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Abstract: In detecting Distributed Denial of Service (DDoS), deep learning faces challenges and
difficulties such as high computational demands, long training times, and complex model interpreta-
tion. This research focuses on overcoming these challenges by proposing an effective strategy for
detecting DDoS attacks in imbalanced network environments. This research employed DBSCAN
and SMOTE to increase the class distribution of the dataset by allowing models using LSTM to
learn time anomalies effectively when DDoS attacks occur. The experiments carried out revealed
significant improvement in the performance of the LSTM model when integrated with DBSCAN and
SMOTE. These include validation loss results of 0.048 for LSTM DBSCAN and SMOTE and 0.1943 for
LSTM without DBSCAN and SMOTE, with accuracy of 99.50 and 97.50. Apart from that, there was
an increase in the F1 score from 93.4% to 98.3%. This research proved that DBSCAN and SMOTE
can be used as an effective strategy to improve model performance in detecting DDoS attacks on
heterogeneous networks, as well as increasing model robustness and reliability.

Keywords: imbalanced network; DDoS; SMOTE; LSTM; DBSCAN

1. Introduction

Network security is crucial for maintaining integrity and availability of service. One of
the main threats in network infrastructure is DDoS (Distributed Denial of Service) attacks,
as they can agitate access to online services by sending the target network massive packets
with unnecessary traffic. DoS (Denial of Service) is an attack that is capable of minimizing
the bandwidth and computational resources of a particular system in the network, thereby
overloading the system with data traffic and preventing the system from delivering routine
services to authenticated users. A DoS is considered a cyberattack that allows attackers
to attempt to cause systems and servers to be down and inaccessible, thus obstructing
consumers from accessing resources and servers [1]. DDoS can even damage a system
further on a wider scale. Distributed Denial of Service (DDoS) attack is a kind of cyber
attack executed by using a large number of geographically distributed computers or devices
to simultaneously access a target computer resource, such as a website or network, with
the aim of making it unavailable to authorized users [2]. DDoS continues to threaten and
undermine network security in all fields of business regardless of their scale due to their
increasing complexity, volume, and frequency.

DDoS data can be used to identify DDoS attacks leveraging computational algorithms,
including machine learning (ML) and Deep Learning (DL). The main objective of this
study, however, focused on the earlier identification of DDoS attack impacts. Usually, the
impacts are constrained by an inadequate selection of predictor variables employed to
classify DDoS attacks and typical classifiers that produce subpar results to examine the
correlation among the detector attributes in the DDoS data [3,4]. DL is an emerging field of
computer science that employs an advanced set of feature embedding methods to automate
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learning from past data and predict outcomes accurately [5]. It has been successfully
employed in diverse deployments over the years, including financial market forecasting [6],
student performance evaluation [7], forecasting modeling [8], and text classification [9].
Data analysts are motivated to develop effective strategies that help system administrators
detect DDoS effectively [10]. Therefore, for obtaining reliable DDoS attack information, it is
important to examine and use models on DDoS data.

Currently, DDoS detection generally depends on DL methods and algorithms to
distinguish normal traffic and attacks. However, detection success is frequently constrained
by several challenges, including Class Imbalance [11]. In many problems [12–15], the target
group is the class of interest, for example, the positive class. A widely recognized example
of class imbalanced ML context is the packet diagnostic task of DDoS detection, where
most of the packets are normal and detecting DDoS is of higher interest. For instance, in
some studies, researchers consider the predominant category group of DDoS attacks to be
the negative class. These imbalanced datasets might be highly demanding, particularly
within the context of big data analytics [16,17], and unconventional ML approaches are
frequently needed to achieve favorable outcomes. A comprehensive understanding of the
class imbalance issue and the existing methods to handle it is essential, as imbalanced data
are prevalent in numerous real-world applications. Methods for handling class imbalance
in ML can be categorized into three groups: algorithm-level methods, data-level techniques,
and hybrid approaches. To mitigate the level of imbalance, data-level techniques are
implemented by employing various data sampling methods.

Outlier detection is a critical step in data analysis, especially in cybersecurity, where
recognizing unusual data points can help detect malicious activity such as DDoS attacks.
One effective method for outlier detection is the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) algorithm [18]. DBSCAN works by grouping data points based
on their density so that points located in areas of low density are identified as outliers [18].
This method is very useful for detecting patterns that do not match the expected behavior
in a network, which may indicate abnormal or malicious traffic. By accurately identifying
outliers, DBSCAN helps improve the reliability of the data used to train machine learning
models, ensuring that the model is not affected by irrelevant noise or anomalies, thereby
strengthening the overall DDoS attack detection capability.

In handling class imbalance, algorithm-level methods are often implemented with a
weight or cost schema, involving adjusting the learner or its output to mitigate partiality
towards the group of majorities. Hybrid systems strategically integrate both algorithmic
methods and sampling [19]. In fact, many researchers concur that the DL topics with class-
imbalanced data are underexplored [20,21]. Therefore, there is a need for an oversampling
method specifically designed for deep learning models that can work on raw data while
preserving their inherent properties and generate high-quality artificial data that can
enhance minority classes and achieve balance in the training set [22]. The Synthetic Minority
Oversampling Technique (SMOTE) technique is the most well-known [23–25]. It utilizes the
kNN algorithm to find the neighbor randomly to create a new sample [26]. The component
operates by creating new instances based on minority scenarios that have been provided
as input. The number of majority cases remains unchanged as a result of this SMOTE
implementation.

