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Abstract: The goal of this paper is to study the uniqueness of solutions of several nonlinear Liouville-
Caputo integro-differential equations with variable coefficients and initial conditions, as well as an
associated coupled system in Banach spaces. The results derived are new and based on Banach’s
contractive principle, the multivariate Mittag—Leffler function and Babenko’s approach. We also
provide a few examples to demonstrate the use of our main theorems by convolutions and the
gamma function.
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1. Introduction

Let T > 0. The space C|0, T] of continuous functions on [0, T|] is given by
C[0,T] = {u(x) ¢ lulle = max |u(x)| < oo}.
x€[0,T]

Clearly, C[0, T] is a Banach space.
We further define the space C"[0,T], forn € N = {1,2,-- -}, of those functions on
[0, T] with up to nth order continuous derivatives by

n

c"0,T] = {u(x) : ddx”u(x) € C[0,T] and |ul|, < oo},

J

forallm = 1,2,---. Furthermore, C"[0, T] is a Banach space using Theorem 7.17 in [1]
stated as follows:

where
d

di’l
%u(x)

ﬁu(x)

PR

C

ull, = max{nu(x)nc,

Obviously,
C"[0,T] c C[0, T]

Theorem 1. If {u, } is a sequence of differentiable functions on [a, b] such that nh_r)r(}o un(x0) exists

(and is finite) for some xy € [a, ], and the sequence {u},} converges uniformly on [a, b], then u,
converges uniformly to a function u on [a,b], and v’ (x) = nlgn ul,(x) for x € [a, b].

In addition, the product space C"[0, T] x C™[0, T| (m € N) is given by
C"0,T) x C"[0,T] = { (u,v) | u € C"[0,T], ve C"[0,T] and ||(u,v)| < oo},

where
[, )| = llull, + o],
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Clearly, C"[0, T] x C™[0, T] is also a Banach space. The fractional integral (or the Riemann—
Liouville) I* of fractional order « € R™ of function u(x) [2,3] is defined by

1

(10) () = 575 /Ox(x — O ()t

In particular,
(I%u) (x) = u(x),
from [2]. Indeed,
(I%u) (x) = 8(x) * u(x) = u(x),

where J(x) is the Dirac delta function (or distribution) given by

for any sufficiently smooth function ¢(x) with a compact support.
Let u(x) and a(x) be in C[0, T]. Then,

(14

1 g o T
W/O (x—t)~! ()dt‘_wll ulle,

I"u||- = max
e = max
Jor*ule = max la(e) pis [ =0 )] < o Fs el
€™ e T@) Jo = T(a+1)"hci®ic
The Liouville-Caputo derivative of fractional order & € R™ of function u(x) is de-

fined as

(D) (x) = "y = L

wheren —1 <a <né€N.
Assume that

u(0) =u'(0) = --- = u""D(0) =0,

then integration by parts infers that

Indd; u(x) = (,qil)!/()x(x—t)“ ul™ (t)dt
= e 0 g [
= - =ux).

Assume that a;(x) and b;(x) are in C[0,T| for all i = 1,2,---,n; € N and
j=1,2,---,np € N. In this paper, we begin to establish a unique and global solution
in the space C"[0, T| using Babenko’s method and the multivariate Mittag-Leffler function
for the following integro-differential equation for f € C[0, T},

(")( x) + ay, (x) CDﬁ"l u(x) + - +ay(x) cDPru(x)+
b1 () 1M (x) 4« - - + by () [*2u(x) = f(x), M
u(0) = u'(0) =+ = ul" 1 (0) =0,



Fractal Fract. 2021, 5, 82

30f18

where 0 < 81 < Bo < -+ < By, <nand 0 < g < ap < -+ < &y,. Then, we further study
the uniqueness of solutions in C"[0, T] for

u™ (x) + a, (x) cDPu(x) + - +ay(x) cDPru(x)+
by (X)) -+« by (1) () = g (x,u(x), 0/ (x), -+, w0 D (x)), @)
u(0) = u/(0) =--- =ul"=1(0) =0,
where g(x,y1,- -+ ,¥») is a mapping from [0, T] x R” to R and satisfies certain condi-
tions. Finally, the sufficient conditions are provided for the uniqueness of solutions in

C"[0,T] x C™|[0, T] to the coupled system

u™ (x) + an, (%) Dﬁ”lu(x)+ +a1( ) D’glu( )+b1( )1"‘114(?6)+

o by (¥) I2(x) = g1 (2, u(x), D(x),0(x), -+ 0" D(x),

0" (x) + e (x )cD”"’lv(X)Jr +61( )cD’“v( ) +di(x )171v(x)+ 3)
g () 1720(x) = g (x,u(x), - D (@), 0(x), -, 0D (x)),

u(0) =u'(0)=---= u( “D(0) =

)
0(0) =/ (0) = - = 00" 1(0) =
where both ¢1(x,y1, -+, Yntm) and g2(x, Y1, -+ , Yn+m) are mappings from [0, T| x R"*™
to R, and all coefficient functions ¢;(x) and d;(x) are in C[0,T]. As far as we know,
Equations (1)-(3) are new and have never been investigated before.

