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Abstract: The swift proliferation of the Internet of Things (IoT) devices in smart city infrastructures
has created an urgent demand for robust cybersecurity measures. These devices are susceptible
to various cyberattacks that can jeopardize the security and functionality of urban systems. This
research presents an innovative approach to identifying anomalies caused by IoT cyberattacks in
smart cities. The proposed method harnesses federated and split learning and addresses the dual
challenge of enhancing IoT network security while preserving data privacy. This study conducts
extensive experiments using authentic datasets from smart cities. To compare the performance of
classical machine learning algorithms and deep learning models for detecting anomalies, model
effectiveness is assessed using precision, recall, F-1 score, accuracy, and training/deployment time.
The findings demonstrate that federated learning and split learning have the potential to balance
data privacy concerns with competitive performance, providing robust solutions for detecting IoT
cyberattacks. This study contributes to the ongoing discussion about securing IoT deployments in
urban settings. It lays the groundwork for scalable and privacy-conscious cybersecurity strategies.
The results underscore the vital role of these techniques in fortifying smart cities and promoting the
development of adaptable and resilient cybersecurity measures in the IoT era.
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1. Introduction

In an era of digital transformation and urbanization, the emergence of smart cities
represents a paradigm shift in how we design, build, and experience urban environments.
Smart cities are a response to the ever-growing urban population and the challenges it
presents, such as congestion, pollution, and resource scarcity. These cities harness the power
of advanced technologies, data analytics, and interconnected systems to create efficient,
sustainable, and livable urban spaces. At the heart of a smart city lies the Internet of Things
(IoT), an ecosystem of interconnected devices and sensors that collect and exchange data.
These devices, embedded in infrastructure, transportation systems, and everyday objects,
enable cities to monitor and manage various functions in real time. From optimizing
traffic flow and conserving energy to enhancing public safety and providing citizens with
personalized services, the potential of smart cities is boundless. However, the transition
to smart cities has challenges, and cybersecurity is one of the most pressing concerns [1].
As cities increasingly rely on interconnected IoT devices, they become susceptible to
new cyber threats. Cyberattacks targeting smart cities can disrupt critical infrastructure,
compromise public safety, and undermine the advantages that make these cities smart.
Ensuring the cybersecurity of smart cities is, therefore, a matter of paramount importance.
The cyber risks associated with smart cities are multifaceted. These risks encompass a
spectrum of threats, from data breaches and unauthorized access to manipulating critical
infrastructure [2]. A smart city’s security breach can have far-reaching consequences,
impacting public services, citizen trust, and economic stability. Common cyber threats in
smart cities include data breaches, denial of service (DoS) attacks, ransomware, phishing,
and manipulation of IoT devices [3]. Given the magnitude of these threats, research
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and development efforts have been directed toward enhancing the cybersecurity posture
of smart cities. Existing solutions include intrusion detection systems, firewalls, and
encryption protocols. However, these traditional approaches often fail to address smart
cities’ unique challenges.

The motivation for this research lies in the critical need to bolster the cybersecurity
defenses of smart cities. While progress has been made in securing individual components
and systems, a holistic and privacy-preserving approach is essential. Moreover, decen-
tralized, real-time threat detection is paramount to safeguarding smart city environments
effectively. This paper introduces an approach to IoT cyberattack detection in smart cities,
utilizing federated and split-learning methodologies. These techniques effectively address
the challenge of enhancing IoT network security while maintaining data privacy [4]. Feder-
ated learning facilitates collaborative model training across decentralized devices, enabling
anomaly detection without the need to share raw data among smart cities. Split learning, an
extension of federated learning, further enhances privacy preservation and model efficiency.
The research highlights several key elements and contributions:

a. Application of federated learning to smart cities enables decentralized anomaly
detection while safeguarding data privacy.

b. Extension of privacy preservation capabilities with split learning enhances both
privacy and efficiency.

c. Comprehensive evaluation using real-world smart city datasets provides valuable
insights into effectiveness.

d. Performance comparison with existing algorithms offers a thorough analysis of efficiency.
e. Utilizing a suite of performance metrics, including precision, recall, F-1 score, accuracy,

and training/deployment time, facilitates a holistic assessment of the approach.

By harnessing the capabilities of federated learning and split learning, the aim is to
provide a robust solution to the cybersecurity challenges that smart cities face. The work
represents a significant step toward ensuring the integrity and security of future smart
cities. The rest of the paper is organized as follows: Section 2 incorporates materials and
methodology highlighting recent research works and the proposed methods for detecting
anomalies in the smart city environment. This section incorporates the data flow, federated
learning architecture, and split-learning architecture. Section 3 presents results and obser-
vations based on the datasets and performance metrics for evaluation and results. This is
followed by a comparative analysis depicting the analysis results against similar research
works. Section 4 concludes the study and highlights future works.