The emergence of Deep Learning (DL) models has revolutionized the analysis and
processing of sequential data, enabling more accurate predictions in complex time-series
tasks. In DDoS attack environments, LSTM models have demonstrated their effectiveness
in accurately identifying patterns indicative of attacks. Researchers have investigated
LSTM-based intrusion detection systems [27–29]. Their studies emphasize the effectiveness
of LSTM models in distinguishing and labeling diverse attacks accurately in computer
network environments.

Some approaches have demonstrated promise in enhancing the ability of DDoS detec-
tion. One commonly researched method is the use of an LSTM network, which is a type of
neural network architecture that is capable of handling temporal data well. However, using
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LSTMs in the context of DDoS detection is not always practical or efficient for all network
environments. LSTMs often require significant computing resources and can require long
training times. Additionally, analyzing outcomes from LSTM models can also be complex,
especially in contexts that require a profound insight into the model decision-making
process. The main objective of this study is to develop and examine effective strategies
to detect DDoS attacks in an imbalanced network environment. This study focuses on
utilizing DBSCAN and SMOTE by addressing data imbalance problems and enhancing the
efficiency and accuracy of DDoS attack detection. DBSCAN is utilized to group the data
points based on their density, while SMOTE is used to balance the class distribution with
the dataset and to allow LSTM models to learn more effectively and deliver more accurate
results in detecting attacks. By leveraging LSTM-based deep learning, the model shows
exceptional capability in discovering subtle and time-sensitive anomalies, facilitating the
early detection of advanced and persistent cyberattacks [30,31].

2. Related Works

Several machine learning technologies have been used, mostly as classifiers, to de-
tect DDoS attacks. To mention a few, they included density-based spatial clustering of
applications with noise (DBSCAN) [32,33], naïve Bayes classifier [34,35], random forest
(RF) [36,37], support vector machine (SVM) [38,39], and k-nearest neighbor (KNN) [40].
Gavrilis [41] provided more details by proposing the RBF-NN detector, which used nine
packet parameters and related parameters produced using these frequencies. It is expected
that RBF-NN traffic will be categorized as normal until it is determined to be an attack, de-
pending on the frequency. As an alternative, Ibrahim noted that the distributed time delay
neural network (DTDNN) [42] has an elevated probability of better diagnosing threats.

As Razib et al. [43] suggest, SDN powered by the DL model allowed IDS to face
much fewer threats. The DNN model in this study processes the data, and the resulting
information is fed into the LSTM model that was created. The CICIDS 2018 dataset is used to
train the suggested model. With increased precision and accuracy, network attack detection
was made possible by this approach. However, instead of utilizing SDN’s advantages, this
approach concentrates more on enhancing the deep learning technique itself.

Meti et al. [44] presented a dataset that had just TCP stream traffic produced by the
real network and used dual features with regular and irregular tags to train their models,
which included naïve Bayes (NB), support vector machines (SVM), and neural networks
(NNs). Comparing them, they found that SVM had a higher recall value (R) of 79.99%
than NB and NN, but NN had the greatest accuracy (A) and precision (P), at 79.9% and
99.95%, respectively.

Zainudin et al. [45] suggested a low-cost method for classifying DDoS attacks. This
study designed extreme gradient boosting by combining CNN and LSTM. Their technique
can be effectively applied to IoT devices with little computational capacity and can eliminate
the requirement for the device to pay for high computational power. According to their
performance data, the suggested model attained excellent accuracy at a little time expense.

In software-defined networks (SDNs), Tuan et al. [46] used logarithm and entropy
values to detect TCP-SYN/ICMP flood attacks. The K closest entropy metrics were found
using the K-nearest neighbors (KNN) algorithm, and the network’s vulnerability to DDoS
attacks was investigated by looking at the distance points that were currently in place. The
Bonesi test’s accuracy was greater than 99% when K was set to 9 in this investigation, which
used the CAIDA2007 dataset.

Alghazzawi et al.’s [47] effective hybrid deep learning model (CNN + BiLSTM) has
been enhanced by employing the feature selection method. Using an x2 test for feature
selection, this strategy classified DDoS attacks using a CNN + BiLSTM hybrid model. This
approach identified highly rated features that significantly aid in the prediction of court
case judgments using the x2 test and then extracted these high-rated features using a CNN.
Furthermore, the provided data’s past and future context are preserved when these features
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are fed into a BiLSTM model. Using CNN and BILSTM layers in addition to optimal feature
selection, this technique can forecast the results of DDoS attacks based on data.

Saini [48] detected and classified several types of network traffic flows using a machine
learning-based method. A new dataset subjected to a variety of contemporary attack types,
including HTTP flood, SID DoS, and regular traffic, is used to validate the suggested
methodology. They asserted that their algorithm outperformed the Random Forest and
Naïve Bayes algorithms in terms of output.

In order to detect DDoS attacks, Sahoo et al. [49] suggested an improved support vector
machine (SVM) model that makes use of kernel principal component analysis (KPCA) and
genetic algorithms (GAs). This model routinely collected flow data from switches and used
kernel analysis to extract important features. Then, using genetic algorithms, the SVM
parameters were adjusted to produce the best possible predictions. Using simulations and
publicly available datasets, the proposed model’s accuracy was assessed and found to be
close to 99%.