There have been intensive studies on the existence and uniqueness of different
types of integral and fractional differential equations based on fixed point theory [4-9].
Marasi et al. [6] studied the existence and multiplicity of positive solutions for the following
initial value problem using the fixed point index theory:

(cD*)u(x) = f(x,u(x), (cDPu(x)), x € (0,1],
u® ) =n, k=0,1,---,n—1,

wheren —1 < B < a <n € N.J. Deng and Z. Deng [10] considered the existence of the
following initial value problems based on the Schauder fixed point theorem:

(cD")u(x) = f(x (cDP)u(x)), x € (0,1],
u®©0) =, k=0,1,---,m—1,

wherem—1<a<meN,n—1<p<neN(@m—1>n)and f € C([0,1] x R) satisfies
certain conditions.

The Hadamard derivative of fractional order & of a function u : [1,00) — R is
defined as
1 d\" rx x\n—e—1u(s)
19 — _ — — 7 — =
Du(x)_F(n—oc)<xdx> /1(logs) s ds, n—1<a<mn, n=|a]+1,

where [a] denotes the integer part of the real number « and log(-) = log, ().

Ahmad and Ntouyas [11] studied the existence and uniqueness of solutions to the
following initial value problem of Hadamard sequential fractional order neutral functional
differential equations using fixed point theory

D“[Dﬁu(x) —g(x,ux)] = f(x,uy), xe]=][10b],

u(x) =¢(x), xel[l-r1j,
DPu(l) =y €R,



Fractal Fract. 2021, 5, 82

40f18

where0 <&, <1, f,g: ] xC([-r,0],R) — Rare given functionsand ¢ € C([1 —r,1],R).
For any function u defined on [1 —r,b] and x € [1,b], we denote u, as the element of
C([-r,0],R) defined by

uy(0) =u(x+80), 6¢el-r0].

Let AC[a, b] denote the set of all absolutely continuous functions on [4, b]. The Banach
space ACy[a, b] is defined as

ACyla,b] = { u:u(x) € ACla,b]withu(a) = 0and |jul|, = /b [u'(x)]dx < oo}.

The fractional version of the Hadamard-type integral and derivative is given by

N 1 x/e\ x\a-1  dt
( a_,_,ﬂu)(x)—m/u <x) (10g?> u(t)T IX>O, O<ﬂ<x<b,

and

d [IX]-‘rl
D) =5 (v2 ) TS W)

LetO <y < < - <ap<land0< By <+ < Bm € Rwheren =0,1,---
and m > n. Very recently, Li [4] considered the uniqueness of solutions for the following
nonlinear Hadamard-type integro-differential equation with constant coefficients for all
i € R, in the space ACy[a, b]:

Xn X0

Dpt, ytt +ay 1D,y u+ - +aDy u+ bn+1%5ﬁf;u e b T 7
X

= [ f (),
a

according to Banach’s contractive principle and Babenko’s approach [12]. Babenko’s
approach is a very useful method in solving differential and integral equations by treating
integral operators as variables and derives convergent infinite series as solutions in spaces
under consideration. Li also investigated Abel’s integral equations of the first [13] and
second kind with variable coefficients in distribution by Babenko’s technique [14,15].

The following multivariate Mittag-Leffler function was introduced by Hadid and
Luchko [16,17] for solving linear fractional differential equations with constant coefficients
by the operational calculus:

Zl{] .. 'Z,’VC?;”

d k
E Z , .. ,Z — ,
(lxl’ /“m)/ﬁ( ! m) ]cg()k1+...+kn1:k (kl/' te /km) 1-|(£V1k1 +---+ “mkm + ,B)

where a;, f >0fori=1,2,--- ,m.

2. The Main Results

In this section, we begin to construct a unique and global solution to Equation (1) in
space C"[0, T] using Babenko’s method and the multivariate Mittag—Leffler function.

