
Citation: Rudwan, M.S.M.;

Fonou-Dombeu, J.V. A Novel

Algorithm for Multi-Criteria Ontology

Merging through Iterative Update of

RDF Graph. Big Data Cogn. Comput.

2024, 8, 19. https://doi.org/10.3390/

bdcc8030019

Academic Editor: Miguel-Angel

Sicilia

Received: 12 January 2024

Revised: 12 February 2024

Accepted: 17 February 2024

Published: 21 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

big data and
cognitive computing

Article

A Novel Algorithm for Multi-Criteria Ontology Merging through
Iterative Update of RDF Graph
Mohammed Suleiman Mohammed Rudwan * and Jean Vincent Fonou-Dombeu

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal,
Pietermaritzburg 3209, South Africa; fonoudombeuj@ukzn.ac.za
* Correspondence: m.suleiman.rudwan@gmail.com

Abstract: Ontology merging is an important task in ontology engineering to date. However, despite
the efforts devoted to ontology merging, the incorporation of relevant features of ontologies such as
axioms, individuals and annotations in the output ontologies remains challenging. Consequently,
existing ontology-merging solutions produce new ontologies that do not include all the relevant
semantic features from the candidate ontologies. To address these limitations, this paper proposes a
novel algorithm for multi-criteria ontology merging that automatically builds a new ontology from
candidate ontologies by iteratively updating an RDF graph in the memory. The proposed algorithm
leverages state-of-the-art Natural Language Processing tools as well as a Machine Learning-based
framework to assess the similarities and merge various criteria into the resulting output ontology.
The key contribution of the proposed algorithm lies in its ability to merge relevant features from
the candidate ontologies to build a more accurate, integrated and cohesive output ontology. The
proposed algorithm is tested with five ontologies of different computing domains and evaluated in
terms of its asymptotic behavior, quality and computational performance. The experimental results
indicate that the proposed algorithm produces output ontologies that meet the integrity, accuracy and
cohesion quality criteria better than related studies. This performance demonstrates the effectiveness
and superior capabilities of the proposed algorithm. Furthermore, the proposed algorithm enables
iterative in-memory update and building of the RDF graph of the resulting output ontology, which
enhances the processing speed and improves the computational efficiency, making it an ideal solution
for big data applications.

Keywords: ontology merging; ontology reuse; RDF graph; knowledge graph; ontology alignment;
information integration

1. Introduction

The proliferation of semantic web ontologies and their applications nowadays has
made an abundance of information and knowledge available for reuse by a wide number
of applications. In the era of big data, terabytes of data are being generated at each single
moment via different types of media on the web. However, overlapping and inconsistency
in the generated relevant data and information may exist. Therefore, there is a need to
investigate and analyze such data for redundancy discovery, capturing new knowledge and
building unified consistent knowledge bases that can be reused by respective applications.
Thus, there is a massive need for techniques to merge knowledge from similar domain
ontologies to produce up-to-date and integrated ontologies. Such a process is referred to as
ontology merging [1,2]. Ontology merging aims to merge existing knowledge from hetero-
geneous sources to constitute a new one. However, despite the efforts devoted to ontology
merging [3–9], the incorporation of axioms, individuals and annotations in the resulting
ontologies remains challenging. Furthermore, certain studies [10] only relied on lexical
analysis of ontology concepts to perform the merging, which does not cover the semantic
analysis of features of the candidate ontologies. Consequently, existing ontology-merging

Big Data Cogn. Comput. 2024, 8, 19. https://doi.org/10.3390/bdcc8030019 https://www.mdpi.com/journal/bdcc

https://doi.org/10.3390/bdcc8030019
https://doi.org/10.3390/bdcc8030019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com
https://orcid.org/0000-0003-3743-5860
https://orcid.org/0000-0002-7802-6089
https://doi.org/10.3390/bdcc8030019
https://www.mdpi.com/journal/bdcc
https://www.mdpi.com/article/10.3390/bdcc8030019?type=check_update&version=2

Big Data Cogn. Comput. 2024, 8, 19 2 of 20

solutions produce new ontologies that do not include all the related and relevant semantic
features from the candidate ontologies. Furthermore, such output ontologies should meet
the required quality standard to ensure their usefulness [11–14]. Quality ontology merg-
ing requires knowledge in the output ontology to be complete, has a minimum amount
of knowledge redundancy, has a high level of connectivity and acclivity, is concise and
consistent, and enables inferences with constraints [12–14]. To address the limitations of ex-
isting ontology-merging solutions, this paper proposes a novel algorithm for multi-criteria
ontology merging that automatically builds a new ontology from candidate ontologies by
iteratively updating its RDF graph in the memory. The algorithm begins by extracting
the concepts, logical axioms and individuals from both the base and candidate ontologies.
Thereafter, the concepts and annotations are aligned and merged to build an RDF graph,
which serves as the input for the subsequent stage. Next, logical axioms extracted from the
candidate ontologies are matched against all the logical axioms within the base ontology.
The decision to include or exclude these axioms in the output ontology is guided by a
predefined similarity score threshold. The updated RDF graph serves as the input for the
final stage, where individuals are matched and merged to construct the final RDF graph of
the resulting output ontology. The proposed algorithm uses a similarity-based framework
to assess the concept similarities to guide the subsequent merging processes. The proposed
algorithm leverages state-of-the-art Natural Language Processing tools such as fuzzy string-
matching algorithms, Word2Vec, BERT and WordNet as well as a Machine Learning-based
framework, namely, SM-DTR, to assess the similarities and merge various criteria. The
key contribution of the proposed algorithm lies in its ability to merge relevant features
from candidate ontologies, such as logical and direct/declarative axioms, annotations,
individuals and hierarchical structure, to build a more accurate, integrated and cohesive
output ontology. The proposed algorithm was tested with five ontologies of different
computing domains, which were downloaded from various repositories on the web, and
evaluated in terms of its asymptotic behavior, quality and computational performance.
The analysis of the experimental results indicated that the proposed algorithm produced
output ontologies that met the integrity, accuracy and cohesion quality criteria better than
related studies. This performance demonstrated the effectiveness and superior capabilities
of the proposed algorithm for ontology merging. Furthermore, the proposed algorithm
enabled iterative in-memory updating and building of the RDF graph of the resulting
output ontology, which enhanced the processing speed and improved the computational
efficiency, making it an ideal solution for big data applications.

The main contribution of this paper can be summarized in the following points:

• The proposed algorithm takes into account multiple criteria in the ontology-merging
process, including logical and direct/declarative axioms, hierarchal structure, individ-
uals, and annotations. This results in high-quality output ontologies that are integrated,
accurate and cohesive.

• We introduce a multi-level measure of similarity between the matched components
and vocabulary in the ontologies. This measure guides the decision-making process
concerning how to seamlessly incorporate relevant vocabulary and knowledge from
the candidate ontologies into the output ontology.

• The proposed algorithm leverages the in-memory RDF graphs mechanism, enabling
efficient processing capability for periodic and continuous updates and smooth ontol-
ogy merging. This computational advantage holds value in various settings, especially
for large-scale applications dealing with frequent data generation, including big data.

The remainder of this paper is organized as follows. Section 2 delves into the existing
literature and related work, providing valuable context for our research. In Section 3, we
detail the materials and methods used in the proposed algorithm. Section 4 presents the
proposed algorithm. In Section 5, we present our experimental results and engage in a
comprehensive discussion of their implications. In Section 6, we compare our results and
evaluate them against existing works. Finally, in Section 7, we draw a conclusion and offer
insights into potential directions for future research endeavors.

Big Data Cogn. Comput. 2024, 8, 19 3 of 20

2. Literature Review

Previous endeavors have been devoted to providing guidelines for quality ontology
merging. The authors of [12] proposed a comprehensive framework for merging candidate
ontologies into output ontologies that meet the integrity and cohesion quality criteria.
The integrity criterion advocates for comprehensive knowledge coverage and minimal
redundancy and emphasizes that the output ontology from the merging encapsulates
as much pertinent knowledge as possible while trimming excess repetition, whereas the
cohesion criterion indicates how related the properties within the ontology are. Another
study [13] defined four quality criteria of ontologies, including accuracy, understandability,
cohesion, and conciseness, as well as the mathematical formulations for each of these
criteria. In [15], ontology quality metrics were classified into two distinct groups, namely,
schema metrics and knowledge base metrics. The schema metrics assess the design of the
ontology and its knowledge representation capability, while the knowledge base metrics
examine the incorporation of instance data into the ontology and how effectively it leverages
the knowledge outlined in the schema.