2. Materials and Methods

This section comprises Related Work and Methodology. The literature survey is
discussed in the Related Work section, and the limitations of some of the recent work
on anomaly detection in smart cities are stated. The Methodology section proposes the
infrastructure for anomaly detection of cyberattacks in smart cities. This section also details
the federal learning architecture and split-learning architecture applied to the study.

2.1. Related Works

Ajao and Apeh, 2023 [5] introduce a Petri net-genetic algorithm-based reinforcement
learning (GARL) technique to address security issues in smart cities’ Industrial Internet of
Things (IIoT) networks. The framework includes a trust model and distributed authoriza-
tion for information control, achieving high anomaly detection rates. The model has been
implemented on a secure framework with trust, privacy, and authentication. The results
look satisfactory; however, the main challenges of the study may be scalability, implemen-
tation, and robustness assessment against adversarial attacks. Rashid et al., 2023 [6] depict
the vulnerability of IoT devices by addressing cybersecurity concerns. The study presents a
machine learning-based approach, using various algorithms and ensemble methods like
support vector machines, decision trees, random forests, bagging, boosting, and stacking to
detect attacks and anomalies. Unique to this work is the integration of feature selection,
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cross-validation, and multi-class classification. Experimentation with recent attack datasets
shows that the stacking ensemble model outperforms others, offering promise for robust
cybersecurity in smart cities. The study relies on traditional machine learning algorithms.
It does not investigate advanced machine learning models or delve into deep learning
approaches, potentially overlooking intricate and sophisticated cybersecurity threats within
smart city contexts. Mukherjee, 2023 [7] present a study on deploying deep learning for
detecting cyberattacks in smart grids, specifically false data injection attacks (FDIAs). The
study is based on a novel deep learning model that detects FDIAs and accurately locates
intrusions in real time. The architecture incorporates conventional bad data detectors,
offering a cost-effective solution. In addition to a multilabel classification strategy, the
architecture can also capture attack co-occurrence dependencies within raw measurements,
operating without prior statistical knowledge of the grid. The study was conducted using
standard test bench evaluations. However, scalability and resource requirements in smart
city infrastructure could be a concern. Almuqren et al., 2023 [8] suggest a novel white shark
equilibrium optimizer and hybrid deep learning methods for detecting cyberattacks in
smart cities. The study aims at optimizing electricity management to improve the quality of
life and resource efficiency. The study deploys a White Shark Equilibrium Optimizer with a
Hybrid Deep-Learning-based Cybersecurity Solution (WSEO-HDLCS) to address the issue
of disrupting essential services due to DDoS attacks. The architecture incorporates feature
selection and a stacked deep autoencoder (SDAE) model, further optimized through the
gravitational search algorithm (GSA). While the results seem satisfactory and the study
acknowledges practical implementations and scalability concerns, the primary focus of the
study is limited to DDoS attacks. However, a smart city is vulnerable to several advanced
cyberattacks. Alsaade and Al-Adhaile, 2023 [9] suggest deep autoencoder algorithms for de-
tecting cyberattacks in self-driving vehicles. The study analyzes the behavior of electronic
control units (ECUs) within connected and autonomous vehicles (CAVs), interconnected
through in-vehicle networks (IVNs), for facilitating data exchange and optimizing vehicle
operation. The analysis incorporates machine learning and deep learning methods for
identifying cyberattacks that detect erroneous data on vehicle data buses. Some algorithms
deployed for the study are gradient boosting, k-nearest neighbor (KNN), decision trees,
and long short-term memory (LSTM). The study uses the car-hacking and UNSE-NB15
datasets, and the performance is evaluated using statistical parameters. While the accuracy
is shown to be the best for decision trees and autoencoders, the study may face challenges
concerning scalability training time. Ding et al., 2023 [10] present a deep learning model
incorporating three key components, i.e., the residual-based spatial representation (RSR)
block, the temporal representation block (TRB), and the detection block (DB) for detecting
cyberattacks. The model performance is 90.57%, 94.96%, and 98.41% in terms of accu-
racy concerning the TON-IoT, Edge-IIoTset, and UNSW-NB15 datasets, respectively. The
complex architecture addresses issues like vanishing gradient and deploys techniques like
feature extraction. The model shows generalization, although the study considers specific
IoT environments and cyberattacks. Sharma and Babbar, 2023 [11] highlight the rising
cybersecurity concerns in the IoT environment, specifically concerning smart transportation.
The study is based on deploying a BoT-IoT dataset comprising several attack categories and
subcategories. The dataset is deployed to analyze the system’s dependability for training
and evaluation purposes. The study trains and evaluates different ML techniques, such as
random forest (RF), naive Bayes (NB), and decision tree (DT). It is observed that RF and DT
achieved the highest accuracy of 91% on the BoT-IoT dataset. The limitation of the study