Theorem 2. Assume that a;(x) and bj(x) are continuous functions on [0,T] for all
i=12---,n € Nandj = 1,2,--- ,np € Nyand 0 < B1 < B < --- < By, < 1
and 0 < aq < &y < -+ - < &y,. Then, Equation (1) has a unique, convergent, and global solution
in C"[0, T] for f € C[0, T].

ux) = 1"y (~1)F k

k=0 ky+ky 4+ Akny +ny =k (kl' S

(a3 (x) T P16 (B () 90 ) oy () T2 ) 1002 (),

) (o) e
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Proof. Equation (1) turns out to be

u(x) + I"ay, (x) cDPmu(x) + - -+ IMag(x) cDPru(x) +
I"by () I u(x) 4 - - 4+ I"by, (x) [*2u(x) = I" f(x),

by applying the operator I" to both sides of Equation (1) and using initial conditions

u(0) =u'(0) = - =u""D(0) = 0.

Hence,
(14 "aw, (x) cDP1 + -+ IMay(x) cDP +
I"by (x) 1% 4 - 4 by, () 12 )u(x) = I" f(x).

According to Babenko’s approach,

u(x) =
-1
(1 + I"ay, (x) cDPM 4+ + "ay (x) cDP 4 1By (x) 1% 4+ + I”bnz(x)l“@)
I”f( )
k

- Z (1 ap, (x) cDPm -« 4 "ay (x) cDPY +---+I”bn2(x)l“"z) I"f(x)

- k " B \K
- L )3 ki ky, -k (I"an, (x) cDPr1)™

k=0 k1+k2+ +kn1+n =k 182, s Bny4ny

(I"ay (x) cDPUYFm (1by () I%0) 11 (17, () [02 Y2 [ £ ().

Clearly,
(I"byy () 172172 1 £ (x) = (1" () 172) - -+ ("B, () 1*72) I ()
—m (bn2 (x)lwn2+n)knl+n2f(x).

Therefore,
ad k
—1)k ( >1" ay, (x) [Pk
k;( ) k1+k2+ ;kn1+112_k kl’kz’ T ’k”1+n2 ( nl( ) )
(ay () "=Pr)fm (b () 1) oty () 1Pt o102 £ (), 4)

Since 4;(x) and b;(x) are continuous functions on [0, T] for alli = 1,2,--- ,n; € N

andj=1,2,--- ,np € N, there exist A; > 0 and B]- > 0 such that

max |a;(x)] < A;,  max |bj(x)| < B}
x€[0,T] x€[0,T]
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Thus,

> k
kl knl kn1+1 kn1+n2
n@le < Y% (k L )Anl...Al B g
k:0k1+k2+---+knl+n2:k 1,482, rAni+4ny
[ (=P )by (1= Pr) kg g (1 ) ek g (nan) | g
c C
> k
k kny ~kni+1 kg 4n
< Al... AT T L B T2
Z (kll k2/ /kl’l1+}’l2> m 1 1 =

k=0 k1+k2+"'+kn1+;12 =k
T”+k1(”—ﬁn1 )+ tkng (n—B1)+ - +kng 4y (ntany ) ” H
flle

F(n+1 +k1(7’l —,Bn1> + - +kn1(n _,Bl) T +kn1+nz<n+a"2))
TnE(Tl*ﬁﬂl'”',n*FﬂCﬂz)/ n+1 (Tniﬁnl Anl, T Tn+aﬂz an) ||fHC <

This implies that the series on the right-hand side of Equation (4) is uniformly conver-

gent on [0, T] with respect to x and
u(x) = 1"y (-1

k=0 k1+k2+~--+kn1+n2=k (
(ar (x) Py (b () 1o+ ) oo

k
a x In_ﬁnl kl e
kl/ kZ/ T /k}’ll-H’lz) ( ”1( ) )

(b () T2 1) o172 £ (),

which is well defined over [0, T]. Clearly,

u(0) = u'(0) =--- =u"1D(0) =0,

due to the integral operator I".
It remains to show that u(x) € C"[0, T|] and is a unique solution. Obviously,

k
a X Iniﬂiﬁ kl e
kl/kZI"' /kn1+n2) ( ”1( ) )

(bn2 (X)I“"2+n)kn1+n2f(x),

o)

u'(x) = I"flz(—l)k

k=0 k1 kot kg oy =k <

(a1 (x) 1" F1)f (by () 1oty ot

and
||MI(X) HC S TnilE(Vl—,Bnl,u.,n-&-anz)/ n (Tniﬁnl An]/ Tty Tn+an2 B”z) ||fHC < .
Similarly,

e

So u(x) € C"[0, T]. To see u(x) is a solution to Equation (1), we have

) (o) e

HC S E(i’l—/gny' ,n+0¢n2)f 1 (Tniﬁ”l An], T TnJﬂan an) Hf”C <

[e9) k
u X
k=0 ki+ka kg oy =k ki ko, kny

(a1(x) I"—ﬁl)km (by (x)]vc1+n)kn1+1 - (bn, (x)lan2+n)kn1+n2f(x)