In [16], the authors proposed a novel method for merging domain ontologies utilizing
granular computing. The method consists of four major operations, including association,
isolation, purification, and reduction. The method works by comparing the concepts of
ontologies, aiming to reduce the level of granularity during the merging process. This
study considered the labels of classes and the taxonomy, while other criteria, including
properties, logical axioms, and individuals, were not considered in the proposed method.
In another study [17], the authors developed an algorithm called ATOM for taxonomy
merging. They harnessed the is-a and equivalent classes relationships to match different
concepts. Their focus was on taxonomy and individuals, while other criteria that can enrich
the output ontology, such as direct and logical axioms, as well as object properties were
not considered. In [18], the researchers proposed a semi-automatic method for merging
large ontologies using graphDB for big data processing. Their method is well suited for
modularization-type problems such as the importing of specific module or part of the
ontology into others. However, a main shortcoming of their algorithm is that it exploits
the entire sub-classes of the matched entities into the resulting output ontology, assuming
the relevance of the whole candidate ontologies’ sub-class taxonomies. This does not
comply with the reduction and cohesion guidelines prescribed in [12–14]. Additionally,
the merging process involves manual intervention of human operators, which may slow
down the process. These shortcomings are well addressed in the fully automated algorithm
proposed in this study. In another work [11], the authors proposed a semi-automatic
framework for merging smart factories ontologies. Their methodology includes three major
tasks, namely, preprocessing, matching, and post-processing. They performed several
operations embedded within those tasks, including spell-checking of the concepts’ labels,
tokenization and translation, structure analysis and user confirmation. The inclusion of
similar concepts is based on two threshold values that determine the relevance to minimize
the rate of rejection. However, their method does not process annotations, which are
relevant features of ontologies. This shortcoming is overcome in our proposed algorithm
in this study. In [3], a method called the Hybrid Semantic Similarity Measure (HSSM)
was proposed for merging ontologies. The aim was to remove redundancy and improve
storage efficiency, which are important aspects of quality ontology merging. The method
was developed using Formal Concept Analysis (FCA) and semantic similarity measures.
Although their method is effective, it does not cover other relevant ontology elements, such
as logical axioms and annotations. Many studies [15,19–23] utilized the lexical database
WordNet in their ontology-merging methods due to their effectiveness in the semantic
analysis of terminologies. Our proposed algorithm also utilized WordNet for synonym
extraction purposes.

To the best of our knowledge, the majority of previous studies [8–10,24] did not
process the logical axioms and annotations in their ontology-merging methods. This
shortcoming is addressed in our proposed algorithm through the processing of various

Big Data Cogn. Comput. 2024, 8, 19 4 of 20

criteria, including logical axioms, individuals and annotations, with the aim of producing
quality output ontologies that include relevant features from candidate ontologies as well
as meeting the prescribed ontology-merging quality criteria [12–14]. A comparative and
exhaustive analysis of 19 studies was undertaken to review all the criteria used within their
respective methodologies for ontology merging. The findings of this comparative analysis
are presented in Table 1. To represent the extent to which a criterion has been fulfilled
in each study, we used the following encodings in Table 1: (1) ✔ indicates that the given
criterion is met comprehensively; (2) ✗ signifies the nonfulfillment of the criterion at all;
and (3) ≈ denotes an intermediate degree of satisfaction, that is, a partial fulfillment of
the criterion.

Table 1. Criteria for ontology merging in the literature.

Study Year of
Study

Direct Axioms (Declarative Axioms)

Taxonomy Logical
Axioms

Annotations
Properties

Classes
Individuals

Lexical Semantic

1 [16] 2021 ✗ ✔ ✔ ✗ ✔ ✗ ✗

2 [3] 2020 ✗ ✔ ✔ ✗ ✔ ✗ ✗

3 [11] 2022 ✗ ✔ ✔ ✗ ✔ ✔ ✗

4 [7] 2021 ✗ ✔ ≈ ✗ ✗ ✗ ✗

5 [6] 2020 ✗ ✔ ✗ ✗ ✗ ≈ ✗

6 [25] 2020 ✗ ✔ ≈ ✗ ✔ ≈ ✗

7 [19] 2010 ✗ ✔ ✗ ✔ ✔ ✗ ✗

8 [19] 2010 ✔ ✔ ✔ ✗ ✗ ✗ ✗

9 [15] 2019 ✗ ✔ ✔ ✗ ✔ ✗ ✗

10 [8] 2022 ✗ ✔ ✗ ✗ ✔ ✗ ✗

11 [10] 2021 ✔ ✔ ✗ ✗ ✗ ✗ ✗

12 [20] 2012 ✗ ✔ ✔ ✗ ✗ ✗ ✗

13 [21] 2021 ✔ ✔ ✗ ✗ ✗ ✗ ✗

14 [22] 2021 ✔ ✔ ✔ ✗ ✔ ✗ ✗

15 [9] 2023 ✗ ✔ ✔ ✗ ✔ ✗ ✗

16 [2] 2022 ✗ ✔ ✔ ✗ ✔ ✗ ✗

17 [1] 2022 ✔ ✔ ✗ ✗ ✔ ✗ ✗

18 [23] 2022 ✔ ✔ ✗ ✗ ✔ ✗ ✗

19 [18] 2014 ≈ ✗ ✗ ✔ ✔ ✗ ✗

20 Proposed
method 2023

✔

(Embedded in
logical axioms

alignment)

✔ ✔ ✔ ✔ ✔ ✔

Table 1 offers an insightful glimpse into the spectrum of criteria governing ontology
merging, along with the extent to which the corresponding studies have fulfilled them. It is
obvious that a substantial portion of the studies investigated did not consider the logical
axioms in the merging process. Additionally, none of the previous studies considered
the annotations, while few have integrated the individuals within their methodologies.
Another noticeable finding is that no study has endeavored to tackle the entirety of these
criteria collectively. As a result, the resulting output ontologies from existing ontology-
merging solutions do not satisfy the prescribed quality criteria of integration, cohesion
and completeness.

Ontology merging is a complex and demanding task due to the heterogeneity in
the structures and semantics of the ontologies being merged. Despite the advancements
witnessed in the recent literature, where various solutions for merging ontologies have been
proposed [2,7,11,15], it is noteworthy that many of the previous studies do not cover the
holistic dimension of ontology merging. In other words, the majority of previous studies
do not merge important features of ontology, including logical axioms, instances and
annotations, in the output ontologies [9,15,16]. Based on the analysis of the shortcomings
above, the proposed algorithm in this work covers the full spectrum of the criteria shown

Big Data Cogn. Comput. 2024, 8, 19 5 of 20

in Table 1 in the merging process. This ensures that the majority of the quality criteria
prescribed [12–14] are met by the resulting output ontologies from the proposed algorithm.

3. Materials and Methods

This section presents the Natural Language Processing and Machine Learning tech-
niques used as well as the methods employed to evaluate the proposed algorithm.

3.1. Natural Language Processing Tools

Natural Language Processing (NLP) enables the analysis of human natural lan-
guage text to extract meaningful insights utilizing different computer algorithms and
techniques [26]. In this work, state-of-the-art NLP techniques were utilized, including
Fuzzy String-matching algorithms, Word2Vec and the WordNet lexical database.

3.1.1. Fuzzy String-Matching Algorithms

Fuzzy string-matching algorithms are algorithms that rely on fuzzy logic where the
uncertainty of the final answer to a problem is given. Usually, the fuzzy generates a result
in terms of a decimal number ranging between 0 and 1, inclusive. There are several fuzzy
string-matching algorithms for string similarity detection to explain the degree of similarity
between pairs of strings. These include, but are not limited to, Jaro–Winkler, Jaccard,
Levenshtein, Longest Common Subsequence (LCS), Term Frequency-Inverse Document
Frequency (TF-IDF), N-gram, and many more [26,27]. In our proposed algorithm, we
have utilized both Jaccard and Jaro–Winkler in the merging process. Jaccard was used for
individuals matching, while Jaro–Winkler was utilized in the logical axioms alignment. The
two algorithms were chose because they are efficient in the syntactic matching of strings
that contain two or more labels [26]. Specifically, the Jaro–Winkler algorithm works well
in processing axioms expressions that contain multiple tokens/words [26]. The Jaccard
similarity coefficient algorithm was originally designed for set theory applications [27] but
has also been adapted to assess the similarity between strings. This algorithm assesses
the resemblance of two strings by analyzing their individual characters and identifying
shared characters to ascertain their degree of similarity. The Jaro–Winkler algorithm is
based on the Jaro distance. It measures the similarity between two strings by counting the
common characters and transpositions while giving extra weight to the common prefixes.
The details of the mathematical representation of how both the Jaccard and Jaro–Winkler
algorithms calculate the similarity scores of strings can be found in [27].

3.1.2. Word2Vec

Word2Vec is an artificial neural network-based approach that aims to convert words in
natural language into vectors [28]. It has two variants, namely, Continuous Bag-of-Words
(CBOW), and Skip-gram, each of which works for different purposes. Word2Vec was used
in our experiment at the logical axioms merging stage, wherein logical axioms of the base
ontology were extracted first and then each axiom expression was tokenized by splitting the
string into word components based on space, brackets and commas delimiters. Thereafter,
these tokens were trained via Word2Vec, which resulted in a trained model. The output
model was then used to detect similarities in the input axioms from candidate ontologies
with those in the base ontology.

3.1.3. WordNet

WordNet is a huge lexical database of the English language. It consists of all the
English language vocabulary, definitions, synonyms, examples, and much more. It was first
developed at Princeton University in 1995 [29]. We have used WordNet at the concepts and
annotations merging stage in the proposed algorithm. It was used to obtain the synonyms
of similar concepts and add them to the output ontology for enrichment. The reliance on
WordNet was due to its accuracy and effectiveness in defining concepts, as attested by
experts [22].

