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Abstract: In this paper, we propose some generalized integral inequalities of the Raina type depicting
the Mittag—Leffler function. We introduce and explore the idea of generalized s-type convex function
of Raina type. Based on this, we discuss its algebraic properties and establish the novel version of
Hermite-Hadamard inequality. Furthermore, to improve our results, we explore two new equalities,
and employing these we present some refinements of the Hermite-Hadamard-type inequality. A
few remarkable cases are discussed, which can be seen as valuable applications. Applications of
some of our presented results to special means are given as well. An endeavor is made to introduce
an almost thorough rundown of references concerning the Mittag—Leffler functions and the Raina
functions to make the readers acquainted with the current pattern of emerging research in various
fields including Mittag—Leffler and Raina type functions. Results established in this paper can be
viewed as a significant improvement of previously known results.
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1. Introduction

The Hermite-Hadamard inequality, which is the primary consequence of convex
functions having a beautiful geometrical understanding and broad use, has stood out
with incredible interest in fundamental mathematics. Numerous mathematicians have
given their endeavors to normalization, refining, impersonation, and extension of the
Hermite-Hadamard inequality using different types of novel convexities.

The theory of convexity is an incredible and viable methodology for contemplating the
huge greatness of issues that emerges in different fields of pure and applied sciences. Many
new structures have been presented and researched concerning convex sets and convex
mappings. A few scientists have inferred new variations related with convex mappings,
see references [1-5]. Integral inequalities on the Raina function have additionally been a
subject of discussion for a significant length of time. Because of their possibilities to be
extended, a few variations have been set up by many mathematicians, see references [6,7].

The theory of convex mappings has a wide scope of possible applications in many
interesting and captivating fields of exploration. Moreover, this theory likewise assumes
an eminent part in different areas, such as information theory, coding theory, engineering,
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optimization, and inequality theory. Guessab et al. [8-10] worked on the error estimations
and multivariate approximation theory. Presently, this hypothesis has an amazing com-
mitment to the expansions and enhancements of various areas of numerical and applied
sciences. Many mathematicians inspected, celebrated, and played out their work on the
thoughts of convexity and expanded its various forms in helpful manners utilizing produc-
tive techniques and imaginative thought. For some of the recent considerations, we refer to
the references [11-14].

2. Preliminaries

In this section we recall some known concepts.
Definition 1 ([5]). Let F : I — R be a real valued function. A function F is said to be convex, if
F(bp1 + (1— 0)p2) < (F(p1) + (1 OF (2), M
holds for all 1, pp € Tand ¢ € [0,1].

The most important inequality concerning convex functions is the Hermite-Hadamard
inequality given as:

Theorem 1. IfF : [p1, p2] — Ris a convex function, then

F<p1 er pz) =0 - ©1 /; P < HL ; e @

The double inequality (2) holds in reverse direction if F is a concave function on
[01, 2] and the constant J is sharp and cannot be replaced by a similar constant. Since
then, various papers with new proof, various speculations, and advancements have been
proposed in the literature. This type of inequality has remained an area of great interest
due to its widespread view and applications in the field of mathematical analysis.
In 2005, Raina [15] introduced a class of functions defined formally by

—+00
ooy 70(0),0() ok)
For(z) = F, ) (z) = kgoif(pk L ®)

where o = (0(0),...,0(k),...) and p,A > 0,|z| < R. The above class of function is the
generalization of classical Mittag-Leffler function and the Kummer function.

Ifp=1,A=0and (k) = % fork=0,1,2,..., where a, § and <y are parameters
which can take arbitrary real or complex values (provided that vy # 0, —1,—2,...), and the
symbol a; denotes the quantity

I'(a+k)

(zx)k:w:tx(a+1)...(¢x+k—1), k=0,1,2,...,

and restricts its domain to |z| < 1 (with z € C), then we have the classical hypergeometric
function, that is

iy v (@) Bk k
]-"(tx,,B,'y,z)—k:ZO K7 Z,

Moreover, if 0 = (1,1,...) with p = «, (Re(a) > 0),A = 1, then
( +o00 Zk
E,(z) = _—.
«(2) k;) T'(1+ ak)

The above exact function, which intermittently appears in the investigation of frac-
tional integrals and derivatives is called a classical Mittag—Leffler function, and was first
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considered by Magnus Gustaf (Gosta) Mittag—Leffler (1846-1927) in 1903 and Anders
Wiman (1865-1959) in 1905.