Polat et al. [50] contrasted four machine learning algorithms while concentrating on
feature selection methods. With 98.3% accuracy, they discovered that KNN, a wrapper-
based technique, outperformed the others when six crucial criteria were used for selection.
The study offers insightful information about the efficacy of various ML/DL techniques for
identifying DDoS attacks.

This proposed study proposes the use of a combination of DBSCAN-SMOTE and
LSTM to detect DDoS attacks, which has not been adopted in previous studies. DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) serves as an effective tool
to identify outliers or anomalous data that are often hidden in network traffic, which
are early indications of DDoS attacks. By combining DBSCAN with SMOTE (Synthetic
Minority Oversampling Technique), we aim to address the data imbalance problem that
often occurs in DDoS attack datasets so that deep learning models such as LSTM (Long
Short-Term Memory) can be better trained to detect attack patterns. The main innovation in
this study is the use of DBSCAN as an outlier detection method that improves the accuracy
and generalization ability of LSTM models in detecting DDoS, thus making significant
contributions to the field of cybersecurity and network anomaly detection.

3. Materials and Methods

This section describes the proposed model and algorithm employed in this study,
including data collection, data analysis, handling imbalanced data by using SMOTE, split-
ting the dataset into data training and testing, developing the model using LSTM, model
evaluation, and comparing LSTM and LSTM with SMOTE results. Figure 1 represents the
research methods employed to achieve this goal. The flowchart illustrates the process flow
used to detect DDoS attacks using the LSTM model and the SMOTE technique in dealing
with data imbalance problems. The process began with data collection from network
traffic, followed by the preprocessing stage to clean and prepare the data before further
analysis. After preprocessing, anomaly detection was carried out using the DBSCAN
algorithm to identify suspicious or unusual data. The data detected as anomalous were
then standardized to ensure that all features had a consistent scale, which is important
for optimal model performance. After standardization, the data imbalance problem was
addressed by applying the SMOTE technique to make the minority class more balanced.
The balanced data are then reshaped to suit the LSTM model. For comparison, the data
were also reshaped without using SMOTE and inputted into the LSTM model for training
and testing. The trained model was evaluated, and evaluation metrics were compared to
assess the effectiveness of the approach used in detecting DDoS attacks.
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Figure 1. Flowchart of research.

3.1. Data Collection

In this research, the first step that we conducted was collecting relevant data. The
data for this study were obtained from live penetration testing, where a series of simulated
attacks were performed on a monitored network. The data collection was conducted in a
controlled environment to ensure validity and realistic representation of real-world attack
scenarios, including various types of DDoS attacks. The data collected included attributes
such as time, source, destination, protocol, length, clusters, and anomalies. These data
include information about normal and suspicious network traffic. The size of the data
has been written as 1,048,575 records. This data collection is important as it provides a
basis for model training and evaluation. Data were taken from sources that have network
traffic records, which reflected the real conditions of the observed network. When data
were collected, the host with the IP address 172.16.0.6–172.16.0.8 became the DDoS attacker,
while the host with the IP address 192.168.50.12 was the target of the attack. This host with
an IP address received massive and abnormal traffic from IP addresses 172.16.0.6–172.16.0.8.
The data used were 1,048,575 records collected for DDoS attack detection analysis. These
data include time, source, destination, protocol, and length of traffic. The data were then
processed using SMOTE and analyzed using the LSTM algorithm. The simplified network
topology is represented in Figure 2.
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3.2. Data Preprocessing

To ensure the dataset’s reliability and validity, several preprocessing steps were un-
dertaken. These steps include data cleaning to remove any noise or irrelevant information,
normalization to standardize the range of feature values, and segmentation to divide
the data into manageable chunks for analysis. Additionally, outlier detection using DB-
SCAN was performed to identify and isolate anomalous data points indicating potential
DDoS attacks. By providing these details, we aimed to offer a transparent and thorough
understanding of the data characteristics, thereby strengthening the robustness of our
methodology and the credibility of our findings.

3.3. Standardization of Features

Feature standardization is the next step after data preprocessing. Standardization is
used to ensure that all features are on the same scale. This is important because features
with different scales can negatively affect model performance. In this study, we used
StandardScaler to standardize the data to have a distribution with a mean of 0 and a
standard deviation of 1. Feature standardization helps the model to learn patterns from the
data more effectively.