is that the analysis is based on an existing dataset, which may not cover all IoT security
scenarios or provide a realistic assessment. Ajao and Apeh, 2023 [12] suggest an integrated
architecture comprising of blockchain and machine learning for securing the fog computing
layer vulnerability in smart city infrastructure. The study also discusses combining smart
city-based Industrial Internet of Things (IIoT) with IPv6 addressing and 5G networks to
enhance the Quality of Experience (QoE). However, it is prone to risks concerning IPv4
wireless sensor networks. The blockchain ensures privacy and confidentiality for packet
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traffic to the public, while machine learning is deployed for intrusion detection between the
edge and fog layers. The proposed architecture exhibits high performance and a low pro-
cessing time but relies on specific network architecture, which may not be generalizable for
a smart city’s diverse infrastructure. Alrayes et al., 2023 [13] present a novel deep learning
architecture with chaotic poor and rich optimization for intrusion detection in smart city
environments. The proposed model aims to achieve improved execution, sustainability, and
security and encompasses data preprocessing, feature selection using a chaotic optimiza-
tion algorithm (CPROA-FS), and intrusion detection employing the butterfly optimization
algorithm (BOA) and deep sparse autoencoder (DSAE). Simulation analysis on the CICIDS
dataset reveals superior performance, with IDCPRO-DLM achieving a maximum accuracy
of 98.53%. While the results seem satisfactory, deploying the proposed architecture on a
specific dataset may not exhibit model generalizability. Taleb and Saqib, 2023 [14] propose
a hybrid deep learning model based on a convolutional neural network (CNN) and quasi-
recurrent neural network (QRNN) for identifying cyber threats in smart city environments.
The study was carried out on two independent datasets: BoT-IoT and TON_IoT. While the
proposed model exhibited better performance than benchmark models, the parameter con-
sidered in this case was only accuracy. Due to the involvement of neural networks, training
time could be another challenge for this proposed study. Bilakanti et al. [15] performed
a study to analyze anomalies and faults in sensors deployed in the IoT landscape due to
tampering using machine learning techniques. The study deployed methods like isolation
forest and local outlier factors to compare against supervised techniques like naive Bayes,
support vector Machines, and extreme gradient boosting for the analysis. Lin et al. [16]
propose a self-adaptive thresholding method due to the high false anomaly ratio. A deep
learning-based hierarchical context representation learning has been proposed to transform
time series patterns into images such that they can be used for gathering spatial features.
The study was conducted on multiple datasets, and the proposed method outperformed the
baseline models used in the study. Mitropoulou et al. [17] highlight using knowledge graph
embedding to detect anomalies in the cloud computing environment. This method was
deployed using machine learning algorithms like isolation forest and cluster-based local
outlier factor (CBLOF). The study focuses on optimizing the performance in a simulated en-
vironment. Jithish et al. [18] suggest a federated learning technique for detecting distributed
anomalies in smart grids due to the challenges involved in server-based model training.
The study highlights that the models are trained locally in smart meters such that data are
not shared with the central server, and regular parameter updates maintain the model’s
privacy. The study was conducted on multiple datasets and highlights the feasibility of
deploying federated learning techniques in such environments. Dang et al. [19] suggest a
split-and-conquer approach for detecting anomalies in sensory data. The technique ana-
lyzes the spatial and temporal correlation between sensors to detect anomalies and creates
trend-based profiles for detection. The proposed technique obtains 8% higher accuracy
and a 5% lower false-positive rate than existing methods. Nassif et al. [20] reviewed 290
research articles on machine learning techniques applied for anomaly detection. The overall
study analyzes 29 distinct algorithms and 22 datasets that exhibit experimental analysis
on the same. Takiguchi and Shiono [21] deployed a split-training method for anomaly
detection in gas turbine engines. A clustering algorithm was deployed to extract input
data and generate a simulation model. A regression model classifies the data points and
enhances the model performance by optimizing the overall process. Nixon et al. [22] pro-
pose a split active learning algorithm combined with unsupervised methods for anomaly
detection. The study used autoencoders with active learning to reduce labeling costs. The
proposed method reduces training time and improves performance by 20%, outperforming
traditional learning methods. Dragoi et al. [23] propose a protocol for splitting data in inde-
pendently and identically distributed (IID) testing splits. The performance was analyzed
using diverse algorithms and validated using the receiver operating characteristic (ROC)
curve. Zhang et al. [24] deploy a combination of semi-supervised learning and adaptive
multiclass balancing for network anomaly detection. The study used a multiclass split
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balancing technique and adaptive confidence threshold function to handle imbalance in the
data. The proposed technique enhances anomaly detection performance and outperforms
other baseline models.