From that point forward, the Mittag-Leffler function has been broadened and explored
in numerous elective ways and settings. Mittag—Leffler type functions with all of their
applications have reached out in different investigations like those in science, physics,
engineering, statistics, and mathematics.

The Mittag-Leffler function emerges normally in the arrangement of fractional order
integral equations and particularly in the investigations of the fractional speculation of
the kinetic equation, random walks, Lévy flights, superdiffusive transport, and in the
investigations of complex frameworks. In numerous new research articles, the interest
in the group of Mittag-Leffler type functions has become impressive due primarily to
their potential for applications in reaction—diffusion and other applied issues and their
different speculations show up in the arrangements of fractional order differential and
integral equations, see the references [16-18].

Cortez established the new class of set and function involving Raina’s function in [6,7],
which is said to be generalized convex set and convex function.

Definition 2 ([7]). Let 0 = (0(0),...,0(k),...) and p,A > 0. A set X # @ is said to be

generalized convex, if
P2+ L Fa(p1—2) € X, 4)

forall pq, ¢, € Xand £ € [0,1].
Definition 3 ([7]). Let o denote a bounded sequence then o = (¢(0),...,0(k),...) and p,A > 0.
If F : X — R satisfies the following inequality

F(p2+ € Foplpn — 92)) < EF(n) + (1= OF(2), 5)

forall o1, pp € X, where 1 < o and ¢ € [0,1], then F is called generalized convex function.
Remark 1. We have ]:;;T,A<@1 — 2) = 1 — 2 > 0, and so we obtain Definition 1.

Condition 1. Let X C R be an open generalized convex subset with respect to F7, (+). For any
01,92 € Xand £ € [0,1],

fﬁ,A(@z — (2 + € Fg (o1 — @2))) = Falor— o),

oA (@1 - (502 + L Fp (o1 — @2))) = (1=0) Fyalp1 — p2).
Note that, for every o1, o2 € X and for all {1, l, € [0,1] from Condition 1, we have

f,‘yf,A(@z + 0 Fy (o1 = 2) = (92 + b Fy p (91 — @2))) = (L2 = t1) F7 (o1 — 92). (6)

Definition 4 ([19]). A nonnegative function F : X — R is called s-type convex function if for
every o1, 2 € X,s € [0,1] and £ € [0,1], if

F(lpr + (1= £)p2) < [1 = (s(1 = £))]F(p1) + [1 = s€]F(p2)- @)
Definition 5 ([20]). Two functions F and G are said to be similarly ordered, if

(F(p1) — F(92))(G(p1) — G(g2)) =0, V1,2 € R.
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Theorem 2 (Ho6lder-Iscan inequality [21]). Let p > 1 and % + % = 1. If F and G are real
functions defined on interval 1, 2] and if |F|P,|G|7 are integrable functions on [¢1, (2], then

[ Fes < { ( [ on- x>|F<x>|de) : ( [ x)|c(x>|qu)3’

([ m>|F<x>|de)’l’(/pfz<x mc(x)wax);}.

Theorem 3 (Improved power-mean integral inequality [22]). Let g > 1. If F and G are real
functions defined on interval (o1, 2] and if |F|, |G| are integrable functions on [p1, 2], then

" F(x)G(x) dx
1

< ([ wlrwie) ([ - i)

([T m>|F<x>dx)l_}’ ([Fe- m)lF(x)lG(x)lqu);}

Owing to the aforementioned trend and inspired by the ongoing activities, the rest of
this paper is organized as follows. First of all, in Section 3, we define and explore the newly
introduced idea about generalized convex functions and their algebraic properties. In
Section 4, we present the novel version of Hermite-Hadamard type inequality. In Section 5,
we establish two new equalities and employing these new equalities and with the help of
newly introduced definition, we present some refinements of Hermite-Hadamard type
inequality. Finally, we give some applications in support of the newly introduced idea and
a brief conclusion.

3. Generalized s-Type Convex Function of Raina Type and Its Properties

In this section, we are to add and introduce a new notion for a new family of convex
functions namely generalized s-type convex function of Raina type.

Definition 6. Let X be a nonempty generalized convex set with respect to ]-'(;' 1 XxX =R
Then the nonnegative function F : X — R is said to be generalized s-type convex function of Raina

type, if
Flp2 + 4 F5 (01— 02)) < [L = (s(1=£))]F(p1) + [1 = s{]F(p2), ®)

holds for every o1, 92 € X, 0 = (¢(0),...,0(k),...),p,A >0,s € [0,1],and ¢ € [0,1].