[c9) k _
= f()+ Y (-1} (k ok )(amm by
k=1 ket py =k N7 R

(a1(x) 1n7ﬁ1)kn1 (bl (x)lvc1+n)kn1+1 L (bnz (x)l‘x”2+")k"1+"2f(x)
=f)+X
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where
Y- (1 on ) ) 1P
k=1 kit +kny 0y =k ’ 7By +ny
(a7 (x) Infﬁl)kn] (bl(x)lﬂc1+n)knl+l . (bnz(x)Ian2+n)kn1+n2f(x)‘
On the other hand,
Y = ay(x) cDPriu(x) + -4 ay(x) cDPru(x) 4+ by (x) 11 u(x) + - - -+ by (x) "2 1(x)
% K )
- k—ZO(_l)kkl-&-kz-i—..;knlJrnz—k (klsz,- = ,kn1+n2> (a, (3) 1"
(a1(x) In—ﬁl)knl (bl(x)1a1+n)kn1+1 . (bnz(x)1a112+n)k;11+n2f(x) +
> (1) (o S ) oG i
k=0 kg -tk kg 1y =k N1 827 kny
(a1(x) [”*ﬁl)knﬁl (bl(x)lﬂé1+1’l) n+l (bnz(x)1a112+1’l)k711+n2f( )+
i(_l)k (k ko - - ) any () I ﬁnl)
k=0 kot thng ny =k N1 020 Ky 41
(ay (x) "By (by (x) 9ty ot T, ()1t e £ ()
o 2 B
zg(_l)kkﬁkﬁ»-;cmnzk kl,kz,-~-,kn1+n2> (@, () 1P
(a1 (x) I"=P1ykm (b1 ( Iuc1+n) mH L by, )Ian2+n)kn1+n2+1f(x)‘
This implies that

due to the sign change and the fact that all series above are absolutely convergent.

X+Y=0,

To illustrate more in detail, we can easily deduce that

) (o) P

( 1
kit +kng 4, =1 ki, - ’knl‘H‘Z

(ay (x) I Fryomn (by () P9 ) St (b (o) o2 1) O £ ()

0 —Buy yh1 41
(s ) () PPt
k1+k2+"'+knl+n2:0 1,282, s gty

(a1 (x) L")t (by () 197) 1 (b () ) P72 £ ()

0 _
(b ) 0 1P
k1+k2+"'+knl+n2:0 1,182, r fnqg4ny

(‘11 (x) Infﬁl)kn1+1 (bl(x)1a1+n)kn1+l L (an (x)lacnz-i-n)knﬁnzf(x) +
0 ) (an, (x) 1" Pr )l

k] +k2+"'+kn] +”2:0 (kl/ k2, “ e ,ki’l1+112
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(ag(x) T Pryfn (b ()10 S L (b () T YRz £ ()

L ) () P

k1+k2+"'+knl+n2:0 <k1’ kz’ T ’kn1+7”2

(a1 (x) "1t (by ()97 0L (b () 1) L £ ()
=0.

The pattern follows similarly for other values of k. The uniqueness can be derived
from the fact that the integro-differential equation

ul™ (x) + an, (x) cDPu(x) + - - +ay(x) cDPru(x) +
by (x) I u(x) + - - - + by, (x) [*2u(x) =0,
has only the zero solution by Babenko’s method. This completes the proof of Theorem 2. [

Remark 1. (i) If all coefficient functions a;(x) = b;(x) = 0 over [0, T|, then Equation (1) becomes

with the solution
n—1

u(x) = I'fx) = gy ) Ge= 0 A

(ii) If all coefficient functions a;(x) = bj(x) = 1 over [0, T|, then Equation (1) has the solution for
fecClo,T]:

k
) = ryeyt o r | )
k=0 kq +k2++knl . —k kl,kz/ s, kﬂ] +ry

Ikl (nfﬂnl )+"'+k"1+l’lz (”+“n2)f(x)

in C"[0, T).
(iii) If all coefficient functions bj(x) = 0 on [0, T|], then Equation (1) turns out to be the
fractional differential equation with the following initial conditions:

u™ (x) + ap, (x) cDPru(x) + - - - + a1 (x) cDPru(x) = f(x),
u(0) =u'(0) = --- = u"V(0) = 0.

The solution is given as

k ”*57: kq
kl,k2,...,kn1> (an, (x) T7F)

k=0 k1+k2+”'+kn1 =k (
(ax(x) I"=P1)"m £ (x).
(iv) If all coefficient functions a;(x) = 0 on [0, T|, then Equation (1) turns out to be the
integro-differential equation with the following initial conditions:
™ (x) + by () I u(x) + - - + by (x) *2u(x) = f(x),
u(0) =u'(0) =--- =u""V(0) =0.