2.2. Methodology

This section discusses the smart city infrastructure for detecting cyberattacks followed
by federated learning and split learning

2.2.1. Smart City Infrastructure for Anomaly Detection

Smart city infrastructure is prone to attacks or anomalies due to the heavy volume
of data, diverse data sources, real-time monitoring, and seamless data integration. IoT
devices and sensors dispersed throughout the city continually observe various parameters,
supplying detailed data for analysis. Predictive analytics can be used for analyzing and
managing such anomalies. Moreover, robust network security and resource optimization
can improve safety, security, and operational efficiency, making smart cities more adaptable
and responsive to evolving challenges. Figure 1 depicts the smart city infrastructure for
anomaly detection. The work is highlighted as follows:

• IoT devices at the edge layer of a smart city IoT network incorporate various devices,
including sensors, cameras, and connected vehicles. These devices generate vast data,
capturing traffic, air quality, energy usage, and more information. While enhancing
city operations, they are also susceptible to cyber threats.

• Fog Layer (the cybersecurity hub) bridges IoT devices and cloud services. It consists
of a distributed computing resource network, including servers and gateways. Posi-
tioned strategically within the city, its primary role is data processing and analysis
and ensuring security. Within the fog layer, machine learning plays a pivotal role
in securing the smart city’s IoT infrastructure. Data generated by IoT devices are
continuously collected, cleaned, normalized, and structured for analysis. Once data
are prepared, relevant features are captured for meaningful information and pattern
analysis. Machine learning algorithms are then fed these data to train the models and
to understand device behaviors and network patterns. Potential threats or anomalies,
such as distributed denial of service (DDoS) attacks or unusual data traffic, are caused
by deviations in network traffic and device behavior. These anomalies are detected
in real time, and as these are detected, the system can raise alerts and take necessary
actions to mitigate the threat. As many models are adaptive, they can adapt to new
data patterns.

• Reducing latency and bandwidth usage. Machine learning in the fog layer minimizes
latency and conserves bandwidth. By processing and filtering data locally, only
important information is sent to the cloud, which enhances security and optimizes
resource utilization in the smart city infrastructure. Hence, the fog layer, powered by
machine learning for real-time anomaly detection, is an integral component of a smart
city’s cybersecurity hub. The fog layer protects the interconnected systems configuring
smart cities by continuously monitoring and mitigating anomalies.

2.2.2. Federated Learning

Federated learning operates under the assumption that data residing on various edge
devices, such as IoT sensors, cameras, and smart infrastructure within a smart city, need
not be centralized for machine learning purposes. Instead, machine learning models are
distributed to these edge devices, where model training occurs locally on the device without
transferring sensitive data to a central server. This decentralized approach offers several
key advantages:

• In smart cities, data privacy is paramount. Federated learning ensures that data remain
on the edge devices, eliminating the need to transfer raw data over the network and
minimizing privacy risks.



Big Data Cogn. Comput. 2024, 8, 21 6 of 15

• Federated learning allows real-time model updates at the edge, minimizing latency.
This is essential for timely cyberattack detection and response, especially in traffic
management or public safety scenarios.

• By conducting frequent model updates, federated learning significantly reduces net-
work bandwidth usage. This is crucial in smart cities where data transmission can
strain network resources.

• The local models on edge devices learn from local data and collaborate to improve a
global model. This collective learning enhances the model’s accuracy and adaptability.
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Smart city infrastructure incorporates diverse IoT devices and interconnected systems.
This makes it vulnerable to various cyberattacks. Figure 2 illustrates the federated learning
process in a smart city environment, where edge devices contribute to model training
without centralizing sensitive data, ensuring privacy and security. Federated learning can
be deployed to detect cyberattacks by performing the following steps:

Step 1: A central authority or an agency is responsible for distributing a machine learn-
ing model specifically for cyberattack detection to edge devices throughout the smart city.

Step 2: On each edge device, the model conducts training using locally generated data,
such as network traffic patterns, device behavior, and security logs. The model learns to
identify anomalies and potential cyber threats within its specific domain.