Remark 2. (i) Taking s = 1 in Definition 6, then we attain a definition which is called generalized
convex function which is first time explored by Cortez [6,7].
(ii) Taking Forlor — ©2) = @1 — g2 in Definition 6, then we attain s-type convex function

which is explored by Iscan et al. [19].
(iii) Taking s = 1 and ]-"g/\(pl — ©2) = 1 — @2 in Definition 6, then we obtain the convex
function which is investigated by Niculescu et al. [5].

Lemma 1. The following inequalities
(<[1—(s(1—¢))] and 1—1<[1—s{
are holds, if for all £ € [0,1] and s € [0,1].

Proof. The rest of the proof is clearly seen. [
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Proposition 1. Every nonnegative generalized convex function of Raina type is s-type preinvex
function for s € [0,1].

Proof. By using Lemma 1 and definition of generalized convex function of Raina type for
s € [0,1], we have

Flp2 + £ Fy (91— 92)) < €F(p1) + (1= £)F(2)

< [1=(s(1=£)]F(p1) + [1 = s]F(2).
O

Proposition 2. Every non-negative generalized s-type convex function of Raina type for s € [0,1]
is an generalized h—convex function of Raina type with h(¢) = [1 — (s(1 —¢))].

Proof. Using the definition of generalized s-type convex function of Raina type for s € [0,1]
and mention condition h(¢) = [1 — (s(1 — ¥))], we have

Flpz + £ F5 (01— 02)) < [1 = (s(1=£))]F(p1) + [1 = sl]F(p2),

< h(£)F(p1) +h(1 = £)F(2).
O

This means that, the new class of generalized s-type convex function of Raina type is
very larger with respect to the known class of functions, like generalized convex functions
and convex functions. This is the beauty of the proposed new Definition 6.

Now, we will discuss and explore the some properties in the support of the newly
introduced idea.

Theorem 4. Let F,G : X = [p1, p2] — R.IfF, G be two generalized s-type convex function of

Raina type with respect to same F7 oA then
(i) F + G is a generalized s-type convex function of Raina type with respect to ]-"g, e

(ii) For ¢ € R(c > 0), then cF is a generalized s-type convex function of Raina type with respect
to F7,.
oA

Proof. (i) Let F, G be generalized s-type convex function of Raina type with respect to

same .7:p - then for all pq, 0o € X, s € [0,1] and £ € [0,1], we have

(F+G)(p2+ £ For(p1— 92))

=F(p2+ € Fy (91— 902)) + G2 + € F7 5 (01 — 2))

< [1=(s(1=0)IF(p1) + [1 = sl]F(p2)

+ 1= (s(1=£))]G(p1) + [1 — 5£]G(g02)
=[1—(s(1=0)][F(p1) + G(p1)] + [1 — s{][F(p2) + G(g2)]
= [1=(s(1=0)](F+G)(p1) + [1 = s{](F + G)(g2).
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(ii) Let F be a generalized s-type convex function of Raina type with respect to .7-';7 v then
forall p1, 02 € X,5s€1[0,1],c € R(c > 0) and ¢ € [0,1], we have

(cF)(p2+ £ F ) (91 — 92))
Sc|[1=(s(1—=0)]F(p1) + [1 —st]F(2)

= [1=(s(1 = £))]cF(p1) + [1 — st]cF(g2)
= [1=(s(1 = 0))](cF) (1) + [1 = s](cF)(2)-

This is the required proof. [

Remark 3. (i) Choosing s = 1in Theorem 4, then we get the F 4+ G and cF are generalized convex
functions of Raina type.

(ii) Choosing Fg/\(pl — ©2) = 1 — g2 in Theorem 4, then we get the F + G and cF are s-type
convex functions.

(iii) Choosing f;’,A(m — ©2) = p1 — g2 and s = 1 in Theorem 4, then we get the F + G and cF
are convex functions.

Theorem 5. Let F : X — J be a generalized s-type convex function of Raina type with respect to
]:;77 ) and G : J = R is non-decreasing function. Then the function G o F is a generalized s-type
convex function of Raina type with respect to same .Fg A

Proof. Forall p1, 92 € X, s € [0,1] and ¢ € [0,1], we have

(GoF)(p2+ L Fg (1 — 92))
= G(F(p2 + £ Fy (1 — 02)))

< G|[1—(s(1 = £))]F(p1) +[1 = sl]F(p2)

<= (s(1=0)IG(F(p1)) + [1 — s]G(F(g2))
= [1= (1 =0)](GoF)(p1) + [1 —sl](GoF)(p2).