Fractal Fract. 2021, 5, 82

90f18

The solution is given as

[e9)

k
u(x) = 1"y (-1F (
k=0 k1+k2+~~‘+kn2:k k11k2/ A ,kn2

(b () 192772 £ ().

Let & € R. Define

& = x* ifx >0,
+ 0 otherwise,
and .
X%~
_ X
P = 7y

Then, it follows that ®(x) = &(x) (the Dirac delta function) and
Dy + P = Dyyp,
forwa, pc R[18].
Example 1. The following integro-differential equation

' (x) + x%5 cD%u(x) + 1%u(x) = x,
u(0) =0
has a unique and global solution in C'[0, T]
k

d k
u(x)= Y (“1F Y ( ].)cj,k%j“.s(k_ﬁ,
k=0

j=0
where the coefficient C; ;. is given below.

Proof. Based on Theorem 2,

w0 = 15 (-1 Y () (oso2y st .

Obviously from Equation (5),

. X
11-5(k ]) X = ch.S(k—j) * @ = q)1.5(k—j) * ¢2 = q)2+1.5(k_]')/

0 ‘ .
(xo.510.5) TL5(=))  — 15(k=j) 5 — @, 15 i)

(2+15(k—))

l .
(xo 570 5) ! 5(k—j) x = xY 5¢2,5+1.5(k*j) =

I(3+15(k—j))

= 25+ 150k = j)) Ta+15(—i)

2 o rG+15k—j
(xo.slo.s) JL5(k=j) o — ( ( ]))) (X0'510'5)¢3+1.5(k,]‘)

- T(25+15(k—))
_ TB+15(k—1) osq |
r25+15(k—j)) 3.5+1.5(k—j)

r(25+15(k—j))

©)
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_ T@+15(k—/)I(4+15(k—j)) ® ‘
T(25+15(k—j)T(35+15(k—j)) 15k

T

(x0.510.5)j11.5(k—j) X

_ T@+1415(k=j) - TQ+j+15(k—j) o |
r(15+14+15k—j))---T(15+j+1.5k—j)) 2+j+1.5(k—j)

= CikPotjr15(k—j),

j
I(x0.510.5) 11-5(k*]) X = C’,kq)3+]‘+1.5(k_j)r

where

1 if j =0,
Cix=q T@+1+15(k=j) - T@+j+15(=1) ) iy
TA5+1+15(k—)) - T(15+]+15(k=)))

This completes the proof of Example 1. [

Using Banach’s contractive principle, we are now ready to show the uniqueness of
solutions to Equation (2) in space C"[0, T].

Theorem 3. Assume that a;(x) and bj(x) are continuous functions on [0,T] for all
i=12---,nm € Nandj = 1,2,--- ,np € N,and 0 < B; < o < --- < By, < 1
and 0 < a0y < ap < --+ < &p,. Furthermore, suppose g(x,y1,--- ,yn) € C([0, T] x R") and
that there exist constants Cy,- - - ,Cy, such that

g, y1, - yn) —g(x, 21, -+ ,zn)| < Crlyr — 21|+ + Culyn — znl,

and
g = nmax{Cy,---,Cp}-
max{T”E(n_ﬁnl,,,,,nﬂnz), et (T”fﬁ”l Apy, -, THm an),' y
E(n—ﬁnl,---,n-‘rﬂénz)f 1 (Tniﬁn] Anyreeey T an)} <L
where

max |a;(x)] < A;, max |bi(x)| < B..
max ()] < A, max Jh(x)] < B,

Then Equation (2) has a unique solution in C"[0, T|.

Proof. Clearly, g(x,u,---,u""Y) € C[0,T] for u € C"[0,T]. Define a mapping on
C"[0,T] as

T(u) = I"Y (-1)f ) (ap, (x) " Prylr ..

( k
k=0 ke a4y =k ki ko, Ky

(a1 (x) "8 (by () 1F7) 10 (b, () 12 ) 2 g (),
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It follows from the proof of Theorem 2 that

IT(u)|c < T”Eﬁkj%yuvn+MQ)n+l(jﬂ—ﬁmJAnw...,Im+wn23”2).

ot <o

—T(u)

c S E(n—‘Bnll...,n_;'_(xnz)’ 1 (Tn*ﬁnl Anll cee, Ti’l-i-ananz) .

Hg(x,u,- . ,u(”*l))HC < 0.