3.4. Handling Data Imbalance

Classification of data becomes challenging due to the extensive scale and imbalance
characteristics of the data. The class imbalance problem grows into a major issue in data
mining. An imbalance problem arises because one of the two classes has a significantly
more prevalent sample compared to the other classes. Most algorithms often focus on
classifying the majority class, which can result in the neglect or misclassification of the
minority class. The minority samples are uncommon yet significant. As an oversampling
method, SMOTE generates synthetic observations from existing samples of the minority
class. Not only does it replicate the existing data, but it also generates new data points that
closely resemble the minority class using data augmentation to enhance minority classes.
These new synthetic training instances are randomly generated by selecting one or more
K-nearest neighbors for each of the minority classes. After finishing oversampling, the
issue of an imbalanced dataset is resolved, and different classification models are ready to
be tested. In this research, SMOTE was employed to increase the number of samples from
minority classes so that the model can learn better from the data. In network traffic datasets,
the amount of data indicating DDoS attacks was usually much less than normal traffic
data. In our dataset, each sample classified as a DDoS attack (minority class) was selected
for oversampling. In case a sample exhibits the attributes: Time = 0.001132 s, Source
= 192.168.50.1, Destination = 172.16.0.5, Protocol = HTTP, Length = 1139, Cluster = −1,
Anomaly = True. For every minority sample, we searched k, the nearest neighbors in
attribute space, using the k-nearest neighbors (k-NN) algorithm. For example, for a sample
with the above attributes, we found several nearest neighbors that are also DDoS attack
samples in the dataset. After the nearest neighbors were found, we randomly chose one
of them. For example, the selected nearest neighbor had the attributes: Time = 0.000774 s,
Source = 192.168.50.1, Destination = 172.16.0.5, Protocol = TCP, Length = 66, Cluster = −1,
Anomaly = True. A synthetic sample was then generated using the formula:

xnew = xi + (xneighbour − xi) × δ, (1)

where

xi: the original sample (for example, Time = 0.001132 s, Source = 192.168.50.1,
Destination = 172.16.0.5, Protocol = HTTP, Length = 1139, Cluster = −1, Anomaly = True),
xneighbor: the selected nearest neighbor (for example, Time = 0.000774 s, Source = 192.168.50.1,
Destination = 172.16.0.5, Protocol = TCP, Length = 66, Cluster = −1, Anomaly = True) and
δ: a random number between 0 and 1.
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By applying Equation (1), we can create new data points xnew that lie on the straight
line between xi and xneighbour, which helps to synthetically expand the distribution of
minority data samples. This technique is useful for overcoming class imbalance problems
by increasing the number of minority data samples so that machine learning algorithms
can better recognize patterns in the minority class [23].

For example, if δ = 0.5, the synthetic sample xnew is calculated as follows: = 0.001132 +
(0.000774 − 0.001132) × 0.5 = 0.000953 s.

Other attributes such as Source, Destination, Protocol, Length, Cluster, and Anomaly
were also calculated in the same way. The result is a new synthetic sample that might
look like Time = 0.000953 s, Source = 192.168.50.1, Destination = 172.16.0.5, Protocol = Mix,
Length = 602.5, Cluster = −1, Anomaly = True.

3.5. Training and Testing Data

After the data were normalized, then the data were split into a training and a test
dataset. This data split was conducted to ensure that the model could be properly evaluated
on data that had never been seen before. Data were divided by a certain ratio, a training
split of 80% and a testing split of 20%. The data were split randomly to ensure that the data
in the training set and data in the test set were representative.

3.6. LSTM Model Development

In this phase, we utilized LSTM to construct the model. LSTM is a kind of artificial
neural network that is suitable for time series data processing and complex pattern detection
in the data. In the case of DDoS attack detection, network data are often sequential and has
temporal dependencies. LSTM is very effective in handling this type of data because of its
ability to recognize information over long and short periods of time. Here is an explanation
of how each LSTM formula is used in this context:

3.6.1. Forget Gate

ft = σ
(

W f · [ht−1, xt] + b f

)
(2)

Equation (2) describes the forget gate operation in the LSTM cell, which plays a crucial
role in determining which information from the previous cell state ht−1 needs to be retained
or forgotten. In the context of DDoS detection on imbalanced networks, where DDoS attack
data may be much less than normal network traffic data, the forget gate serves to ensure
that the model is not burdened by irrelevant past information that does not contribute to
attack detection.

The forget gate determines which information from the previous cell state should be
discarded, ensuring the model retains only relevant information. In the case of DDoS, this
can mean forgetting irrelevant information from previous network traffic that is unrelated
to the attack. When LSTM receives network data on time t, the forget gate will use the
previous hidden state (ht−1) and current input (xt) to decide how much information from
the past to remember or forget.

3.6.2. Input Gate

it = σ
(

W f · [ht−1, xt] + b f

)
(3)

∼
Ct = tanh

(
Wc· [ht−1, xt] + b f c

)
(4)

Equations (3) and (4) describe the input gate and candidate cell state operations in
LSTM, which serve to update the information stored in the memory cells. The input gate
decides what new information will be stored in the current cell state Ct. In the case of DDoS,
this means adding important information about new network packets that may indicate
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attack patterns. LSTM will retrieve the previous hidden state (h t−1) and current input (xt)
to determine what new information needs to be added to the current cell state ( Ct). In
the context of DDoS detection, the input gate (Equation (3)) helps the model decide what
new information from the network traffic is worth paying attention to, such as suspicious
patterns that could indicate a DDoS attack, while the candidate cell state (Equation (4))
prepares new memory candidates to be added to the current cell state if deemed important
by the input gate. This combination allows the model to be more responsive to DDoS attack
patterns that emerge in imbalanced network traffic data.

3.6.3. Memory Cell Status

Ct = ft × Ct−1 + it ×
∼
Ct (5)

Equation (5) describes that the state of memory cells is updated by combining old
information that is still relevant and new information that is important. In the context of
DDoS, the state of memory cells (C t) stores information about the network traffic that the
model has seen up to the current point in time. By combining the output of the forget gate
( ft) a gate input (i t) LSTM updates the cell state (C t) to represent current and relevant
information about network traffic.