This is the required proof. [

Remark 4. (i) If s = 1 in Theorem 5, then

(GoF)(p2+ L Fpr(p1 —92)) S LGoF)(p1) + (1= £)(GoF)(p2).

(ii) If we put ]—"g/\(pl — ©2) = p1 — 92 in Theorem 5, then

(GoF)(lp1 + (1= 0)p2) <[1—(s(1=£))(GoF)(p1) +[1—sl](GoF)(p2).

Theorem 6. Let 0 < p1 < @, F; : X = [p1, 2] — [0, +00) be a class of generalized s-type
convex function of Raina type with respect to same JF7, and F(u) = sup; Fj(u). Then Fis a

generalized s-type convex function of Raina type with respect to F g yand U = {v € [p1, 2] :

’:

F(v;) < oo} is an interval.
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Proof. Let p1, 92 € U,s € [0,1] and £ € [0, 1], then

Flp2 + € Fgr (91— 92))
= sup Fj(p2 + £ F7 (91 — 92))
j

< [1—(s(1—¢))]supFj(p1) + [1 — st sup F;(2)
] ]

= 1= (s(1=0)]F(p1) + [1 = s{]F(2) < co.
This is the required proof. [

Theorem 7. Let F,G : X = [p1, 2] — R.IfF, G be two generalized s-type convex func-
tion of Raina type with respect to same F/, and F, G are similarly ordered functions and

[1—(s(1—2))]+[1—st] <1, then the product FG is a generalized s-type convex function of
Raina type with respect to F/

Proof. Let F, G be a generalized s-type convex function of Raina type with respect to same

]:g,/\/ s € [0,1] and ¢ € [0,1], then

Flp2 + € Fgp (91— 92))Gp2 + £ FJ 5 (01 — 92))

(

< [[1 (s — O)F(pn) + 1 - séwm]

x [[1 (s(1— 0))G(n) + [1 sacw}
[

1—(s 1*5))] F(p1)G(p1) + [1 — s£°F(2)G(g2)

( L = sl][F(91)G(p2) + F(2)G(p1)
< [1=(s(1=0)*F(p1)G(p1) + [1 — sl°F(2)G(g02)
+[1 = (s(L=)][1 = (sO)][F(91)G (1) + F(92)G(2)]

11— (s(1— £)F(e1)G(p1) + [1 - sIF (o ><m>}

« ([1— (s(1— )] + [1—55})
<= (s(1=0)]F(p1)G(p1) + [1 = sl]F(2)G(g2).

This shows that the product of two generalized s-type convex function of Raina type
with respect to same ]:;77, ) is again a generalized s-type convex function of Raina type with
respect to }'g L O

Remark 5. Taking F ;)T 2 (91 = 92) = ©1 — @2 in Theorem 7, then we attain the new inequality
namely the product of s-type convex functions

F(lp1+ (1= 0)p2)G(lp1 + (1= ) p2) < [1—(s(1—£))]F(91)G(p1) + [1 — s{IF(02)G(2)-

4. Hermite-Hadamard Type Inequality via Generalized s-Type Convex Function of
Raina Type

The principal intention and main aim of this section is to establish novel version
of Hermite-Hadamard type inequality in the mode of newly discussed concept namely
generalized s-type convex function of Raina type.
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Theorem 8. Let F : [p1, 2] € R be a generalized s-type convex function of Raina type, if
01 < o and F € L{p1, po] and satisfies Condition 1 then the following Hermite—Hadamard type
inequalities hold

1 1 1 P2+ Fp ) (p1—92)
—F(p2+ 5 FJ (01 — 2 S—/ F(x)dx
2—s ( 2 p,)\( ! ) -7:;)7,/\(@1_@2) ©2 &)
< F(pl) + F(@Z) (2 _ S).
2

Proof. Since p1, p2 € X° and X° is a generalized convex set with respect to ]-";)7, ), for every
and ¢ € [0,1], we have pp + ¢ v 1 (91 — 92) € X°. From the definition of s-type preinvex
function of F, we have

Flp2 + € Foa(p1 = 92)) < [1=(s(1 = €))]F(p1) + [1 = st]F(2)