Step 3: Periodically, the local models communicate with the agency or each other to
share model updates without sharing raw data. Collaborative model updates aggregate
knowledge gained from diverse edge devices, enhancing the overall model’s accuracy and
threat detection capabilities.

Step 4: The updated global model is deployed on edge devices to perform real-time
threat detection. As new data are generated across the smart city, the model identifies
anomalies, suspicious patterns, or known attack signatures from data streams, such as
traffic cameras, environmental sensors, and network traffic.

Step 5: Upon detecting potential cyber threats, smart city systems can initiate rapid
responses, such as isolating compromised devices, alerting security personnel, or reconfig-
uring network traffic to mitigate attacks. In the diagram, data generated by IoT devices
flow through a federated learning process. Models are distributed to edge devices, which
conduct local training.
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2.2.3. Split Learning

Split learning represents a decentralized machine learning approach aimed at tackling
data privacy and security issues while harnessing the combined capabilities of edge de-
vices. It fundamentally transforms the conventional centralized machine learning model
by dispersing the training process across multiple entities, commonly known as “parties”.
This distribution facilitates model training without disclosing raw data, safeguarding indi-
vidual data privacy. While split and federated learning are decentralized machine learning
techniques designed to address data privacy concerns, they differ in their approaches and
applications. In federated learning, data remain decentralized, but the model is sent to
edge devices. Each device performs local model training using its data without sharing
them with a central server. On the other hand, in split learning, both data and models
are partitioned. Data are divided into segments, and the model is divided into parts. The
model segments on different devices collaborate without directly sharing raw data. Split
learning works like

Step 1: In a split-learning framework, the data are partitioned into multiple segments,
each residing on a different edge device or party. These parties can be IoT devices, cameras,
sensors, or any device within the smart city’s network.

Step 2: A machine learning model is also divided into segments, with each part
residing on a separate edge device. Each local model processes the data segment on its
respective device and extracts relevant information.

Step 3: The intermediate output from one party’s model is shared with another party’s
model, enabling the exchange of information without revealing the underlying data. This
process is iterative, with models continually refining their understanding of the data.

Step 4: The intermediate outputs, containing model updates, are sent to a central
server, where they are aggregated to improve the global model. The central server cannot
access the raw data, ensuring privacy.

Step 5: The refined global model is deployed on edge devices to perform various tasks,
such as cyberattack detection, without exposing sensitive information.
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Figure 3 depicts how split learning may be used to detect anomalies in the smart
city environment.
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Split learning ensures that raw data from IoT devices remain on the edge, eliminating
the need to centralize or share sensitive information. This privacy-focused approach
aligns with the necessity to protect data and maintain regulatory compliance in smart
cities. Moreover, the edge devices equipped with split-learning models can analyze data
streams, such as network traffic, sensor data, and security logs, in real time. This real-
time analysis enables swift identification of anomalies and potential cyber threats, critical
for a timely response and mitigation. This method is highly scalable, as it can handle
smart cities’ vast and diverse ecosystems. Edge devices with split-learning models possess
enhanced intelligence, allowing them to recognize emerging attack patterns and adapt
to evolving threats. By processing and analyzing data locally, split learning minimizes
latency and conserves network bandwidth. This efficiency ensures rapid cyberattack
detection and response in time-sensitive scenarios. The distributed nature of this technique
enhances resilience against network failures or localized attacks. Even if certain devices are
compromised, the privacy-preserving design minimizes the potential impact on the overall
system. The technique aligns with data privacy regulations, ensuring smart cities maintain
compliance while detecting anomalies. It also facilitates accountability by allowing the
auditability of model updates without exposing raw data.

3. Results and Observations

This section discusses the datasets used for the study and the performance metrics for
evaluation. This is followed by the results obtained for the methods discussed above and a
comparative analysis of the work with some similar previous works.

3.1. Datasets

For this study, the following datasets were considered:
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• Network-Based Intrusion Detection Dataset (NSL-KDD) [25] contains a diverse set of
network traffic data, including normal network activities and various types of network
intrusions or attacks. It has 125,973 data points for the training dataset and 22,544
for the test dataset. The network intrusions are categorized as normal (non-intrusion)
traffic), denial of service (DoS) attacks, probe attacks, user-to-root (U2R) attacks (e.g.,
unauthorized access attempts), and remote-to-local (R2L) attacks (e.g., unauthorized
remote access). The primary attributes or features of the dataset are connection record,
protocol type, service, flag, etc. There are 41 features in total.

