38], then accuracy and F1 are 
defined in Equations (9) and (10) [39]. A compound loss is computed for the Yolo family 
of algorithms, with the score for objectiveness, the score for class probability, and the score 
for bounding box regression serving as the inputs. For the purpose of calculating the loss 
of class probability and object score, Ultralytics uses the binary cross-entropy with logits 
loss function that is available in PyTorch [40]. True positive (TP) is the number of “yes” in 
the real situation when the model evaluation is also “yes”, and true negative (TN) is the 
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(FP) is the number of “no” in the real situation when the model evaluation is also “yes”; 
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Additionally, we can acquire the precision–recall curve, which is automatically saved 
for every validation. Figure 5 depicts the precision and recall for Yolov5m and Yolov5l. 
The performance metrics we use to evaluate the performance of our dataset TRMSD in 
Yolov5 model experiments include precision, recall, accuracy score, and F1. Among them, 
precision and recall are defined in Equations (7) and (8) [38], then accuracy and F1 are 
defined in Equations (9) and (10) [39]. A compound loss is computed for the Yolo family 
of algorithms, with the score for objectiveness, the score for class probability, and the score 
for bounding box regression serving as the inputs. For the purpose of calculating the loss 
of class probability and object score, Ultralytics uses the binary cross-entropy with logits 
loss function that is available in PyTorch [40]. True positive (TP) is the number of “yes” in 
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number of “no” in the real situation when the model evaluation is also “no”. False positive 
(FP) is the number of “no” in the real situation when the model evaluation is also “yes”; 
false negative (FN) is the number of “yes” in the real situation when the model evaluation 
is also “no” [41]. The mean average precision (mAP) is a popular indicator for evaluating 
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for every validation. Figure 5 depicts the precision and recall for Yolov5m and Yolov5l. 
The performance metrics we use to evaluate the performance of our dataset TRMSD in 
Yolov5 model experiments include precision, recall, accuracy score, and F1. Among them, 
precision and recall are defined in Equations (7) and (8) [38], then accuracy and F1 are 
defined in Equations (9) and (10) [39]. A compound loss is computed for the Yolo family 
of algorithms, with the score for objectiveness, the score for class probability, and the score 
for bounding box regression serving as the inputs. For the purpose of calculating the loss 
of class probability and object score, Ultralytics uses the binary cross-entropy with logits 
loss function that is available in PyTorch [40]. True positive (TP) is the number of “yes” in 
the real situation when the model evaluation is also “yes”, and true negative (TN) is the 
number of “no” in the real situation when the model evaluation is also “no”. False positive 
(FP) is the number of “no” in the real situation when the model evaluation is also “yes”; 
false negative (FN) is the number of “yes” in the real situation when the model evaluation 
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௦మ
௜ୀ଴  

+ ෍ ෍ 𝕝௜௝௢௕௝൫𝐶௜ − 𝐶መ௜൯ଶ ஻
௝ୀ଴

௦మ
௜ୀ଴ +  𝜆௡௢௢௕௝ ෍ ෍ 𝕝௜௝௡௢௢௕௝൫𝐶௜ − 𝐶መ௜൯ଶ ஻

௝ୀ଴
௦మ

௜ୀ଴  

(12) 

noobj
ij

(
Ci − Ĉi

)2

+
s2

∑
i=0
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𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (8)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁 (9)
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The Yolo loss function is calculated using the Equation (12) [16]. 
Yolo Loss Function = 𝜆௖௢௢௥ௗ ∑ ∑ 𝕝௜௝௢௕௝ሾ(𝑥௜ − 𝑥ො௜)ଶ + (y − 𝑦ො௜)ଶሿ ஻௝ୀ଴௦మ௜ୀ଴  

+ 𝜆௖௢௢௥ௗ ෍ ෍ 𝕝௜௝௢௕௝ ൥൫ඥ𝑤௜ − ඥ𝑤ෝ௜൯ଶ +  ቆඥℎ௜ − ටℎ෠௜ቇଶ൩ ஻
௝ୀ଴

௦మ
௜ୀ଴  

+ ෍ ෍ 𝕝௜௝௢௕௝൫𝐶௜ − 𝐶መ௜൯ଶ ஻
௝ୀ଴

௦మ
௜ୀ଴ +  𝜆௡௢௢௕௝ ෍ ෍ 𝕝௜௝௡௢௢௕௝൫𝐶௜ − 𝐶መ௜൯ଶ ஻

௝ୀ଴
௦మ

௜ୀ଴  

(12) 

obj
i ∑

cεclasses
(pi(c)− p̂i(c))2

(12)

where S is the number of cells in the image, B is the number of bounding boxes predicted
in each grid cell, and c represents the class prediction for each grid cell. Furthermore,
pi(c) represents the confidence probability. For any box j of cell i, xij and yij represent the
coordinates of the center of the anchor box, hij gives height, wij gives width of the box
and Cij gives the confidence score. Finally, λcoord and λnoobj are the weights to decide
the importance of localization and recognition in the training.
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4. Discussion