This infers that T is a mapping from C"[0, T] to itself. It remains to prove that T is
contractive. Indeed,

Hg(x,u,. ) /U(nfl))Hc

= max [g(x,u(x), -, u"(x)) —g(x,0(x),- -, 0"V (x))]
x€[0,T]
< Cillu—ollc +++ + Cal[u D (x) — o ()

<nmax{Cy,Cy, -+, Cu}||u —0l,,

C

and

|Tu — To||c < nmax{Cy,Cp,---,Cy}
THE(”—ﬁnl,m,n—&-anz), n+1 (Tniﬁnl Anlr' oy T an) ||u - U”n,

7

HT(”)u - T(”)UHC < nmax{Cy,Cy, -+ ,Cn}
E(n—ﬁnlf“/”'f“"nz)r 1 (Tniﬁnl An1r Tt Tn+an2 Bﬂz) Hu - Z)”n'
Hence,

mu—Twn:mu{mu—Twou,

Ty, — T(W)UH }
C
<nmax{Cy,---,Cp} max{TﬂE(ﬂ*ﬁnl,---,n+an2), i (Ti’l*,snl Ang, -, T2 an)’
e ,E(n,/gn],,..,nJra”z)/ 1 (T”—/Srq A”l’ e ,Tn+tXn2 an)}Hu _ UHn
=qlu -,

where g < 1. This completes the proof of Theorem 3. [

Remark 2. If all coefficient functions a;(x) = b;(x) = 0 over [0, T], then Equation (2) becomes
the integral equation

W) = gy o (=gl ()

Example 2. The following integro-differential equation with initial conditions:

Tu(x) 1

2) 2 08 _ 0.5 — —
u'® (x) +sinx”? ¢D*%u(x) — Vx I u(x)+x2+1 42((u’)2(x)+1)+43

cosu(x),
u(0) =u'(0) =0,

has a unique solution in C2[0, 1].
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Proof. Clearly,

1 1
g(x, y1,y2) = 742(% ) + 13 OV,

and . .
180 y1,y2) = 8(x 21, 2)| < Zly1 — 21| + 5 ly2 — 22

Thus,
l 1

1
max{Cy, Co} = max{43,4z} = —.

Obviously,

max |sinx?| <1, max | —+/x| <1, max
x€[0,1] xe[0,1] xe[0,1]

<1
x2+1‘ -

Therefore,

1
9 = 2 ﬁmaX{E(1.2,2.5,3),3(1f L1),En2253)2(L1,1), Eq2253)1(1, 1,1)}
1
- ﬁE(1.2,2.5,3),1(1,1,1),
since
E(1.2,2.5,3),3(1, 1, 1) < E(1~2/2‘5,3),2(1/ 1,1) < E(1‘2’2.5’3)/1(1,1,1).

Furthermore,

& k 1
Eq2253)1(L1,1) = ( ) :
(12253)1 k_;)kl +k22+k3:k ki, ko, ks ) T(1.2ky + 2.5k, + 3k3 + 1)

X ( - >=3’<
kit kyTkak K1/ K2, K3

1 < 1 ’
[(1.2k; +2.5ky +3ks +1) — T'(k+1)

k=01,

by noting that I'(x + 1) is an increasing function if x > 1 [19].

It follows that
E(2253),1 (11 1)<k;)k! _1+k21H
1+§+3'3+3.3.3+3.3.3.3+3.3.3.3'3+3 3-3-3-3 3+
1 12 1-2.3 1-2-3-4 1-2-3-4.5 1-2-3-4-5-6
3-3-3-3-3- 3~3+3-3-3~3-3~3~3~3+
1-2-3-4-5-6-7 1-2-3-4.5-6-7-8
1 1 1 1
1+3+45+45+3375+2.025+(80—1—1>+2+22+23+
= 20.4125.
This implies that
<20.4125<1
21 '

This completes the proof of Example 2. O

Finally, we provide sufficient conditions for the uniqueness of system (3) in the product
space C"[0, T] x C™|0, T].
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Theorem 4. Assume that all coefficient functions a;(x), b;(x), c;, (x) and d;, (x) in system (3)
are continuous functions on [0, T| foralli = 1,2,--- ,ny € N, j =1,2,--- ,np € N, i] =
1,2,---,my € Nand j; = 1,2,--- ,mp € N. Furthermore, 0 < B1 < B < --- < By, < 1,
O<ag <ap < <y, 0 g <pp<ooo <y <mand0 < yp <92 <+ < Ymy. In
addition, suppose g1(x, Y1, ,Yntm), $2(X, Y1, ,Yn+m) € C([0, T] x R"™ ™) and that there
exist constants Kq, - - - , Ky such that