• UNSW-NB15—University of New South Wales—Network Behavior 2015 dataset [26]
incorporates 175,341 data points in the training set and 82,332 in the test set. The
dataset includes diverse network traffic data comprising benign and malicious network
activities and various network intrusions or cyberattacks. The dataset incorporates
nine different types of attacks, some of which are exploits, shellcode, worms, generic,
etc. Forty-nine features describe the dataset, including attributes like protocol type,
service, source and destination IP addresses, and source and destination ports.

3.2. Performance Metrics for Evaluation

The study deployed five parameters for evaluating the performance of the models.
The parameters are as follows:

• Accuracy: Accuracy measures the overall correctness of predictions
• Accuracy = Number of Correct Prediction/Total Number of Predictions;
• Precision: Precision focuses on the quality of positive predictions
• Precision = True Positives/(True Positives + False Positives);
• Recall: Recall measures the ability to identify all actual positive instances.
• Recall = True Positives/(True Positives + False Negatives);
• F1 Score: The F1 score is the harmonic mean of precision and recall, providing a

balanced assessment;
• F1 Score = 2 ∗ Precision ∗ Recall/(Precision + Recall)
• Time-to-Run: Time-to-run represents the computational efficiency of the intrusion

detection system. It measures the time taken to process the dataset, perform feature
extraction, and make predictions. Minimizing running time is crucial for real-time or
near-real-time intrusion detection systems in smart cities, where timely responses to
threats are essential.

3.3. Results

For the analysis, the study considered the NSL-KDD and UNSW-NB15 datasets. Both
datasets have multiple attributes and multiple target variables. Figures 4 and 5 depict the
distribution of the attacks for both the datasets, respectively.

It is observed that most attacks are normal and denial of service (DoS) attacks. The
number of attacks belonging to the probe, remote-to-local, and user-to-root categories are
relatively fewer.

It is observed that most attacks for the UNSW-NB15 dataset are generic and exploits.
The number of attacks belonging to the fuzzers, shellcode, exploits, etc. categories are
relatively fewer. For analyzing anomaly detection in the smart city environment, the study
deployed several machine learning algorithms in addition to federated learning and split
learning. The analysis also considered some classical machine learning algorithms, ensem-
bles, and deep learning algorithms as benchmarks for evaluation purposes. Algorithms
like naive Bayes (NB), logistic regression (LR), decision tree (DT), random forest (RF),
extreme gradient boosting (XGB), artificial neural networks (ANNs), convolutional neural
networks (CNNs), long short-term memory (LSTM), and support vector machines (SVM)
were deployed for comparing the performances across the two datasets. The primary
metrics for evaluating the performance are accuracy, precision, recall, F-1 score, and the
model training time. Tables 1 and 2 depict the model performance for the NSL-KDD dataset
and the UNSW-NB15 dataset, respectively.
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Table 1. Performance evaluation of ML models on NSL-KDD dataset.

Models Accuracy Precision Recall F-1 Score Time-to-Run (s)

NB 50.14 56.87 49.46 50.42 Less than 5
LR 68.97 75.07 62.76 67.86 Less than 5
DT 96.66 96.91 95.65 96.64 Less than 5
RF 97.84 98.32 93.96 96.99 7.88

XGB 97.06 97.55 94.04 96.28 6.31
ANN 86.54 89.89 80.77 87.66 12.88
CNN 99.09 99.23 93.28 99.12 72.66
LSTM 99.04 99.87 91.72 99.10 57.34
SVM 98.77 98.89 93.84 97.68 49.77

FL 98.99 99.32 93.22 98.24 225.46
SL 99.23 99.64 98.68 99.29 172.34
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Table 2. Performance evaluation of ML models on UNSW-NB15 dataset.

Models Accuracy Precision Recall F-1 Score Time-to-Run (s)

NB 88.98 88.87 88.80 88.83 Less than 5
LR 92.80 92.97 92.80 92.09 Less than 5
DT 96.38 96.38 96.32 96.44 Less than 5
RF 97.68 97.69 97.68 97.68 5.68

XGB 95.85 95.86 95.85 95.85 46.95
ANN 96.25 96.66 96.32 96.03 43.94
CNN 95.09 95.03 95.01 95.03 178.77
LSTM 96.48 96.32 96.44 96.46 127.56
SVM 93.08 92.77 93.55 92.79 88.76