Table 4 describes the testing performance of the Yolov5 series. After achieving satisfac-
tory results during the training phase, our model is now prepared for the inference phase.
Each image is augmented (with a horizontal flip and three different resolutions), and the
final prediction is an ensemble of all these augmentations. After inference, we can further
improve the accuracy of the predictions by adding test-time augmentations (TTA). Because
the TTA results in an inference that is two to three times longer, we have to abandon it
to maintain a high frames-per-second (FPS) rate. An inference can be made based on an
image, a video, a directory, a stream, a camera, or even a link to YouTube. These can all
serve as the input. In our experiment, we test the Yolov5 series with some groups of images
for each class. Based on our experiment results, Yolov5m and Yolov5l achieve the highest
average mAP 87%, followed by Yolov5s with the mAP 84%, Yolov5x with mAP 83%, and
Yolov5 with mAP 80%. Class P6 achieves the highest mAP for all Yolov5 series ranging
from 99% to 100%.

Table 4. Testing Performance of Yolov5 series.

Class
Yolov5n Yolov5s Yolov5m Yolov5l Yolov5x

P R mAP@.5 P R mAP@.5 P R mAP@.5 P R mAP@.5 P R mAP@.5

P1 0.62 0.92 0.81 0.64 0.92 0.84 0.65 0.93 0.86 0.65 0.94 0.85 0.61 0.87 0.78
P2 0.69 0.67 0.75 0.72 0.75 0.79 0.77 0.73 0.82 0.79 0.73 0.81 0.91 0.79 0.70
P3 0.54 0.74 0.62 0.55 0.80 0.67 0.60 0.89 0.73 0.60 0.79 0.72 0.60 0.78 0.74
P4 0.51 0.59 0.64 0.50 0.69 0.67 0.51 0.75 0.71 0.54 0.66 0.70 0.40 0.73 0.62
P5 0.48 0.65 0.53 0.49 0.69 0.55 0.51 0.65 0.57 0.51 0.64 0.55 0.37 0.72 0.48
P6 0.99 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00
P7 0.84 0.91 0.93 0.87 0.91 0.96 0.93 0.90 0.95 0.88 0.91 0.95 0.79 0.89 0.90
P8 0.82 0.97 0.96 0.83 0.97 0.97 0.86 0.99 0.98 0.82 0.99 0.98 0.89 1.00 0.98
P9 0.98 1.00 0.99 0.98 1.00 0.99 0.98 1.00 0.99 0.98 1.00 0.99 0.99 1.00 1.00
P10 0.90 0.61 0.82 0.87 0.66 0.87 0.93 0.80 0.94 0.88 0.80 0.93 0.92 0.83 0.91
P11 0.80 0.99 0.97 0.89 0.99 0.98 0.91 1.00 0.98 0.89 1.00 0.98 0.92 0.99 0.99
P12 0.78 0.69 0.76 0.71 0.86 0.81 0.86 0.89 0.91 0.88 0.92 0.93 0.75 0.78 0.76
P13 0.71 0.66 0.70 0.68 0.83 0.80 0.77 0.88 0.89 0.80 0.85 0.87 0.70 0.84 0.78
P14 0.73 0.83 0.82 0.80 0.86 0.85 0.86 0.92 0.90 0.88 0.88 0.90 0.86 0.85 0.87
P15 0.84 0.56 0.72 0.88 0.67 0.80 0.92 0.70 0.88 0.90 0.71 0.87 0.83 0.84 0.91
All 0.75 0.79 0.80 0.76 0.84 0.84 0.80 0.87 0.87 0.8 0.85 0.87 0.75 0.86 0.83

When conducting deep learning, parameters known as hyperparameters are set in
advance of formal training. The use of appropriate hyperparameters has the potential to in-
crease the performance of the model. The Yolov5 method has a total of 23 hyperparameters,
most of which are employed in the process of configuring the learning rate, loss function,
and data improvement parameters and so on. It is discovered unequivocally that the more
complex the network structure model, the lower the training loss convergence and the
higher the validation loss, which indicates that the overfitting of the model is more severe.
The complexity of the model can lead to an increase in the validation loss in proportional
measure. The model’s capacity to identify abnormalities shows just a slight improvement
overall. The weight volume and the number of parameters are two measures that can be
used to characterize the complexity of the model. The more complicated the model is, the
higher these indexes are, and the more RAM the GPU requires to store it during training.