Big Data Cogn. Comput. 2024, 8, 19 6 of 20

3.2. Machine Learning Techniques

In this work, we have utilized Bidirectional Encoder Representations from Trans-
formers (BERT) [30], a deep learning pre-trained model developed by Google. BERT is
trained in a bidirectional manner on an unlabeled text to generate output text in response
to input queries/questions from the user in the form of text. It analyzes pre- and post-text
to figure out the its semantic meaning, and then it generates the new text for the user.
The fine-tuning feature gives the user extra option to customize the model to a specific
purpose by retraining it with the new features for a specific use case [30]. BERT can be used
for many natural language processing tasks, including classification of text, detection of
similarities, and much more. We have also used a Machine Learning-based framework,
namely, the Similarity Model with Decision Tree Regression (SM-DTR), in the proposed
algorithm. BERT was harnessed for merging annotations, while SM-DTR was used for
concepts and classes merging in our proposed algorithm.

SM-DTR is an ontology alignment method that detects the similarities between on-
tologies at both the lexical and semantic levels [26]. It consists of three main components,
namely, fuzzy string-matching, BERT pre-trained model, and Decision Tree Regression
(DTR) classifier. Each of the fuzzy string-matching algorithms used in the model, and BERT,
calculates the similarity scores between concepts from two ontologies. Then, the output is
fed into the decision tree regression classifier for calculating the final similarity score. The
SM-DTR method is presented in detail in [26].

3.3. Evaluation of the Proposed Algorithm

This section presents the various methods used to evaluate the proposed algorithm,
including asymptotic analysis and assessment of the quality of the output ontology.

3.3.1. Asymptotic Analysis

Asymptotic analysis aims to analyze algorithms’ efficiency in terms of the time com-
plexity and space complexity. Our interest in this study is in the time complexity only. In
time complexity, given n as the number of inputs, we analyze the algorithm and obtain the
worst case scenario using the big O notation. For instance, O(n2) indicates that the time
complexity of the algorithm analyzed is exponential, where the growth rate doubles with
additional inputs. In addition to that, we have also measured the execution time of the
proposed algorithm for merging each of the candidate ontologies with the base ontology.

3.3.2. Quality Analysis of Output Ontology

Assessing the quality of the output ontology involves the quantitative analysis of the
output ontology’s vocabulary, such as the number of classes, object properties, axioms,
etc. In this study, a number of graph metrics that assess the complexity of the design
of ontology were used to evaluate the quality of the output ontology from the proposed
algorithm. The graph metrics considered include the Average Depth (AD), Maximum
Depth (MD), Average Breadth (AB), Maximum Breadth (MB), Absolute Root Cardinality
(ARC), and Absolute Leaf Cardinality (ALC). The AD, MD, AB, and MB metrics serve
as indicators of the ontology accuracy, presenting how well the ontology aligns with the
domain it models. The ARC and ALC metrics provide insights into the ontology’s cohesion,
revealing the extent to which classes are interlinked and how instances are distributed
among them [13,17]. The mathematical formulas for the calculations of these graph metrics
can be found in [13].

4. Proposed RDF-MOM Algorithm

The proposed algorithm works at three main stages, namely, merging concepts and
annotations, merging logical axioms and merging individuals. The algorithm begins by
extracting ontologies’ concepts, logical axioms and individuals and saves them into text
files. This process is performed for both the candidate ontologies denoted On, where n
is the index of the candidate ontology, and the base ontology, denoted Obase. Next, the

Big Data Cogn. Comput. 2024, 8, 19 7 of 20

concepts and annotations are aligned and subsequently merged. The outcome is an RDF
graph, which serves as the input for the subsequent stage. In the second stage, the logical
axioms extracted from the candidate ontologies are matched against all the logical axioms
within the base ontology. The decision to incorporate or exclude these axioms hinges on
a predefined similarity score threshold. In the final stage, individuals are matched and
merged to build the final RDF graph of the output ontology. The proposed algorithm is
presented in detail next.

The proposed algorithm for merging ontologies through iterative updating of the
RDF graph is presented in Algorithm 1. Algorithm 1 initiates the process of aligning the
concepts and annotations in line 3, where Algorithm 2 is invoked. The output of Algorithm
2 is an RDF graph, which serves as the input for the subsequent task of merging the logical
axioms. The candidate ontology is converted into an RDF graph in line 4. Line 5 initiates
an array that contains the list of RDF and OWL keywords that are going to be used in a
later stage. In lines 6 and 7, the logical axioms are extracted using Algorithm 3. This is
followed by the creation of word embeddings for the axioms in the base ontology in line
8. Because the number of logical expressions is needed for calculation of the average of
similarity score later, the sum and count variables are declared in line 9. Starting from line
11, the algorithm iterates through the logical axioms in the candidate ontology in both their
URI and label formats to align them with their counterparts in the base ontology. In lines
12–13, each logical axiom expression is tokenized to acquire the most relevant vector for
each token. Tokens are words that compose a logical axiom expression. In lines 19–20, each
token from the candidate ontology is tested against other vectors using the boW2VModel
created in line 8. It is essential to note that Word2Vec models cannot recognize previously
unseen vocabulary when initially constructed. Hence, the algorithm keeps track of the
tokens discovered by the model and those that were not in lines 14–15 and lines 24 and
26. Once all the tokens have been processed through the boW2VModel, it is checked if they
are all represented (line 27). If so, the average similarity score is calculated by dividing
the sum by the count in line 28. The next step involves testing this average value. If it is
greater than 0.50 and less than the predefined logAxi_thr threshold, the axiom is added to
the RDF graph in lines 29–30. Otherwise, the algorithm proceeds to iterate again over the
next axioms in the candidate ontology. If not all the tokens are represented in boW2VModel,
the algorithm proceeds to line 31. From lines 32–42, tokens that were not represented
are matched with all the logical axioms in the base ontology with the bLab and bUri text
files using the Jaro–Winkler fuzzy string-matching algorithm (line 37). Subsequently, the
average similarity score for all the tokens is calculated in line 40 and it is assessed whether
the average similarity score meets the logAxi_thr threshold or is below 0.50 in line 41. If
the condition holds, the axiom is discarded; otherwise, it is integrated into the RDF graph
(lines 41–42).

The algorithm proceeds with the merging of individuals in line 43 with Algorithm 6.
Algorithm 2 is used in line 3 of the proposed algorithm (Algorithm 1) to merge the

concepts and annotations into the output ontology. The algorithm takes as inputs in line
1 the URIs of the concepts and annotations for the base and candidate ontologies, boUrl
and coUrl, respectively, the concepts similarity score threshold conAx_thr, the concepts
weight concWght, and the annotations weight annWght. Thereafter, the graph structures
of the base and candidate ontologies are extracted in lines 3–4. In line 5, the algorithm
iterates through the concepts and their respective URIs within the candidate ontology
to explore the relationships between them and their counterparts in the base ontology.
Within the loop in line 5, an inner loop in line 12 traverses all the concepts within the base
ontology as well as their associated annotations. These annotations are compared with the
current concept’s annotations in the candidate ontology using the SM-DTR method in lines
12–17. Additionally, the annotations in the candidate ontology are matched to those of the
base ontology using BERT in lines 23–28. From these iterative processes, the algorithm
identifies the most similar concepts and annotations, weighed concWght and annAxiWght,
respectively. These results are subsequently aggregated in line 29, and the cumulative

Big Data Cogn. Comput. 2024, 8, 19 8 of 20

similarity score is evaluated against the predefined conAx_thr similarity threshold in line
30. If this condition is met, signifying that the concepts share substantial commonality,
their synonyms are extracted from WordNet and added to the in-memory RDF graph in
lines 30–36. If the condition in line 30 is not met, a second check is performed in line 37 to
determine whether the similarity score is higher than 0.50, that is, there is some degree of
similarity. In such a case, the concept from the candidate ontology is added to the graph in
line 38. If neither of the conditions in lines 30 and 37 is true, then the concept is discarded
and the outer loop in line 5 proceeds to iterate over the remaining concepts and annotations
within the candidate ontology.