FL 97.78 97.64 97.56 97.89 232.56
SL 98.02 98.12 98.02 98.11 222.33

Based on the evaluation metrics, it is observed that naive Bayes and logistic regression
exhibit the most unsatisfactory performance, while CNN, LSTM, federated learning and
split learning exhibit the best performance in terms of accuracy, precision, recall and F-1
scores. The accuracy scores for CNN, LSTM, federated learning, and split learning are 99.09,
99.04, 98.99, and 99.32, respectively. It is also observed that the training time for federated
learning (225.46 s) is higher compared to split learning (172.34), which is higher compared
to CNN (72.66) and LSTM (57.34). Federated learning and traditional neural networks
have different purposes and execution times, making direct comparisons challenging.
However, the execution time of federated learning can be influenced by several factors
like communication overhead, number of participating devices, model complexity, and
local device capabilities. Therefore, although the time-to-train is slightly high for federated
learning and split learning, given the number of devices, it may be worth considering
the models for anomaly detection in the IoT environment. Regarding training time and
accuracy, random forest, and extreme gradient boosting show similar performance; in
terms of accuracy, split learning performs best.

Based on the evaluation metrics, it is observed that naive Bayes, logistic regression,
and support vector machine exhibit the most unsatisfactory performance, while random
forests, LSTM, federated learning, and split learning exhibit the best performance in terms
of accuracy, precision, recall, and F-1 scores. The accuracy scores for random forest (RF),
LSTM, federated learning, and split learning are 97.68, 96.48, 97.78, and 98.02, respectively.
It is also observed that the training time for federated learning (232.56) is higher compared
to split learning (222.33), which is higher compared to random forest (5.68) and LSTM
(127.56). Regarding training time, RF performs the best, and in terms of accuracy, split
learning performs the best. Figures 6 and 7 show the performance evaluation of both the
datasets concerning accuracy using the Ml models and federated and split learning.
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The “time to run” values in Tables 1 and 2 represent an average over multiple runs
and indicate a commitment to capture the algorithm’s consistency in terms of performance
and stability. Encouraging multiple runs provides a more robust assessment, accounting
for potential variations in execution times due to factors like dataset nuances or algorithmic
randomness. This approach also enhances the reliability of the results and ensures that
the time metrics reflect a representative measure of the algorithm’s efficiency in real-
world scenarios. This practice also aligns with best practices in machine learning research,
fostering transparency and enabling a more nuanced understanding of the algorithm’s
computational behavior.

It is observed that federated learning and split learning fare well compared to many
other baseline models considered for the study in terms of accuracy. CNN and LSTM also
show good performance.

Federated learning and split learning have the maximum training time compared
to the other baseline models considered for the study. In federated learning, model up-
dates are typically sent between edge devices (e.g., smartphones and IoT devices) and
a central server or federated learning coordinator. The frequency and volume of these
communications can impact execution time, especially in scenarios with limited network
bandwidth or high latency. The more devices participate in federated learning, the longer
it may take to aggregate and synchronize model updates. Moreover, large-scale federated
learning deployments with numerous devices can introduce delays. The complexity of the
trained machine learning model can affect execution time as more complex models may
require more iterations or epochs to converge, extending the training time. Edge devices
participating in federated learning may have varying computational capabilities. Some
devices may process updates quickly, while others may be slower, impacting the overall
execution time. Federated learning can be slower than split learning due to the need to
coordinate and synchronize updates from distributed devices. In split learning, each device
or party processes a part of the model, and the speed of split learning can be influenced
by the computational capabilities of individual devices and the ability to process model
updates in parallel. Hence, split learning can be faster than federated learning due to no
involvement of communication overhead.

3.4. Comparative Analysis

This section presents a comparative analysis of the proposed work with some similar
works performed in the past. Table 3 presents the overall summary of the comparative analysis.

Table 3. Comparative analysis of proposed work with similar works.

Author and Year Research Methodologies/Parameters Results

Ding et al., 2023 [10] Detecting cyberattacks using
Deep learning

RSR, TRB, and DB on TON-IoT,
Edge-IIoTset, and
UNSW-NB15 datasets

Accuracy~90.57%, 94.96%,
and 98.41%

Sharma and Babbar, 2023 [11] Detecting cyberattacks in
smart transportation

Rf, NB, and DT on
BoT-IoT dataset

RF shows the highest accuracy
of 91%
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Table 3. Cont.

Author and Year Research Methodologies/Parameters Results

Alrayes et al., 2023 [13]

Deep learning with chaotic poor
and rich optimization for
intrusion detection in smart
city environment

Butterfly optimization algorithm
(BOA) and deep sparse
autoencoder (DSAE) on
CICIDS dataset

Accuracy is 98.53%

Lin et al., 2024 [16] Multivariate anomaly
detection framework

Hierarchical context
representation learning with deep
learning methods

Proposed method shows precision
values 0.90, 0.89, and 0.90 on three
different datasets.