181y, Ynim) — 81(x, 21, Znam)| < K|y — z1] + -+ +
Kn+m|yn+m _Zn+m|/
18206,y1, 7 Yntm) — §2(X, 21, Zntm)| < Kilyr —z1| + - +
Kn+m|yn+m _Zn+m|,

and
Q = (n+m)max{Ky, -, Kyim} -
max{T"E(y_p, - ntan,), it (Tﬂ*ﬁnl Apy,- -, T an), .
E (o o -ttng) 1 (T"—ﬁnl Any, -, T an),
TmE(mfyml,--»,m+7mz),m+1(Tm_ym1 Coy, - ST Tmy sz),. .
E (o, vy ), 1 (T" #mCpy, -, T" 7Dy, )} < 1,
where

max |a;(x)| < A;, max |bi(x)] < B;

x€[0,T) xejo1] =
max ¢ (x)| < C;;, max |d; (x)| <D;.
max e (9] <G, max |4 ()] <D,

Then, system (3) has a unique solution in C"[0, T] x C™|0, T].

Proof. Clearly,

g1(xu(x), - u" D (x),0(x),-- 0" (x)) € Clo, T],
@ (x,u(x),- o um D (), v(x), - - ,v<'"*1>(x)) e Clo, T],
for (1,0) € C"[0, T] x C™[0, T]. Define a mapping T on C*[0, T] x C"[0, T] as
T(u,v) = (Ty(u,0), To(u,v)),

where

[e9)

Ti(wo) = ") (-1}

( k
k=0 kytko+-e+kny 4ny =k ki ko, oo kng

(ﬂl (x I"—ﬁl)knl (bl (X)I“1+n)kn1+l . (bn2 (x)Ian2+n)kn1+n2

g1 (x,u, - ,u(”_l),v, . ’U(m—l)).

) (o) e
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Clearly,

||T1 (M, U) ||C < TnE(nf‘Bnl,“-,n%»anz), _ (T'rl—/gnl A"l’ cee, Tnthxrrz an) .

Hgl(x’u, e ,u(nil)lv’ P /U(H’I71)) c < oo,
H T1 u, U S E(”—ﬁnl"",n-l‘ﬂcnz), 1 (T”*Ignl Anl, B ,Tn+an2 an) .
Hgl(xlu, . ,u(nil),'(]’ . /’U(mfl))HC < 0.
Hence,
Ti(u,v) € C"[0, T].

Similarly,

(o]
k
TZ(”/ U) - Im Z(— (
k=0 ey ot Kimy +my =k Ky k- kg my

€)1 0 I () L2 )
Z)(m—l) )

) Cem(a) 17

gz(x u, u(n_l),v,...

4

Clearly,

||T2(Ll, 'U) ||C S TmE(m*I‘*m1""fm+')’m2), m—+1 (Tmiﬂml ler Tty TWH—%"Z sz) ’

oo e <o

m— R KLt .
< E(mfum1,~--,m+7m2),1(T M Cpyyy -+, T2 Dy, )

I

Hence,
Tr(u,v) € C™[0,T],

and T is a mapping from C"[0, T| x C™|0, T] to itself. We need to show that T is contractive.

In fact,
Hgl (xr Uy, - /u‘inil)/vl/ e /vgmil)) - gl(x/ U, rugnil)rDZI e rvémil)) HC
n—1 m—1
= max [g1 (i ()" ), o1 (), 0" )
—g1(xua(x), - uS TV (x),02(x), o ()]
s1<1||u1fuznc+~-~+1<n+mHv§’"*”<x>fvé’" ”(x)HC
< (n+m)max{Ky, Ko, - -+, Knsm } | (u1,01) — (2, 02)],
by noting that
[ (u1,01) = (u2,02) || = || (41 — ug, 01 —v2)|| = |Jug — uall, + [lo1 — v2l],,s

||u1 —u||c < g —uz|l, < |[(u1,01) — (u2,02)|,

H v —oy" V@) < llor = val, < N1, 01) = (2, 02)].
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Furthermore,
Ty (141, 01) — Ty (2, 02) || < (1 + m) max{Ky, K, - -, Ktm}
-T”E(”_:Bﬂl"" '”+l"n2), n+1 (Tniﬁnl A”l1/ oty Ty an)
Nl (w1, 01) = (u2,02)|,