Algorithm 1: RDF-MOM Algorithm

1 Inputs: boUrl, coUrl, conAx_thr, logAxi_thr, concWght, dirAxiWght
2 Outputs: myNewGraph
3 myNewGraph← conceptsAndAnnotationsMerging(boUrl, coUrl, conAx_thr, concWght, dirAxiWght)
4 coGraph← toRDFGraph (COurl)
5 owlLogAx_keywords← [subClassOf, ObjectUnionOf, . . .]
6 boLogAxLab, boLogAxUris← logicalAxiomExtraction (boUrl)
7 coLogAxLab, coLogAxUris← logicalAxiomExtraction (coUrl)
8 boW2VModel←W2Vec.trainModel(boLogAxLab)
9 sum, count← 0
10
11 for conLab, conUri in coLogAxLab, coLogAxUris do:
12 temp_list1← sentenceToList(coLogAxLab)
13 temp_list1_uris← sentenceToList(coLogAxUris)
14 unseen_words[]← null
15 seen_words[]← null
16
17 counter, avg_sum, max_sim← 0
18 max_lab← null
19 for word in conLab do:
20 max_sim, max_lab← GetMaxSimToken(boW2VModel.predictSimilarity(word))
21 if similar token from conLab was found, then:
22 counter← counter+1
23 sum← sum + max_sim
24 seen_words.append([word, conLab, conUri, max_sim])
25 else:
26 unseen_words.append[congLab, conUri]
27 if length of unseen_words == 0, then:
28 avg← sum/count
29 if avg <logAxi_thr and avg >0.50, then:
30 myNewGraph← addAxiomToRDFGraph(myNewGraph,conLab, ConUri)
31 else:
32 for unseenWord in unseen_words do:
33 max_val← 0
34 max_lab, max_uri← null
35 for bLab, bUri in boLogAxLab, boLogAxUris do:
36 for bLabWord, bUriToken in bLab, bUri:
37 max_val,max_lab,max_uri← GetMaxSimToken(JaroWinklerSim(unseen_words [0], bLabWord))
38 sum← sum + max_val
39 count← count + 1
40 avg← sum/count
41 if avg < logAxi_thr and avg > 0.50, then:
42 myNewGraph. addAxiomToRDFGraph(myNewGraph, conLab, ConUri)
43 myNewGraph←mergeIndividuals(myNewGraph, COurl)
44 return myNewGraph

Big Data Cogn. Comput. 2024, 8, 19 9 of 20

Algorithm 2: conceptsAndAnnotationsMerging ()

1 Inputs: boUrl, coUrl, conAx_thr, concWght, annWght
2 Outputs: new_rdfGraph
3 newRdfGraph← toRDFGraph(boUrl)
4 cand_grpah← toRDFGraph(coUrl)
5 for cand_conLab, cand_iri in cand_graph do:
6 if cand_conLab is empty, then:
7 continue
8 else:
9 candAnn← getDecAnnotations(cand_iri)
10 maxSimCon← “”
11 maxSimVal← 0
12 for base_conLab, base_iri in newRdfGraph do:
13 if base_conLab is NOT empty, then:
14 s1← SM_DTR_SIMILARITY(cand_conLab, base_conLab)
15 if s1 > maxSimVal then:
16 maxSimVal← s1
17 maxSimCon← base_iri
18 sim1← maxSimVal
19 sim2← 0
20 baseAnn← getDecAnnotations(maxSimCon)
21 candAnn← getDecAnnotations(cand_iri)
22 common_Ann← candAnn ∩ baseAnn
23 if common_Ann is NOT empty, then:
24 for ann in common_Ann do:
25 baseAnn← getAnnVal(base_iri, baseDirAxAnn)
26 candAnn← getAnnVal(cand_iri, candAnn)
27 annSimilarity← BERT(baseAnn, candAnn)
28 sim2← annSimilarity
29 overall_sim← (sim1 * concWght) + (sim2 * annWght)
30 if overall_sim > = conAx_thr then:
31 synSet[]←WordNet.synSet(cand_conLab) ∩WordNet.synSet(base_conLab)
32 if cand_conLab is NOT exact match with base_conLab then:
33 synSet.addElement(cand_conLab)
34 if synSet is NOT empty, then:
35 newRdfGraph.addTriple((base_iri, nameSpace.synonyms, synSet))
36 newRdfGraph.addTriple((base_iri, nameSpace.common_Ann, candAnn))
37 else if overall_sim > 0.50, then:
38 newRdfGraph.addNewClass((cand_iri, CLASS))
39 else:
40 continue
41 return newRdfGraph

Algorithm 3 is used in lines 6–7 of the proposed algorithm (Algorithm 1) to extract all
the logical axioms from a given input ontology. The algorithm extracts the axioms of the
input ontology in line 3. In lines 4–5, the algorithm proceeds to create two text files to store
the URIs and labels of the axioms. Subsequently, in lines 6–8, the URIs extracted in line 3 are
stored into the logAxioms_URIs text file, while the labels are stored in the logAxioms_Labels
text files in lines 9–12.

Algorithm 4 is used in lines 30 and 42 of the proposed algorithm (Algorithm 1) to
recursively add axioms to the RDF graph of the output ontology in the memory. The
algorithm addresses two scenarios. The base case in lines 5–7 is when the axiom comprises
precisely three tokens of keywords, URIs of vocabulary or values. Consequently, these
tokens are added to the graph in lines 6–7 of Algorithm 4. However, when the axiom
contains more than three tokens, the recursive case in lines 8–10 is executed. Upon the
completion of the recursive process, the algorithm returns the updated graph newGraph.

Big Data Cogn. Comput. 2024, 8, 19 10 of 20

Algorithm 3: logicalAxiomExtraction ()

1 Inputs: ontURL
2 Outputs: logAxioms_URIs, logAxioms_Labels
3 Axioms_URIs← Extract_OWLLogAxioms(ontURL)
4 logAxioms_URIs← CreatFile(‘ontology_name_URIs’)
5 logAxioms_Labels← CreatFile(‘ontology_name_Labels’)
6 for axiom in Axioms_URIs do:
7 logAxioms_URIs.writeLine(axiom)
8 logAxioms_URIs.close()
9 for line in logAxioms_URIs do:
10 axiomWithLabels← Tokenize line and get embedded labels from URIs using SPARQL
11 logAxioms_Labels.writeLine(axiomWithLabels)
12 logAxioms_Label.close()
13 return logAxioms_URIs, logAxioms_Labels

Algorithm 4: addAxiom()

1 Inputs: inputGraph, axiomLabExp[], axiomUriExp[]
2 Outputs: newGraph
3 newGraph← inputGraph
4 x = isAxiomKeyword (axiomLabEx [0])
5 if length(axiomLabExp) == 3, then:
6 newGraph.addTriple((axiomUriExp [1], x [0], axiomUriExp [1]))
7 newGraph.addTriple((axiomUriExp [1], RDFS.comment, “new merged axiom!”))
8 else:
9 if x [1] != “concept_label”, then:
10 newGrph=addAxiom(newGraph,axiomLabExp [1:endOfList],axiomUriExp [1:endOfList])
11 return newGraph

Algorithm 5 is used in line 4 of Algorithm 4 to accept a term as an input and return a
Boolean value. It tests whether the input term is a reserved RDF or OWL2 keyword or not.
If the term is in the list owlLogAx_keywords created in line 5 of Algorithm 1, then it returns
true (lines 5–6), and it returns false otherwise (lines 7–8).

Algorithm 5: isAxiomKeyword()

1 Inputs: term
2 Outputs: result[]
3 result[]← null
4 index = owlLogAx_keywords.indexOf(term)
5 if index >= 0, then:
6 result← [owlLogAx_keywords[index]]
7 else:
8 result← [term, “concept label”]
9 return result

Algorithm 6 is used in line 43 of the proposed algorithm (Algorithm 1) to perform the
merging of individuals. It accepts as inputs the graphs of the base and candidate ontology,
along with a predefined threshold for the individual similarity scores (line 1). A SPARQL
query in lines 3–7 is executed in lines 8 and 9 to retrieve all the individuals in the base
and candidate ontologies. A loop in line 11 is used to process all the individuals in the
candidate ontology. Within the loop in line 11, another loop is nested to iterate over all the
individuals in the base ontology. The inner loop employs the Jaccard algorithm to assess
the similarity score between the individuals in lines 15–20. Next, the maximum similarity
score is tested against the threshold threshold in line 21. If the maximum similarity score
achieved the threshold, then the two concepts are similar and no change is made in the
graph. Otherwise, if the similarity score is greater than 0.50, the individual is added to the

Big Data Cogn. Comput. 2024, 8, 19 11 of 20

graph in line 22. If not, the individual is discarded. The updated newGraph is then returned
in line 23. The newGraph is the final graph of the merging process and represents the graph
of the output ontology in line 43 of the main algorithm (Algorithm 1).

Algorithm 6: mergeIndividuals()

1 Inputs: basetGraph, candGraph, threshold
2 Outputs: newGraph
3 query← “ SELECT ?individual_uri ?label
4 WHERE {
5 ?individual rdf:type ?classs.
6 ?individual rdfs:label ?label.
7 }
8 baseResults← baseGraph.executeQuery (query)
9 candResults← candGraph.executeQuery (query)
10 newGraph← baseGraph
11 for row1 in candResults do:
12 max_val← 0
13 max_label← null
14 max_uri← null
15 for row2 in baseResults do:
16 jacard_sim← jaccardSimilarity(row1.label, row2.label)
17 if jaccard_sim > max_val, then:
18 max_val← jaccard_sim
19 max_label← row2.label
20 max_uri← rwo2.individual_uri
21 if max_val < threshold and max_val > 0.80 then:
22 newGraph.addIndividual (row1)
23 return newGraph

5. Experimental Results and Discussion
5.1. Dataset

The dataset in this study constituted five ontologies of various computing domains,
which were obtained from different repositories over the web [31–34]. These ontologies
included the Code Ontology, Software Ontology, Game Ontology, Deep Learning Ontology
and Internet of Things Ontology. The Code Ontology was considered the base ontology and
encoded Obase and the remaining four ontologies, namely, Software Ontology, Game Ontol-
ogy, Deep Learning Ontology and Internet of Things Ontology, were the candidate ontologies
and encoded Ocandidate-1, Ocandidate-2, Ocandidate-3, and Ocandiadte-4, respectively.