3.6.4. Output Gate

ot = σ(Wo· [ht−1, xt] + bo) (6)

ht = ot × tanh(Ct), (7)

Equations (6) and (7) describes that the output gate decides which part of the memory
cell state will be output as output (ht) In the case of DDoS, this means deciding which
information to use to determine whether the current network packet is part of an attack.
The gate output will retrieve the current cell state (C t) and determine which parts are
relevant to output as output (ht), which will be used in subsequent steps to predict whether
a DDoS attack occurred.

3.7. Model Training with Early Stopping

Once the LSTM model is built, the next step is to train the model using the training
data. Model training is carried out using the early stopping technique to avoid overfitting.
Early stopping works by observing the model’s performance on the validation set. In
addition, it also works by stopping training if the performance begins to decline. This
ensures that the model does not overfit the training data and can generalize well on new
data. During training, model parameters are updated using an Adam-like optimization
algorithm.

3.8. Model Evaluation

In model evaluation, we used a confusion matrix to define the model requirement.
Some components of the confusion matrix are false positive (FP), false negative (FN), true
positive (TP), and true negative (TN). The confusion matrix was employed to examine
the effectiveness of our model’s classification. The confusion matrix emphasized whether
predictions were valid. In addition, we evaluated our proposed model employing widely
used metrics in DDoS. The mathematical formulas of precision, recall, and f-score are
represented as follows:

Accuracy reflects the model’s precise predictive performance. Accuracy is a metric
that calculates the overall percentage of detected and abnormal results generated by the
LSTM model. It shows the cumulative success ratio of any DDS and is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)
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TP = true positive, TN = true negative, FP = false Positive, FN = false negative.
Precision, or the false negative rate (FNR), commonly known as precision, is the

proportion of misclassified attacks to the total number of attack occurrences. The precision
derived from Equation (9) shows how many positive DDoS detections are predicted exactly:

Precision (P) =
TP

FP + TP
(9)

P = precision, TP = true positive, FP = false positive.
Recall, or the detection rate (DR), commonly referred to as the true positive rate (TPR),

indicates the success ratio of identifying adverse occurrences relative to the overall number
of adverse vectors. Equation (10), which assesses recall, reveals how many true positives
are successfully detected:

Recall (R) =
TP

FN + TP
(10)

R = recall, TP = true positive, FN = false negative.
The Fscore or F1 score is important because it offers the next information about the

network performance. It considers both false positives and negatives. The F1 score is
beneficial, especially in cases where the class label distribution is unbalanced. The Fscore was
computed using Equation (11), which demonstrates the consistency of recall and precision:

Fscore = 2 × P × R
P + R

(11)

R = recall, P = precision.

3.9. Comparison of the LSTM Model with and without DBSCAN and SMOTE

This research also compared two approaches: using DBSCAN and SMOTE to handle
data imbalance and not using DBSCAN and SMOTE. In the first approach, DBSCAN
and SMOTE were used to increase the minority class sample so that the data became
more balanced. In the second approach, data were used without oversampling. The
results of both approaches were compared to see how handling data imbalance affected the
performance in detecting DDoS attacks.

4. Results

In this research, we used the LSTM (Long Short-Term Memory) model to detect
DDoS attacks based on network data consisting of various features such as time, source,
destination, protocol, packet length, and cluster. We implemented the LSTM model and
evaluated the model performance with various metrics. Additionally, we extended the
analysis by applying the DBSCAN and SMOTE techniques to address the class imbalance
in the dataset, thereby clarifying the research focus on improving DDoS attack detection.

4.1. DDoS Detection LSTM Model without DBSCAN and SMOTE

This research also compared two approaches: using DBSCAN and SMOTE to handle
data imbalance and not using DBSCAN and SMOTE. In the first approach, DBSCAN
and SMOTE were used to increase the minority class sample so that the data became
more balanced. In the second approach, data were used without oversampling. The
results of both approaches were compared to see how handling data imbalance affected the
performance.

Figure 3 shows the evaluation results of the DDoS prediction, namely validation loss
and training loss. A training loss of 0.0340 shows the average value of the loss function on
the training data. This value indicates how effective the model is in learning the training
data. The smaller the training loss value, the better the model is at optimizing the training
data. In this case, the training loss of 0.155 shows that the model is very good at learning
patterns in the training data. A validation loss of 0.193 refers to the average loss value
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calculated on validation data, which the model has not been trained on. It serves to
evaluate how well the model generalizes from its training data to new, unseen data. A
lower validation loss suggests that the model can effectively apply learned patterns to
new data, indicating good generalization. This metric is crucial in assessing the model’s
performance beyond training, helping to verify its reliability in real-world applications
where unseen data may differ from the training set.
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Figure 4 shows the results of the model evaluation for DDoS detection, which includes
model accuracy and model loss. The final training accuracy was recorded at 96.10%,
which shows the percentage of accurate predictions produced by the model on the training
dataset. This accuracy indicates that the model successfully predicted the training data
with a minimal error rate. The final validation accuracy was recorded at 97.60%, which
shows the percentage of correct predictions on the validation data. This metric is important
for evaluating the model’s ability to generalize learned patterns to new data that was not
seen during training. High validation accuracy indicates that the model is effective in
applying learned patterns to new data, thus demonstrating its resilience in facing scenarios
outside the training data.
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A small difference between training loss and validation loss is also seen in the graph,
where the final training loss was recorded at 0.15 and validation loss at 0.18. This difference
indicates that the model did not experience significant overfitting. Overfitting occurs
when the model is very good at learning the training data but experiences difficulty
in generalizing to new data, which is usually seen from a low training loss but a high
validation loss. In this case, the similar training loss and validation loss indicate that the
model has good generalization ability. The high accuracy on both the training data (96.10%)
and validation data (97.60%) indicates that the model is able to effectively predict DDoS
attacks and normal conditions. The model successfully differentiates between DDoS and
non-DDoS attacks, reflecting its strong performance in learning and applying patterns.
These metrics highlight the reliability and effectiveness of the model in detecting DDoS
attacks, supported by the low loss and consistently high accuracy across datasets.