Figure 6 shows the recognition results of the Yolov5 series. The recognition results for
Yolov5m are shown in Figure 6c. Class P1 achieved 73% accuracy, Class P14 obtained 68%,
Class P3 showed accuracy of 66%, 83%, and 38%. All models can detect road markings sign
in the image very well. The Yolov5 is a lightweight and relatively simple device to operate.
Moreover, there are a total of 25 blocks in the Yolov5m medium model (from 0 to 24). Each
block is composed of a stacked arrangement of a variety of layers. Yolov5 is quick to train,
quick to draw conclusions, and does well in performance.
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for Yolov5m are shown in Figure 6c. Class P1 achieved 73% accuracy, Class P14 obtained 
68%, Class P3 showed accuracy of 66%, 83%, and 38%. All models can detect road mark-
ings sign in the image very well. The Yolov5 is a lightweight and relatively simple device 
to operate. Moreover, there are a total of 25 blocks in the Yolov5m medium model (from 
0 to 24). Each block is composed of a stacked arrangement of a variety of layers. Yolov5 is 
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Figure 7 contains specific information regarding the detection performance and the
level of complexity of a variety of models including layers, parameters, GFLOPS, and
FPS. In our experiment, Yolov5x contains the most layers at approximately 444 layers,
then Yolov5l has 367 layers, and Yolov5m, Yolov5s, Yolov5n have the same 213 layers.
Yolov5x loads the most parameters at 86,267,620, and Yolov5m and Yolov5n contain the
same parameters, 1,779,460. In our experiment, Yolov5s loads 24.6 FPS; Yolov5n, 40.5 FPS;
Yolov5m, 11.4 FPS; Yolov5l, 2.8 FPS; and Yolov5x, 1.7 FPS.
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The following is a list of benefits in using Yolov5: First, Yolo is the first model in the
Yolo family that was originally written on PyTorch rather than on PJ Reddie’s Darknet.
Darknet is a research framework that offers a great degree of adaptability but was not
developed with production situations in mind. It caters to a more limited population of
end consumers. When all these factors are considered together, the result is that Darknets
are more difficult to configure and less production ready. Because Yolov5 was originally
implemented in PyTorch, Yolov5 reaps the benefits of the well-established ecosystem that
PyTorch has to offer, including simplified support and simplified deployment. Moreover, as
Yolov5 becomes more popular, the research community may find that iterations on Yolov5
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become simpler. Because of this, deployment for mobile devices is also becoming easier, as
the models can be easily compiled to ONNX or CoreML. Second, Yolov5 is incredibly fast,
even by the current standards. Yolov5 is now capable of producing 140 frames per second
in batches, and the Yolov5 implementation testing uses this setting by default. Yolov4 is
capable of performing 30 FPS while Yolov5 only produces 10 FPS when the batch size is
set to 1. Third, the Yolov5 formula is reliable. Although EfficientDet and Yolov4 yield
similar results to our expectations, it is very unusual to observe such a broad increase in
performance that is not accompanied by a reduction in accuracy. Fourth, Yolov5 has a low
memory capacity. To be more specific, the weight file size used by Yolov5 is 27 megabytes.
The weight file for Yolov4 (with Darknet architecture) takes up 244 MB of our storage space.
When compared to Yolov4, Yolov5 is approximately 90 percent smaller. Because of this,
Yolov5 can be applied to embedded devices in a much simpler way.

5. Conclusions

The objective of this study is to provide a concise overview of CNN-based object
identification methods, with a particular focus on the Yolov5 algorithm series. During
our experimental research, we tested and analyzed a variety of modern object detectors.
Among the detectors, we investigated those that were designed to identify road marking
signs. Important characteristics such as the mean average precisions (mAP), the detection
time (IoU), and the number of BFLOPS were measured by the assessment criteria.

We have reached the following conclusion. First, Yolov5m is the most stable method
compared to other methods with 76% precision, 86% recall, and 83% mAP during the
training stage. Second, Yolov5m and Yolov5l achieve the highest average mAP 87% in
the testing stage. Next, we created our own dataset for road marking signs in Taiwan
(TRMSD). In future research, we plan to integrate the detection of road markings with
explainable artificial intelligence (XAI). In addition, we are planning to upgrade our Taiwan
road marking sign dataset (TRMSD) with an emphasis on the recognition of pothole signs,
which can add different illuminations and textures conditions into our dataset.
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