5.2. Experimental Setup

The Python and Java programing languages were utilized in the experiment. Java
was used to extract concepts and axioms from the ontologies and save them into text
files. Python was used to implement the proposed algorithm. The preprocessing and
manipulation of the RDF graph for the merging of the ontologies were undertaken using
APIs, including Jena API, owlready2, and rdflib. The visualization of the ontologies was
performed with the online tool WebVowel version 1.1.7 [35]. Two tools were utilized to
obtain and compare the quality metrics of the ontologies, namely, OntoMetrics [36] and
Protégé [37]. OntoMetrics is an online tool that enables the automatic calculation of the
base metrics, knowledge base metrics, and graph metrics of an ontology. Additionally, the
Pallet and Hermit reasoners were used within Protégé to validate the consistency of the
output ontologies.

5.3. Analysis of Base Metrics of Ontologies

The proposed algorithm was tested with five ontologies, including a base ontology
Obase, whose structure was preserved, and four candidate ontologies to be merged with

Big Data Cogn. Comput. 2024, 8, 19 12 of 20

the base one. The base metrics of the base and candidate ontologies were obtained and
analyzed. The base metrics included the number of classes, individuals, data properties,
object properties, logical axioms, and all axioms. For each candidate ontology, the proposed
algorithm was applied to merge it with the base ontology. It is important to indicate that
the proposed algorithm merged the base ontology and a candidate ontology at a time.
Subsequently, the analysis of the base metrics for each output ontology was undertaken.
Each output ontology resulting from the matching of a candidate ontology with the base
ontology is encoded Ooutput-i, where 1 ≤ i ≤ 4. Tables 2–5 present the based metrics for
each triple <base, candidate, output> ontology.

Table 2. Base metrics of the Obase, Ocandidate-1 and Ooutput-1 ontologies.

Ontology # of Classes # of Logical
Axioms

of
Individuals

of Data
Properties

of Object
Properties

TOTAL # of All
Axioms

Obase 65 548 17 13 94 1097
Ocandidate-1 1845 5378 119 5 43 15,109

Ooutput-1 71 554 17 13 94 1115

Table 3. Base metrics of the Obase, Ocandidate-2 and Ooutput-2 ontologies.

Ontology # of Classes # of Logical
Axioms

of
Individuals

of Data
Properties

of Object
Properties

TOTAL # of All
Axioms

Obase 65 548 17 13 94 1097
Ocandidate-2 37 111 0 6 33 334

Ooutput-2 97 580 17 13 94 1193

Table 4. Base metrics of the Obase, Ocandidate-3 and Ooutput-3 ontologies.

Ontology # of Classes # of Logical
Axioms

of
Individuals

of Data
Properties

of Object
Properties

TOTAL # of All
Axioms

Obase 65 548 17 13 94 1097
Ocandidate-3 61 60 0 0 0 227

Ooutput-3 65 548 17 13 94 1097

Table 5. Base metrics the Obase, Ocandidate-4 and Ooutput-4 ontologies.

Ontology # of Classes # of Logical
Axioms

of
Individuals

of Data
Properties

of Object
Properties

TOTAL # of All
Axioms

Obase 65 548 17 13 94 1097
Ocandidate-4 21 60 0 13 14 274

Ooutput-4 65 548 17 13 94 1097

In Tables 4 and 5, it can be noticed that the base metrics for the base and output
ontologies are the same. This indicates that the candidate ontologies O3 and O4 have no
similarities/overlaps with the base ontology. In contrast, in Tables 2 and 3, the base metrics
for the output ontologies are slightly higher than those of the base ontology, apart from the
number of individuals, data properties, and object properties, which remained the same as
those of the base ontology. This indicates that the candidate ontologies Ocandidate-1 and
Ocandidate-2 have some similarities with the base ontology.

It is shown in Table 2 that the number of classes in the Obase and Ooutput-1 ontologies
is 65 and 71, respectively. This indicates that six concepts of the Ocandidate-1 ontology
were found to be similar to some concepts in the Obase ontology and were merged into the
Ooutput-1 output ontology. The same can be observed in Table 3, where 32 concepts of the
Ocandidate-2 ontology met the similarity test and were merged into the Ooutput-2 ontol-
ogy. Furthermore, the rightmost column of Table 3 indicates a significance difference of

Big Data Cogn. Comput. 2024, 8, 19 13 of 20

104 between the total number of axioms in the Obase and Ooutput-2 ontologies. This indi-
cates that 104 axioms of the Ocandidate-2 ontology met the similarity tests and were added
or merged into the Ooutput-2. These findings revealed that the Ocandidate-2 ontology had
the most substantial overlaps with the Obase ontology, followed closely by the Ocandidate-1
ontology. In contrast, the Ocandidate-3 and Ocandidate-4 ontologies exhibited no significant
overlaps or similarities with the Obase ontology, as shown in Tables 4 and 5, respectively.

The proposed algorithm matched each candidate ontology to the Obase base ontology
and iteratively updated the RDF graph of the output ontology. The final output ontology
is denoted Ooutput-final. Table 6 presents the base metrics for the Obase and Ooutput-final
ontologies. It can be noticed in Table 6 the difference between the numbers of classes in
the Obase and Ooutput-final ontologies after a compete execution of the algorithm. The
Ooutput-final ontology includes 38 classes more than the Obase ontology, thereby confirming
that this surplus of classes has been added or merged after successful similarity tests.

Table 6. Base metrics of the Obase and Ooutput-final.

Ontology # of Classes # of Logical
Axioms

of
Individuals

of Data
Properties

of Object
Properties

TOTAL # of All
Axioms

Obase 65 548 17 13 94 1097
Ooutput-final 103 586 17 13 94 1211

It is also shown in Table 6 the differences between the numbers of logical and total
axioms. The Obase base ontology had 548 logical axioms initially, and after execution, the
algorithm achieved a final output ontology with 586 logical axioms. Similarly, the rightmost
column of Table 6 indicates a difference of 114 axioms between the total numbers of axioms
in the Obase base ontology and the Ooutput-final final output ontology. These findings attest
that the proposed algorithm has successfully tested iteratively and merged many axioms
from the candidate ontologies into the final output ontology.

5.4. Analysis of Quality Metrics of Ontologies

A number of graph metrics were used to evaluate and compare the quality of the
base, candidate and output ontologies. The graph metrics considered include the Absolute
Root Cardinality (ARC), Absolute Leaf Cardinality (ALC), Average Depth (AD), Maximum
Depth (MD), Average Breadth (AB) and Maximum Breadth (MB). The ARC, ALC and AD
metrics indicate how deep, on average, the taxonomy relations are in the ontology. The
MD metric indicates the longest path from the root to the leaf concepts in the ontology. The
metrics AB and MB represent the average number of children and the highest number of
children per node in the ontology, respectively. The graph metrics of the base, candidate
and output ontologies were calculated with the OntoMetrics [36] online ontology quality
evaluation platform. The graph metrics for the base ontology and the candidate ontologies
are displayed in Table 7, whereas those of the base and output ontologies are depicted in
Table 8.

Table 7. Graph metrics for the base and candidate ontologies.

Graph Metric Ocandidate-1 Ocandidate-2 Ocandidate-3 Ocandidate-4 Obase

Absolute root
cardinality 13 2 12 2

Absolute leaf cardinality 30 46 17 44
Average depth 37 61 21 64
Maximal depth 65 191 32 252

Average breadth 1.710526 3.080645 1.52381 3.452055
Maximal breadth 3 6 3 5

Total number of paths 38 62 21 73
Number of nodes 1859 43 61 40 103
Number of edges 4033 60 60 58 318

Big Data Cogn. Comput. 2024, 8, 19 14 of 20

Table 8. Graph metrics for the base and new merged ontologies.

Graph Metric Obase Ooutput-1 Ooutput-2 Ooutput-3 Ooutput-4 Ooutput-final

ARC 2 2 2 2 2 2
AC 44 46 65 44 44 69
AD 64 70 96 64 64 102
MD 252 284 409 252 252 441
AB 3.452055 3.55 3.787037 3.452055 3.452055 3.834783
MB 5 6 6 5 5 6

Total number of paths 73 80 108 73 73 115
Number of nodes 103 109 135 103 103 141
Number of edges 318 324 350 318 318 356

Table 8 shows that the Ooutput-final final output ontology has an ALC of 69, which
is higher than the ALC values of the intermediate output ontologies obtained with the
execution of the proposed algorithm on each candidate ontology. This indicates that the
resulting output ontology is cohesive and has a better understanding compared to the base
ontology Obase and the intermediate output ontologies Ooutput-1, Ooutput-2, Ooutput-3 and
Ooutput-4. Thus, the execution of the proposed algorithm has enriched the base ontology
(Code Ontology) with additional relevant data from the Ocandidate-1 (Software Ontology)
and Ocandidate-2 (Game Ontology) candidate ontologies. The Ocandidate-2 candidate ontol-
ogy had the larger number of axioms, concepts and annotations that were merged into the
Ooutput-final final output ontology, while the Ocandidate-1 candidate ontology had a few.
Another observation in Table 8 is that the depth of the base ontology Obase is greater than
its breadth. This observation implies that the base ontology includes relevant knowledge
within each node (concept).