Mitropoulou et al., 2024 [17] Anomaly detection in
cloud computing

Knowledge graph embedding
with isolation forest and CBLOF

Precision values for the methods
proposed are 0.79 and 0.62.

Jithish et al., 2023 [18] Distributed anomaly detection in
smart grids

Federated learning compared
against other algorithms

Federated learning with
convolutional neural networks
achieve highest accuracy of 0.989

Dang et al., 2021 [19] Anomaly detection in IoT
sensory data

Monotone split and conquer
(MSC) technique

Increased accuracy by 8%,
reduced false-positive rate by 5%

Nixon et al., 2021 [22] Anomaly detection in network
data streams

Split active learning
with autoencoders

Highest accuracy achieved
is 98.78%

Dragoi et al., 2022 [23] Network intrusion detection with
data shifting

Protocol splitting
technique, AnoShift

ROC curve shows best
performance for local outlier
factor, 91.50

Zhang et al., 2023 [24] Detecting anomalous
network traffic

Semi-supervised learning and
adaptive multiclass balancing

Precision and recall enhanced up
to 5.7%,

Kasongo, 2023 [27] Intrusion detection in IoT
Recurrent neural network, LSTM,
gated recurrent units on
NSL-KDD and UNSW-NB15

XGB-LSTM achieved highest
accuracy~88.13% on NSL-KDD
XGB-RNN achieved highest
accuracy~86.93% on UNSW-NB15

Jahromi et al., 2023 [28] Cyber-threat hunting model for
industrial internet of things

Ensemble-based deep
federated learning Accuracy~94% to 99%

Alazab et al., 2023 [29] Privacy-preserving
intrusion detection

Federated learning on
NSL-KDD dataset 97.77% Accuracy

Proposed Work Anomaly detection in IoT
devices in smart city

Federated learning, split
learning, classical ML models,
ensembles, deep learning models
on NSL-KDD and UNSW-NB15

Federated learning achieves
accuracy of 98.99% and 97.78%.
Split learning achieves an
accuracy of 99.23% and
98.02%, respectively.

Based on the experimental and comparative analysis, a few observations can be made.

• Performance of Anomaly Detection Methods—The study comprehensively evaluated
various anomaly detection methods, including classical machine learning algorithms
(e.g., naive Bayes, logistic regression, and decision trees), ensemble models (e.g.,
random forests and XGBoost), and deep learning models (e.g., ANN and CNN). It
observed that the performance varied significantly across these methods.

• Deploying Federated Learning—Federated learning demonstrated promising results
concerning IoT anomaly detection. It exhibited strong potential for maintaining data
privacy while achieving satisfactory accuracy despite longer training times.

• Deploying Split Learning—Split learning showcased the ability to safeguard sensitive
information within IoT environments while delivering significantly high accuracy.

• Training Time—It is observed that the raining times associated with privacy-preserving
techniques like federated learning and split learning are relatively high compared
to the other models. This may be attributed to several factors ranging from model
complexity to the number of devices.

• Multiple Datasets—Two different datasets were considered: NSL-KDD and UNSW-
NB15, and the models exhibited consistent performance across both datasets.

• Evaluation Parameters—The analysis adopted accuracy, precision, recall, and F1
scores to evaluate the model performance. The models were also compared based on
training times.



Big Data Cogn. Comput. 2024, 8, 21 14 of 15

4. Conclusions

In this paper, anomaly detection was performed within IoT devices operating in smart
city environments, primarily focusing on safeguarding against cybersecurity threats. Vari-
ous machine learning techniques were comprehensively analyzed, ranging from traditional
algorithms like naive Bayes, random forests, support vector machines, and neural networks
to cutting-edge techniques like federated learning and split learning. Valuable insights into
the strengths and weaknesses of these approaches have been gained through rigorous ex-
perimentation using the NSL-KDD and UNSW-NB15 datasets. Notably, federated learning
and split learning have emerged as promising strategies for balancing data privacy and
detection accuracy. While these methods did entail longer training times, their potential for
safeguarding sensitive information in IoT environments cannot be underestimated. The
focus will be on optimizing federated and split-learning models to reduce training times
and computational demands in real time. Furthermore, there is a potential possibility of
exploring hybrid models that combine the strengths of federated and split learning. These
hybrid models promise to achieve even higher detection performance while preserving
privacy. This study lays the foundation for future research and practical implementations
dedicated to fortifying IoT device security within smart cities. The resilience of smart cities
can be enhanced against cyberattacks by ensuring the safety and reliability of the devices
connecting these environments.
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