Table 1 presents critical evaluation metrics for two classes in a classification model:
“0 (No DDoS)” and “1 (DDoS).” It includes precision, recall, and F1-score, which are used
to verify the model’s performance in predicting each class accurately. Precision measures
the proportion of positive predictions that are truly positive. For class “0 (No DDoS)”,
a precision of 97.6% means that of all predictions classified as “No DDoS”, 97.6% were
actually “No DDoS”. For class “1 (DDoS)”, a precision of 89.4% means that of all predictions
classified as “DDoS”, 89.4% were actually “DDoS”.

Table 1. Classification report on LSTM model without DBSCAN and SMOTE.

Class Accuracy Precision Recall F1-Score

0 (No DDOS) 96.33% 97.6% 96.7% 90.6%
1 (DDOS) 95.42% 89.4% 93.6% 93.4%

Recall determines the proportion of positive data that are detected by the model. For
class “0 (No DDoS)”, a recall of 96.7% means that of all data that are truly “No DDoS”,
96.7% was successfully detected by the model as “No DDoS”. For class “1 (DDoS)”, a recall
of 93.6% means that of all the data that were actually “DDoS”, 93.6% was successfully
detected by the model as “DDoS”.

F1-score is a harmonization of precision and recall, providing a single value that
describes the balance between the two metrics. F1-score is important when the class
distribution is unbalanced. For class “0 (No DDoS)”, the F1-score of 90.6% shows a good
balance between precision and recall. For class “1 (DDoS),” the F1-score of 93.4% also
shows a better balance between precision and recall.

Overall, the model shows excellent performance in detecting both “No DDoS” and
“DDoS”. The class “0 (No DDoS)” has a very high precision, indicating that the model
rarely gives false positive predictions for this class. The recall is also high, although slightly
lower than precision, meaning some “No DDoS” instances may be incorrectly detected as
“DDoS.” For class “1 (DDoS)”, the slightly lower precision indicates some false positives,
but the high recall indicates that the model is very effective in detecting DDoS attacks when
they occur. The good balance between precision and recall in both classes is reflected in
the F1-score, which is also high, indicating that this model is reliable in classifying both
classes effectively.

4.2. DDoS Detection LSTM Model with DBSCAN and SMOTE

In this scenario, the model is trained and tested using the SMOTE technique to handle
class imbalance. The results of the model evaluation are presented in Figure 5.

Figure 5 shows the model analysis for detecting DDoS attacks. The evaluation of
training loss of 0.0253 and validation loss of 0.0428 provides an important figure of the
performance and reliability of the model. A low training loss value such as 0.0253 indicates
that the model is very efficient in learning complex patterns that may exist in the training
data related to DDoS attacks. This means that the model accurately reduces the prediction
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error on the training data, which directly reflects the adaptability and learning to features
that differentiate between DDoS attacks and normal network traffic. Validation loss values
that are slightly higher than training loss, such as 0.0428, indicate that the model has a good
ability to avoid overfitting. This means the model is not only able to remember and predict
well the data used in training, but it can also effectively apply this knowledge to new data
with which it was previously unfamiliar. With a training loss of 0.0253 and a validation loss
of 0.0428, the model shows excellent performance in detecting DDoS attacks. The ability
to reduce loss in these two datasets shows that the model has a high level of accuracy
and reliability in identifying DDoS attacks, which is crucial for effective and responsive
network security.
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Figure 6 shows the training and validation loss of the model. Initially, the model loss
starts at 0.6167 and decreases to 0.0248 by the end of the training process, indicating a
strong ability to optimize the training data. The validation loss follows a similar trend,
decreasing from 0.5319 to 0.0434. The accuracy during training starts at 87.31%, which
is relatively high due to the presence of learnable patterns in the dataset that the model
can quickly identify. This high initial accuracy quickly stabilizes at 99.50% after the first
epoch, reflecting the model’s rapid convergence and consistent performance throughout
the training. Similarly, the validation accuracy reaches 99.20% after the first epoch and
remains stable, confirming that the model generalizes well to unseen data. The overall
trend indicates that the model effectively learns the patterns in the data without significant
issues of overfitting or underfitting, making it a robust tool for detecting DDoS attacks.