5.5. Comparison of Base Metrics Obtained with Existing Tools

In order to validate the accuracy of the base metrics of the output ontology generated
with the proposed algorithm, we further employed two state-of-the-art tools, namely,
OntoMetrics and Protégé. These tools were utilized to generate the base metrics for the
output ontologies after the merging process. Table 9 presents these metrics. The comparison
of the base metrics of the output ontologies in Tables 2–6, as generated with proposed
algorithm, against the base metrics of the output ontologies calculated with OntoMetrics
and Protégé (Table 9) revealed a strong correlation between these metrics. This attests to
the accuracy and quality of the proposed algorithm.

Table 9. Base metrics of the output ontologies in OntoMetrics and Protégé.

Metrics

OntoMetrics Protégé

O
ou

tp
ut

- 1

O
ou

tp
ut

- 2

O
ou

tp
ut

- 3

O
ou

tp
ut

- 4

O
ut

pu
t-

fin
al

O
ou

tp
ut

- 1

O
ou

tp
ut

- 2

O
ou

tp
ut

- 3

O
ou

tp
ut

- 4

O
ut

pu
t-

fin
al

of classes 71 97 65 65 103 71 97 65 65 103
of logical axioms 554 580 548 548 586 554 580 548 548 586
of individuals 17 17 17 17 17 17 17 17 17 17
of data properties 13 13 13 13 13 13 13 13 13 13
of object properties 94 94 94 94 94 94 94 94 94 94
TOTAL # of all axioms 1115 1193 1097 1097 1211 1115 1193 1097 1097 1211

5.6. Consistency Check of Ontologies with Reasoners

To ascertain the consistency of the output ontologies, we used both the Hermit and
Pallet reasoners in Protégé. Figures 1 and 2 show snapshots of the consistency checks of

Big Data Cogn. Comput. 2024, 8, 19 15 of 20

the output ontologies Ooutput-2 and Ooutput-final with the Hermit and Pellet reasoners,
respectively.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 16 of 22

Protégé (Table 9) revealed a strong correlation between these metrics. This attests to the
accuracy and quality of the proposed algorithm.

Table 9. Base metrics of the output ontologies in OntoMetrics and Protégé.

Metrics

OntoMetrics Protégé

O
ou

tp
ut

-1

O
ou

tp
ut

-2

O
ou

tp
ut

- 3

O
ou

tp
ut

- 4

O
ut

pu
t-

fin
al

O
ou

tp
ut

-1

O
ou

tp
ut

-2

O
ou

tp
ut

- 3

O
ou

tp
ut

- 4

O
ut

pu
t-

fin
al

of classes 71 97 65 65 103 71 97 65 65 103
of logical axioms 554 580 548 548 586 554 580 548 548 586
of individuals 17 17 17 17 17 17 17 17 17 17
of data properties 13 13 13 13 13 13 13 13 13 13
of object properties 94 94 94 94 94 94 94 94 94 94
TOTAL # of all axioms 1115 1193 1097 1097 1211 1115 1193 1097 1097 1211

5.6. Consistency Check of Ontologies with Reasoners
To ascertain the consistency of the output ontologies, we used both the Hermit and

Pallet reasoners in Protégé. Figures 1 and 2 show snapshots of the consistency checks of
the output ontologies Ooutput-2 and Ooutput-final with the Hermit and Pellet reasoners,
respectively.

Figure 1. Consistency check of the Ooutput-2 output ontology with Hermit reasoned with Protégé.

It is shown in the middle and bottom of Figure 1 that all the constituents of the Oout-
put-2 output ontology have been inferred successfully by the Hermit reasoner.

Figure 1. Consistency check of the Ooutput-2 output ontology with Hermit reasoned with Protégé.

Big Data Cogn. Comput. 2024, 8, x FOR PEER REVIEW 17 of 22

Figure 2. Consistency check of the Ooutput-final ontology with the Pellet reasoner within Protégé.

Similarly, the middle and bottom parts of Figure 2 indicate that all the relevant con-
stituents of the Ooutput-final final ontology have been successful inferred by the Pellet rea-
soner. The results showed that there is no single inconsistency detected in the output on-
tologies, which indicates that the design and structure of the output ontologies are seman-
tically correct.

5.7. Analysis of Asymptotic Behavior and Computational Efficiency of the Proposed Algorithm
5.7.1. Time Complexity of the Proposed Algorithm

Table 10 shows the time complexity of the set of six algorithms that constitute the
proposed algorithm. It is shown in Table 10 that Algorithm 1, which is the main algorithm
that encapsulate the other nested algorithms, takes more time to execute. This is because
it makes calls to other five functions/algorithms to perform the main three stages of the
proposed algorithm.

Table 10. Time complexity of the proposed algorithm.

Algorithm. Time Complexity

Algorithm 1 O(n5)
Algorithm 2 O(n3)
Algorithm 3 O(2n)
Algorithm 4 O(n − 2)
Algorithm 5 O(1)
Algorithm 6 O(n2)

Algorithm 2, which performs the merging of concepts and declarative axioms, is the
least efficient among the algorithms, with a time complexity of O(n3). Algorithm 5, which
is used in Algorithm 4, is the best performing algorithm as it runs at a constant time of 1
for all the cases regardless of the input. Algorithm 4, which extracts logical axioms from a
given ontology, was found to be the second-best algorithm, with a time complexity of O(n
− 2), followed by Algorithm 3, which had a time complexity of O(2n). In addition to the
fact that Algorithm 1 makes calls to Algorithms 2–6, it includes a main loop (line 11 of

Figure 2. Consistency check of the Ooutput-final ontology with the Pellet reasoner within Protégé.

It is shown in the middle and bottom of Figure 1 that all the constituents of the
Ooutput-2 output ontology have been inferred successfully by the Hermit reasoner.

Similarly, the middle and bottom parts of Figure 2 indicate that all the relevant con-
stituents of the Ooutput-final final ontology have been successful inferred by the Pellet
reasoner. The results showed that there is no single inconsistency detected in the output

Big Data Cogn. Comput. 2024, 8, 19 16 of 20

ontologies, which indicates that the design and structure of the output ontologies are
semantically correct.

5.7. Analysis of Asymptotic Behavior and Computational Efficiency of the Proposed Algorithm
5.7.1. Time Complexity of the Proposed Algorithm

Table 10 shows the time complexity of the set of six algorithms that constitute the
proposed algorithm. It is shown in Table 10 that Algorithm 1, which is the main algorithm
that encapsulate the other nested algorithms, takes more time to execute. This is because
it makes calls to other five functions/algorithms to perform the main three stages of the
proposed algorithm.

Table 10. Time complexity of the proposed algorithm.

Algorithm. Time Complexity

Algorithm 1 O(n5)
Algorithm 2 O(n3)
Algorithm 3 O(2n)
Algorithm 4 O(n − 2)
Algorithm 5 O(1)
Algorithm 6 O(n2)

Algorithm 2, which performs the merging of concepts and declarative axioms, is the
least efficient among the algorithms, with a time complexity of O(n3). Algorithm 5, which
is used in Algorithm 4, is the best performing algorithm as it runs at a constant time of 1
for all the cases regardless of the input. Algorithm 4, which extracts logical axioms from
a given ontology, was found to be the second-best algorithm, with a time complexity of
O(n − 2), followed by Algorithm 3, which had a time complexity of O(2n). In addition to
the fact that Algorithm 1 makes calls to Algorithms 2–6, it includes a main loop (line 11 of
Algorithm 1), which in turn includes four nested loops (lines 19, 32, 35 and 36 of Algorithm
1). In the worst-case scenario, the four nested loops of the main loop of Algorithm 1 are
executed, which results in a time complexity of O(n5) for this fragment of Algorithm 1.
Therefore, the time complexity of the proposed algorithm (Algorithm 1) is the sum of the
time complexities of Algorithms 2–6 and the time complexity of its main loop, which is
O(n3) + 2O(2n) + O(n − 2) + O(n2) + O(n5). After simplification, the time complexity of the
proposed RDF-MOM algorithm is O(n5).

5.7.2. Analysis of Computational Performance of the Proposed Algorithm

We used an in-code timer to measure the execution time of the proposed algorithm
during the merging process. The execution times of the algorithm for merging the base
ontology with each of the candidate ontologies were taken separately, as in Table 11.

Table 11. Execution time of the proposed algorithm.