HTl(n)(ul,Z)l) — Tl(")(uQ,vz)HC < (1’1 +m) max{Kl,Kz,- . /Kn+m}

'E(W—ﬁnlw,n—l-anz), 1 (Tn*ﬁnl Anl, cee, Tn+ocn2 an)

|[(u1,01) — (u2,02) |-
This deduces that

||T1(M1, vl) - Tl(”Z/ vz)”n S (n + m) maX{Kll KZ/ e ,Kn+m} :

max{T”E(H,ﬁ”],“,,,H%Z), n+1 (T”l—ﬁnl Anlr Tty Tn+an2 an)l Tty

E(H—ﬁnlw“,”-‘rﬂénz), 1 (T"*ﬁnl An1/ v, T+ ny an) }

Nl (ug,01) — (u2,02)]|-

Similarly,

T2 (u1,01) — To(uz,02)|,, < (n+m)max{Ky, Ky, -, Kysm} -
max{TmE(m,Hml,... A+ Yy ), m+-1 (Tm_yml Gy T+ m DmZ)/

m—u m-+
. ’E(m*}’ml,'“,er’sz), 1 (T Hmy le, -, T Yy sz)} .

(| (u1,01) — (u2,02)]-

In summary,

| T(u1,01) — T(uz,v2)|| = [(Tru1, Tav1) — (Tyug, Tova|

= |Tyuy — Thuz |, + | T2v1 — To02],,

< (n+m)max{Ky, Ky, -+, Kpsm} -

maX{TnE(H—,Bnlf"‘,n-‘rolnz), n+1 (T"TBn] Anlr Tty TH-HX"Z B”Z)" Tty

E(n*ﬁm"",nﬂxnz)r 1 (Tn_ﬁnl Anyroe s "o an)’

TmE(m*Hmlw- MYy ), m+1 (Tmiyml Conyrooo s T sz)'

m— m+y
. /E(mf}lml,'“,m+’)/m2),1(T Hmlcmlz" . /T szmz)}

[(u1,01) = (u,02)[| = Q|| (u1,v1) — (u2,02)|,

where

Q = (n+m)max{Ky, Ky, -, Kytm} -

max{T”E(ﬂ*ﬁnlw-,n+o<n2), ntl (T”_ﬂ”l Apy, -+, THm Bn2>, AR

E(n*ﬁny'”,n%:mz)/ 1 (Tn_ﬁnl Anyyoe s T e B"Z)’

m m— . m-+y
T E(m*P’ml/'“,er’sz)/m+1(T fm lef T "2 sz)’

—Hm +rm
: ’E(m*]'lmlr"'rm+7mz)/1(Tm I 1ler' .. ’Tm v Zsz)} < 1

This completes the proof of Theorem 4. []
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Remark 3. If all coefficient functions a;(x) = bj(x) = c¢; (x) = d; (x) = 0 in system (3), then it
is equivalent to

() = oy [ = 0" (), Y ()0, o D )i

0(x) = Gy [, (= 0" alo (), w0 ), ()07 ()

Example 3. The following integro-differential system with initial conditions

1%u(x) = 1 sino(x),

u® (x) + x ¢D%u(x) — =

x+1
u(0) =u'(0) =0,
00 (x) = é cosu(x),
v(0) = 9'(0) =2"(0) =0

has a unique nonzero solution in C2[0,1] x C3[0,1].

Proof. Clearly,

1 !
g1(x, Y1, ,y5) = 57 Sinys, Xy, ys) = 1 oS

and
1
810y, ys) —g1(x 2, 25) < = lys — 28,
1
Ig2(x,y1, -+ ,y5) — g1(x,21,- -+ ,25)] < El]ﬂ —z1].
Thus,
(n+m)max{Ky,Kz, -+ ,Kytm} = (24 3) max 1 11_5
1,482, rAnt+my — 42, 51 = 42
Obviously,

max |x| <1, max|— <1.
x€[0,1] xefo1]] x+1

Using Theorem 4, we derive that

5
Q = ) max{E(555)3(1,1), E1525)2(1,1), Eqsp5)1(11),
1 1 1 1 5
1"(3 + 1) 4 r(z + 1)/ F(l + 1)/ f(l) } = EE(1.5,2.5),1 (1/ 1)/

by noting that
ciy(x) =dj(x)=0
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over [0, 1]. Furthermore,

i k ) 1
E 1,1) =
(1525)1(1,1) k; " ;Fk (kl,kz T(1.5k; + 2.5k, +1)
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Therefore,
5 25 125

< .22
Q_42 3126 ° L
and (u,v) = 01is clearly not a solution. This completes the proof of Example 3. [

3. Conclusions

Using Banach’s contractive principle, the multivariate Mittag—Leffler function and
Babenko’s approach, we studied the uniqueness of solutions of several nonlinear Liouville-
Caputo integro-differential equations with variable coefficients and initial conditions, as
well as the associated coupled system in Banach spaces. The results obtained are new and
original. We also presented three examples to demonstrate the use of our main theorems.
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