The results of DDOS attack detection using DBSCAN and SMOTE are presented in
Table 2. Two classes were formed in this model: class 0 (No DDOS) and class 1 (DDOS).
For class 0 (no DDOS), it achieves a precision of 98.5%. This means that out of all the
instances predicted as “No DDoS” by the model, 98.5% were correctly identified. The
recall for DDOS detection reaches 97.3%, indicating that the model successfully identified
97.3% of all actual “No DDoS” instances. The F1-score, which is the mean of precision and
recall, is 93.1%. This score reflects a good balance between precision and recall for class
0. For class 1 (DDoS), the model achieves a precision of 93.6%, indicating that 93.6% of
the instances predicted as “DDoS” were correct. The recall for this class is 96.2%, meaning
the model correctly recognized 96.2% of all actual “DDoS” instances. The F1-score for
class 1 is 98.3%, showing excellent performance in detecting DDoS attacks with a strong
balance between precision and recall. The LSTM model, which is supported by the SMOTE
technique, provides excellent performance in detecting DDoS attacks. The values of high
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precision, recall, and F1-score in both classes demonstrate that the model is both accurate
and reliable. This means that LSTM with DBSCAN and SMOTE is able to address class
imbalance. Overall, the model’s performance metrics indicate a strong ability to detect and
distinguish between DDoS and non-DDoS traffic effectively.
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Table 2. Classification report on LSTM with DBSCAN and SMOTE.

Class Accuracy Precision Recall F1-Score

0 (No DDOS) 96.71% 98.5% 97.3% 93.1%
1 (DDOS) 96.12% 93.6% 96.2% 98.3%

A comparison of classification results between using DBSCAN and SMOTE and
without DBSCAN and SMOTE on the DDoS Detection LSTM model shows a significant
difference in performance in detecting DDoS attacks. As presented in Table 1, without
using DBSCAN and SMOTE, class 0 (No DDoS) has a precision of 97.6%, recall of 96.7%,
and F1-score of 90.6%. For class 1 (DDoS), the precision was 89.4%, the recall was 93.6%,
and the F1-score was 93.4%. On the other hand, Table 2, which uses DBSCAN and SMOTE,
shows that class 0 has a precision of 98.5%, recall of 97.3%, and F1-score of 93.1%. For class
1, precision reached 93.6%, recall 96.2%, and F1-score 98.3%. These results indicate that the
use of DBSCAN and SMOTE improves the model’s performance in detecting the minority
class, namely the DDoS class (class 1). Class 1 precision and recall improved from 89.4%
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and 93.6% without DBSCAN and SMOTE to 93.6% and 96.2% with DBSCAN and SMOTE,
respectively. Class 1 f1-score also increased significantly from 93.4% to 98.3%. However,
this increase was accompanied by a slight decrease in class 0 (No DDoS) F1-score, from
90.6% without DBSCAN and SMOTE to 93.1% with DBSCAN and SMOTE. The precision
and recall of class 0 continued to increase. Overall, the use of DBSCAN and SMOTE helps
the model be more balanced in detecting both classes, especially improving the model's
ability to more accurately detect DDoS (class 1) attacks. This is important in the context of
network security, where proper detection of DDoS attacks is crucial. While there is a slight
trade-off in class 0 performance, the significant improvement in class 1 detection makes the
use of DBSCAN and SMOTE very worthwhile.

Despite the high accuracy and F1-scores observed, a critical evaluation of the model’s
false positives (FP) and false negatives (FN) is necessary. Our analysis shows that while
the model is effective at detecting DDoS attacks, the occurrence of FP could potentially
lead to unnecessary interventions, disrupting normal network operations. Conversely, FN
represents a risk where actual attacks might go undetected, compromising network security.
These aspects highlight the need for a balanced approach, where the model’s sensitivity to
detecting attacks is optimized while minimizing false alarms. Comparing our results with
existing benchmarks, our model demonstrates competitive performance, though future
research should focus on further reducing FP/FN rates through advanced preprocessing
techniques and model refinements. The preprocessing steps, including outlier detection
via DBSCAN and class balancing with DBSCAN and SMOTE, were crucial in shaping the
model’s performance, ensuring that the dataset was well-prepared for training. However,
the study’s reliance on a single dataset derived from controlled penetration testing poses a
limitation, necessitating further validation across diverse network environments.

The LSTM model with DBSCAN and SMOTE, as represented in Table 3, has signifi-
cant improvements in performance with lower validation loss and higher accuracy when
compared to the LSTM model without SMOTE. This shows that the use of SMOTE helps in
improving the model's ability to detect DDoS attacks more accurately.

Table 3. Validation and training results comparison.

Model Validation
Loss Training Loss Validation

Accuracy
Training
Accuracy

LSTM 0.1934 0.1548 97.50% 94.20%
LSTM with DBSCAN and

SMOTE 0.0434 0.0248 99.20% 99.50%

GRU (Gated Recurrent
Unit) 0.0587 0.0483 97.70% 98.60%

SVM (Support Vector
Machine) 0.102 0.0921 96.10% 97.50%

Random Forest 0.098 0.0875 97.81% 98.30%

The results show a comparison of the performance of the LSTM model with and
without the use of DBSCAN and SMOTE techniques. In the LSTM model without DBSCAN
and SMOTE, the validation loss is 0.1934 and the training loss is 0.1548, with a validation
accuracy of 97.50% and a training accuracy of 94.20%. This indicates that the model is quite
effective in learning from the training data, but there is a slight difference between the
training and validation accuracies, which may indicate potential overfitting or challenges in
dealing with imbalanced data. After applying DBSCAN to identify and resolve anomalies
and SMOTE to balance the classes, the model performance improved significantly. The
validation loss dropped to 0.0434 and the training loss to 0.0248, indicating that the model is
more stable and has better generalization capabilities. In addition, the validation accuracy
increased to 99.20%, which is very close to the training accuracy of 99.50%. This improve-
ment shows that the combination of DBSCAN and SMOTE effectively helps the model
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recognize DDoS attack patterns more accurately and reduce the problems of data imbalance
and potential overfitting so that the model is reliable for applications in real scenarios.