Candidate Ontology Execution Time (in Seconds)

Ocandidate-1 6530.91
Ocandidate-2 4197.87
Ocandidate-3 23.90
Ocandidate-4 21.98

Table 11 shows that the proposed algorithm took the least amount of time to merge the
Ocandidate-4 candidate ontology with the Obase base ontology. The Ocandiadte-4 candidate
ontology has a smaller size compared to the Ocandidate-1 candidate ontology that took
over an hour to be merged with the base ontology. The Ocandidate-2 candidate ontology
had some similarities with the Obase base ontology. In addition, the Ocandiadte-2 ontology
was the second largest in size among the candidate ontologies, with 48 kilobytes. The

Big Data Cogn. Comput. 2024, 8, 19 17 of 20

big variations between the execution times of the proposed algorithm on the merging of
the Ocandidate-1, Ocandidate-3 and Ocandidate-4 candidate ontologies with the Obase base
ontology may be attributed to the fact that the algorithm performed some of its worst
scenarios while merging the Ocandiadet-1 candidate ontology with the base ontology.

6. Comparison with Related Works

In this section, we conduct a comparative analysis of our results in relation to other
existing studies, shedding light on both the commonalities and differences observed. In
Table 13, we provide an overview of how prior research has assessed the proposed methods
for ontology merging, the summary of their findings and possible limitations. Additionally,
we draw comparisons between our results and those presented in the literature. In Table 1:
(1) ✔ indicates that the given criterion is met comprehensively; (2) ✗ signifies the nonfulfill-
ment of the criterion at all; and (3) ≈ denotes an intermediate degree of satisfaction, that is,
a partial fulfillment of the criterion.

Table 12. Evaluation of the proposed algorithm’s results with related works.

Study
Quality Criteria Evaluation

Summary of Findings Limitation
Accuracy Cohesion Integrity Running

time

1 [16] ≈ ✔ ✔ ✔

They compared their results in
terms of execution time to the
HSSM method and concluded that
their method outperforms HSSM.

No information about the number
of classes in the reference and
candidate ontologies. The proposed
method compared to only one
study. Did not address the accuracy
of the output ontologies.

2 [3] ✗ ✔ ✔ ✔

3 [11] ✗ ✔ ✔ ✗

- They compared their
alignment results in terms of
similarity scores to others
resulting in precision, recall,
and f-measure.

- Results show that their
method (PrOM) outperforms
the other 4.

Did not address the accuracy of the
output ontology or the running
time of the proposed solution.

4 [8] ✔ ✔ ✔ ✗
Their method effectively
merge logical

Did not address the running time of
the proposed solution

5 [20] ✔ ✗ ✗ ✗

- Their evaluation was against
human experts to validate
their method’s effectiveness.

- Their findings support the use
of WordNet to obtain
semantics of concepts.

Did not address the cohesion and
integrity of the output ontologies or
the running time of the
proposed solution.

6 [1] ✗ ✔ ✔ ✗

They cannot compare their work to
another since the OnotMerger they
proposed has specific requirements
not applicable to others.

Did not address the accuracy of the
output ontology or the running
time of the proposed solution.

7 [23] ≈ ✗ ✔ ✗

- They used two other metrics
to compare their results,
namely, COMA++ and FAC.

The comparison was on the base
metrics number of classes, property
and instances only.

Big Data Cogn. Comput. 2024, 8, 19 18 of 20

Table 13. Evaluation of the proposed algorithm’s results with related works.

Study
Quality Criteria Evaluation

Summary of Findings Limitation
Accuracy Cohesion Integrity Running

time

8 [18] ✗ ✗ ✔ ✔

- The study preserves all
concepts and relationships of
the target taxonomy.

- Graph metric were used in
the evaluation.

Did not address the accuracy and
cohesion of the output ontologies.

9 This
Study ✔ ✔ ✔ ✔

The proposed algorithm achieved
output ontologies that met the 4
quality criteria of accuracy,
cohesion, integrity and
execution time.

A bid high execution time due to
the bigger sizes of candidate
ontologies compared to
related studies.

Table 13 reveals a prevalent trend among researchers, where a significant portion have
not taken into consideration the complete spectrum of quality criteria. For instance, in [20],
the only quality criterion examined was accuracy, as the authors sought to validate the
reliability of WordNet for semantic concept detection. In both [1,11], the evaluation criteria
encompassed cohesion and integrity, with no considerations of the accuracy and execution
time performance. Notably, the authors of [1] emphasized that comparing the results
achieved by their proposed method, namely, OnotMerger, to those of other works for an
overall performance assessment proved challenging. This was attributed to OnotMerger’s
specific requirements and inputs, which were not aligned with those of other methods.

In contrast, [16] offered a comprehensive evaluation by addressing a wide array of
quality criteria, providing compelling evidence that their method outperformed the HSSM
approach. However, it is worth noting that their comparative analysis was limited to a
single method. Meanwhile, in the case of the ATOM method [18], the authors leveraged
graph metrics, particularly by quantifying leaf paths in the knowledge graph, to evaluate
their approach. The results highlighted a substantial reduction in the number of leaf paths
and total classes, aligning well with the integrity criterion. Furthermore, the study delved
into the execution time performance to offer a further perspective on the performance
of ATOM.

Compared to the abovementioned related works, our proposed algorithm addressed
all four quality criteria outlined in Table 13. Our findings indicated the effectiveness
of the proposed algorithm in merging the candidate ontologies with a base ontology.
However, the proposed algorithm displayed a higher execution time when aligning large-
scale ontologies. Furthermore, as demonstrated in Section 5.7.1, the proposed algorithm
may have a time complexity of the order of the fifth degree polynomial in the worst-case
scenario. These particular aspects warrant further attention in future research, as we seek
to explore and optimize the algorithm for applications involving large datasets, such as big
data applications.

7. Conclusions and Future Work

In this study, we aimed to address a broad range of criteria for ontology merging,
encompassing concepts (both lexical and semantic), properties, individuals, taxonomy,
logical axioms, and annotations. We proposed a new algorithm that performs ontology
merging in three stages, namely, concept and annotations, logical axioms, and individuals.
This algorithm utilizes RDF graphs to iteratively merge the candidate ontology with the
base ontology while preserving the structural integrity of the base ontology. In the first
stage, the merging of concepts and annotations is achieved through the utilization of a
Machine Learning-based framework called SM-DTR, WordNet, and BERT. Subsequently,

Big Data Cogn. Comput. 2024, 8, 19 19 of 20

the updated RDF graph serves as the input for the second stage, where logical axioms
from the base and candidate ontologies are aligned and merged using the Word2Vec
model and Jaro–Winkler algorithm. The resulting RDF graph then proceeds to the final
stage, where individual merging occurs, facilitated by the Jaccard fuzzy string-matching
algorithm. To assess the algorithm’s performance, we conducted asymptotic analysis and
computational evaluations, along with the extraction of the base and graph metrics from
the resulting output ontologies to evaluate their quality. While the findings revealed that
the proposed algorithm is time-consuming according to the time complexity analysis and
running time results, the quality of the resultant ontologies significantly improved. These
resulting output ontologies met the established ontology-merging quality criteria, including
integrity, cohesion, and accuracy. Furthermore, we compared the results achieved by the
proposed algorithm with previous endeavors in the literature and found that our approach
comprehensively addresses the quality criteria, unlike many existing studies. Future
efforts will focus on enhancing the proposed algorithm by offering configurable settings
that allow users to select alternative algorithms and techniques for each merging stage,
tailoring the algorithm to specific user needs. Additionally, we will explore improvements
in computational performance to support big data applications.

Author Contributions: Conceptualization, M.S.M.R. and J.V.F.-D.; methodology, M.S.M.R. and J.V.F.-
D.; software, M.S.M.R.; validation M.S.M.R. and J.V.F.-D.; formal analysis, M.S.M.R. and J.V.F.-D.;
investigation, M.S.M.R. and J.V.F.-D.; resources, M.S.M.R.; data curation, M.S.M.R. and J.V.F.-D.;
writing—original draft preparation, M.S.M.R.; writing—review and editing, M.S.M.R. and J.V.F.-D.;
visualization, M.S.M.R. and J.V.F.-D.; supervision, J.V.F.-D.; project administration, M.S.M.R. and
J.V.F.-D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The ontologies that constitute the dataset used in this study can be
found at the following links: https://zenodo.org/records/577939; https://www.ebi.ac.uk/ols/
ontologies/swo; http://vocab.linkeddata.es/vgo/; http://iot.ee.surrey.ac.uk/iot-crawler/ontology/
iot-stream/.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Geleta, D.; Nikolov, A.; Odonoghue, M.; Rozemberczki, B.; Gogleva, A.; Tamma, V.; Payne, T.R. OntoMerger: An ontology

integration library for deduplicating and connecting knowledge graph nodes. arXiv 2022, arXiv:2206.02238.
2. Farghaly, K.; Soman, R.K.; Collinge, W.; Mosleh, M.H.; Manu, P.; Cheung, C.M. Construction safety ontology development and

alignment with industry foundation classes (IFC). J. Inf. Technol. Constr. 2022, 27, 94–108. [CrossRef]
3. Priya, M.; Ch, A.K. A novel method for merging academic social network ontologies using formal concept analysis and hybrid

semantic similarity measure. Libr. Hi Tech 2020, 38, 399–419. [CrossRef]
4. Milani, M.K.; Hashemi, M.R. Extended grounded theory: A methodology to combine multiple disciplines. Inf. Syst. e-Bus. Manag.

2020, 18, 89–120. [CrossRef]
5. Jachimczyk, B.; Tkaczyk, R.; Piotrowski, T.; Johansson, S.; Kulesza, W. IoT-based dairy supply chain-an ontological approach.

Elektron. Ir Elektrotechnika 2021, 27, 71–83. [CrossRef]
6. Reed, L.; Harrison, V.; Oraby, S.; Hakkani-Tur, D.; Walker, M. Learning from mistakes: Combining ontologies via self-training for

dialogue generation. arXiv 2020, arXiv:2010.00150.
7. Mao, Q.; Li, X.; Peng, H.; Li, J.; He, D.; Guo, S.; He, M.; Wang, L. Event prediction based on evolutionary event ontology

knowledge. Future Gener. Comput. Syst. 2021, 115, 76–89. [CrossRef]
8. Gueddes, A.; Mahjoub, M.A. A Jena API for Combining Ontologies and Bayesian Object-Oriented Networks; IEEE: Piscataway, NJ,

USA, 2022; pp. 355–360.
9. Shi, J.; Pan, Z.; Jiang, L.; Zhai, X. An ontology-based methodology to establish city information model of digital twin city by

merging BIM, GIS and IoT. Adv. Eng. Inform. 2023, 27, 102114. [CrossRef]
10. Zhang, X.-Z.; Yu, B.-H.; Liu, C. SSN_SEM: Design and application of a fusion ontology in the field of medical equipment. Procedia

Comput. Sci. 2021, 183, 677–682. [CrossRef]
11. Ocker, F.; Vogel-Heuser, B.; Paredis, C.J.J. A framework for merging ontologies in the context of smart factories. Comput. Ind. 2022,

135, 103571. [CrossRef]
12. Babalou, S.; König-Ries, B. GMRs: Reconciliation of Generic Merge Requirements in Ontology Integration. In SEMANTiCS

Posters&Demos. 2019. Available online: https://ceur-ws.org/Vol-2451/paper-04.pdf (accessed on 20 February 2024).

https://zenodo.org/records/577939
https://www.ebi.ac.uk/ols/ontologies/swo
https://www.ebi.ac.uk/ols/ontologies/swo
http://vocab.linkeddata.es/vgo/
http://iot.ee.surrey.ac.uk/iot-crawler/ontology/iot-stream/
http://iot.ee.surrey.ac.uk/iot-crawler/ontology/iot-stream/
https://doi.org/10.36680/j.itcon.2022.005
https://doi.org/10.1108/LHT-02-2019-0035
https://doi.org/10.1007/s10257-020-00464-6
https://doi.org/10.5755/j02.eie.27612
https://doi.org/10.1016/j.future.2020.07.041
https://doi.org/10.1016/j.aei.2023.102114
https://doi.org/10.1016/j.procs.2021.02.114
https://doi.org/10.1016/j.compind.2021.103571
https://ceur-ws.org/Vol-2451/paper-04.pdf

Big Data Cogn. Comput. 2024, 8, 19 20 of 20

13. Fonou-Dombeu, J.V.; Viriri, S. OntoMetrics Evaluation of Quality of e-Government Ontologies; Springer: Berlin/Heidelberg, Germany,
2019; pp. 189–203.

14. Osman, I.; Yahia, S.B.; Diallo, G. Ontology integration: Approaches and challenging issues. Inf. Fusion 2021, 71, 38–63. [CrossRef]
15. Tartir, S.; Arpinar, I.B.; Sheth, A.P. Ontological evaluation and validation. In Theory and Applications of Ontology: Computer

Applications; Springer: Berlin/Heidelberg, Germany, 2010; pp. 115–130.
16. Priya, M.; Aswani Kumar, C. An approach to merge domain ontologies using granular computing. Granul. Comput. 2021, 6, 69–94.

[CrossRef]
17. Raunich, S.; Rahm, E. Target-driven merging of taxonomies with ATOM. Inf. Syst. 2014, 42, 1–14. [CrossRef]
18. Madani, K.; Russo, C.; Rinaldi, A.M. Merging Large Ontologies Using Bigdata Graphdb; IEEE: Piscataway, NJ, USA, 2019; pp.

2383–2392.
19. Robin, C.R.R.; Uma, G.V. A novel algorithm for fully automated ontology merging using hybrid strategy. Eur. J. Sci. Res. 2010, 47,

74–81.
20. Amrouch, S.; Mostefai, S. Syntactico-Semantic Algorithm for Automatic Ontology Merging; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5.
21. Hnatkowska, B.; Kozierkiewicz, A.; Pietranik, M. Semi-automatic definition of attribute semantics for the purpose of ontology

integration. IEEE Access 2020, 8, 107272–107284. [CrossRef]
22. Mountasser, I.; Ouhbi, B.; Hdioud, F.; Frikh, B. Semantic-based Big Data integration framework using scalable distributed

ontology matching strategy. Distrib. Parallel Databases 2021, 39, 891–937. [CrossRef]
23. Maiz, N.; Fahad, M.; Boussaid, O.; Bentayeb, F. Automatic Ontology Merging by Hierarchical Clustering and Inference Mecha-

nisms. In Proceedings of the I-KNOW 2010, Graz, Austria, 1–3 September 2010; pp. 1–3.
24. Rudwan, M.S.M.; Fonou-Dombeu, J.V. Machine Learning Selection of Candidate Ontologies for Automatic Extraction of Context Words

and Axioms from Ontology Corpus; Springer: Berlin/Heidelberg, Germany; pp. 282–294.
25. Gruber, M.; Eichstädt, S.; Neumann, J.; Paschke, A. Semantic information in sensor networks: How to combine existing ontologies,

vocabularies and data schemes to fit a metrology use case. In Proceedings of the 2020 IEEE International Workshop on Metrology
for Industry 4.0 & IoT, Roma, Italy, 3–5 June 2020; pp. 469–473.

26. Cheatham, M.; Hitzler, P. String similarity metrics for ontology alignment. In Proceedings of the Semantic Web–ISWC 2013: 12th
International Semantic Web Conference, Sydney, Australia, 21–25 October 2013; pp. 294–309.

27. Rudwan, M.S.M.; Fonou-Dombeu, J.V. Hybridizing Fuzzy String Matching and Machine Learning for Improved Ontology
Alignment. Future Internet 2023, 15, 229. [CrossRef]

28. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

29. Miller, G.A. WordNet: A lexical database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
30. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
31. Atzeni, M.; Atzori, M. Object-Oriented Programming Languages and Source Code. 2017. Available online: https://zenodo.org/

records/577939 (accessed on 20 February 2024).
32. Institute, E.B. 2022. Software Ontology. Available online: https://www.ebi.ac.uk/ols/ontologies/swo (accessed on 20

February 2024).
33. The Video Game Ontology Version 3. 2016. Available online: http://vocab.linkeddata.es/vgo/ (accessed on 20 February 2024).
34. Surrey, U.O. IoT-Stream: A Lightweight Ontology for IoT Data Streams. 2019. Available online: http://iot.ee.surrey.ac.uk/iot-

crawler/ontology/iot-stream/ (accessed on 20 February 2024).
35. Lohmann, S.; Negru, S.; Haag, F.; Ertl, T. Visualizing ontologies with VOWL. Semant. Web 2016, 7, 399–419. [CrossRef]
36. Lantow, B. OntoMetrics: Putting Metrics into Use for Ontology Evaluation. In Proceedings of the 8th International Joint

Conference, IC3K 2016, Porto, Portugal, 9–11 November 2016; pp. 186–191.
37. Musen, M.A. The protégé project: A look back and a look forward. AI Matters 2015, 1, 4–12. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.inffus.2021.01.007
https://doi.org/10.1007/s41066-019-00193-3
https://doi.org/10.1016/j.is.2013.11.001
https://doi.org/10.1109/ACCESS.2020.3000035
https://doi.org/10.1007/s10619-021-07321-6
https://doi.org/10.3390/fi15070229
https://doi.org/10.1145/219717.219748
https://zenodo.org/records/577939
https://zenodo.org/records/577939
https://www.ebi.ac.uk/ols/ontologies/swo
http://vocab.linkeddata.es/vgo/
http://iot.ee.surrey.ac.uk/iot-crawler/ontology/iot-stream/
http://iot.ee.surrey.ac.uk/iot-crawler/ontology/iot-stream/
https://doi.org/10.3233/SW-150200
https://doi.org/10.1145/2757001.2757003

	Introduction
	Literature Review
	Materials and Methods
	Natural Language Processing Tools
	Fuzzy String-Matching Algorithms
	Word2Vec
	WordNet

	Machine Learning Techniques
	Evaluation of the Proposed Algorithm
	Asymptotic Analysis
	Quality Analysis of Output Ontology

	Proposed RDF-MOM Algorithm
	Experimental Results and Discussion
	Dataset
	Experimental Setup
	Analysis of Base Metrics of Ontologies
	Analysis of Quality Metrics of Ontologies
	Comparison of Base Metrics Obtained with Existing Tools
	Consistency Check of Ontologies with Reasoners
	Analysis of Asymptotic Behavior and Computational Efficiency of the Proposed Algorithm
	Time Complexity of the Proposed Algorithm
	Analysis of Computational Performance of the Proposed Algorithm

	Comparison with Related Works
	Conclusions and Future Work
	References