To complete the analysis, we added GRU (Gated Recurrent Unit), SVM (Support Vector
Machine), and Random Forest models as comparisons, using the same dataset as the LSTM
and LSTM-DBSCAN-SMOTE models. The results show that GRU has a validation loss of
0.0587 and a validation accuracy of 97.70%, which is slightly better than the standard LSTM
but still below the performance of LSTM-DBSCAN-SMOTE. Non-deep learning models
such as SVM and Random Forest also provide competitive results, with SVM achieving a
validation loss of 0.102 and a validation accuracy of 96.10%, while Random Forest has a
validation loss of 0.098 and a validation accuracy of 97.81%. Although the performance
of these two models is good, they are still inferior to deep learning models, especially in
terms of data imbalance handling. The addition of these comparison models confirms the
effectiveness of the LSTM approach combined with DBSCAN and SMOTE in improving
model accuracy and stability, making it a superior choice for detecting DDoS attacks in
imbalanced datasets.

5. Discussion

In this study, we evaluated the performance of LSTM models for DDoS detection,
comparing a standard LSTM model with an improved model using DBSCAN and SMOTE
to address class imbalance in the dataset. Our findings show significant improvements
in both accuracy metrics and performance measures when DBSCAN and SMOTE are
implemented. Our results align with previous research showing that class imbalance can
affect the performance of machine learning models in cyber security applications, especially
in DDoS detection [51–54]. By implementing DBSCAN and SMOTE, we succeeded in
overcoming this problem, as evidenced by a decrease in validation loss from 0.1934 to
0.0428 and an increase in validation accuracy from 97.50% to 99.50%. This improvement
confirms the effectiveness of DBSCAN and SMOTE in increasing the model’s robustness
against DDoS attacks. The implications of our findings go beyond the immediate scope of
this study. Achieving higher recall and precision in detecting DDoS attacks (98.3% F1-score)
with DBSCAN and SMOTE’s enhanced LSTM model highlights its potential to improve
network security measures. This approach not only strengthens defense mechanisms
against evolving cyber threats but also emphasizes the important role of data preprocessing
techniques in optimizing model performance. Future research directions should explore
additional data augmentation methods to further sharpen the generalization ability of the
model. Further research could investigate the application of ensemble learning techniques
or the integration of real-time network traffic data to improve the adaptability of our
approach in dynamic network environments. Additionally, expanding this research to
cover a wider range of attack scenarios and more diverse datasets would provide deeper
insights into the scalability and robustness of our proposed methodology.

Despite the improvements observed with the implementation of DBSCAN and SMOTE,
the issue of false positives (FP) and false negatives (FN) remains a critical challenge in
DDoS detection systems. Future work could focus on enhancing the precision and recall
further by incorporating advanced techniques such as cost-sensitive learning, which will
assign different weights to FP and FN to minimize their impact on the model’s overall
performance. Additionally, using hybrid models that combine LSTM with other machine
learning algorithms, such as random forests or support vector machines, could help in
reducing FP and FN rates by leveraging the strengths of multiple classifiers. Another
promising direction is to explore the use of real-time anomaly detection systems that dy-
namically adjust to changing traffic patterns, thereby potentially reducing the occurrence
of FP and FN in live network environments. Furthermore, employing cross-validation
techniques across more diverse and real-world datasets could ensure the model’s robust-
ness in detecting a broader range of attack patterns, ultimately minimizing the chances
of FP and FN in varied scenarios. While our study demonstrates the effectiveness of the
proposed model in a controlled environment, we acknowledge that external validation in
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more diverse and real-world settings is necessary to ensure the model’s generalizability.
Future work should focus on testing the model in live network environments to assess its
robustness and adaptability to varying conditions.

6. Conclusions

This study proves that the application of DBSCAN and SMOTE techniques signif-
icantly improves the ability of the LSTM model to detect DDoS attacks. Without using
DBSCAN and SMOTE, the model shows a higher validation loss (0.1934) and lower vali-
dation accuracy (97.50%). In contrast, with the application of DBSCAN and SMOTE, the
validation loss drops drastically to 0.0428 and the validation accuracy increases to 99.50%.
In addition, in the classification evaluation, the use of DBSCAN and SMOTE increases
the precision, recall, and F1-score values for both classes, No DDoS and DDoS. The DDoS
class, which is a minority class, experienced a significant improvement, with the F1-score
increasing from 93.4% without SMOTE to 98.3% after the application of DBSCAN and
SMOTE. These results indicate that combining DBSCAN and SMOTE is an effective strat-
egy to overcome data imbalance in DDoS attack detection. Not only does it improve the
accuracy of the model, but this technique also ensures that the model is more reliable in
detecting DDoS attacks, especially in an imbalanced network environment. Therefore, the
application of DBSCAN and SMOTE is proven to be an effective method to improve the
performance of the model in detecting DDoS attacks.
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