1 - 1 1
|| Floa € Fgaor = p2))at < Flon) [[1= (s(1= )}t + Flp) [ 11— stlae

but,
. 1 2+ -FUA(§71_§)2)
Flpz+€ Fy (91 — dﬁ:—/ p’ o
/0 (2 p,A(Pl 02)) ‘7:;7,/\(@1_@2) ©2 )
so,
1 /@2‘5‘ FEA(KJl_pz) F(@1)+F(p2)
I Flx)dx < —————(2—35).
./—':)T’A(pl — ) Jo, ()i = 2 ( )

This completes the right hand side of above inequality. For the left hand side we use
the Definition 6, put ¢ = } and condition C for ]-'g ) and integrating over [0, 1],

Fly+ € Foa(x—y)) < [1—(s(1 = £)]F(x) + [1 = (sO)IF(y)

5 P - < [1- )] [F + Fo.

Putting x = ©p + (1 —¥¢) ng(pl —pp)andy = pp+ ¢ Fg/\(pl — g2) in above
inequality, we prove the L.H.S of above inequality

F(y+ 5 Fialx 1)) = Flon + 5 Fop(o1 — o).
So after putting the value of x and y, we get
F(y+ 5 Falx— 1)
=F(p2 + L F\(p1 — 2) + % Forllpz+ (1 =€) Fg (o1 — 92)) = (92 + € Fg (1 — 92)))- (9)
Now by using Condition 1, we have
Forlpa+ 1 =€) FJi(pr — 92) =92+ L Fg (1 — 92)) = (L= L =€) F7 (91 — 92)-
a2+ (1= 0) F7 (o1 — 92) — o2 + L Fyy (91— 02)) = (1=20) Fy (91 — p2).

Now we put the value of .7-'(‘37, ) in (9), then as a result, we get

1 1
Fly + 5 Foalx =) = Flpa + £ FJu (o1 — 02) + 5 (1= 20) Fs (o1 — 92)).
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1 1
Fly+ 5 Foalx =) =Floa + ((+ 5 = 0) Fya (o1 — 92))-

1 1
Fly + 5 Forlx—=y)) =F(p2+ 5 Forlpr —2)).
Now
1 (%
Flp2 + 5 Foalo1 — 92))

< [1= Q)] [ [ Flon+ - 0) Futor - paae+ [ Flon € F5 (o1 omit

S 2 P2+ T (p1—2)
@ [ g,
o [ (2)} ]:;,7,/\(@1*@2) ©2 )

s 1 o2+ g (p1—92)
<2|1-(2 —/ ' F(x)dx.
[ (Zﬂ Forlp1—2) Jo )

This is the required proof. O

Corollary 1. If we put s = 1 and ng(pl — ©2) = 1 — @2 in Theorem 8, then we get
Hermite-Hadamard inequality in [23].

Remark 6. Under the assumption of Theorem 8, if we take o = (1,1,...) withp =a, A =1, we
get the following inequality involving classical Mittag—Leffler function

©2+Ea(p1—92)

1 1 1
ﬁF(Pz + EEa(pl —2)) < m /m F(x)dx
< F(p1) + F(g2) 2—5).

2

5. Refinements of Hermite-Hadamard Type Inequality

The aim of this section is to investigate the refinements of Hermite-Hadamard type
inequality by using the newly introduced definition. In order to attain the refinements of
Hermite-Hadamard inequality, we need the following lemmas.

Lemma 2. Let X C R be a generalized convex subset with respect to .Fg I Xx X —= Rand
01, 02 € X with .7-'5)\(@1 — 2) # 0. Suppose that F : X — R is a differentiable function. If F is
integrable on the ]-'g - then the following equality holds:

F(x)dx

F(p1) +F(p1 + F, (%2 = 91)) c /m+ Fo(B2—p1)

2 B fg,A(WZ*Cpl) ©1
-7:;;7,)\(92—0@1)

1
= TeAE _20)F (82 T (o — 82
_ ~ | =20F (240 7 (01 - 2 )

Proof. Suppose that g1, g2 € X. Since X is generalized convex set with respect to ]-"F‘i A7

for every ¢ € [0,1], we have gy + ¢ Fo 1 (91 — 92) € X. Integrating by parts implies that
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W/ (1- 2£)F’(m+€f" (o1 >) de
DN e i B i
_ Flpr) +F(pn +2f A(* —9) ng(pZ_cpl) /p1+FaA(%_pl)F(x)dx.

Which completes the proof. [

Lemma 3. Let X C R be a generalized convex subset with respect to .Fg AP XXX — Rand

P12 € Xwith F7 A (91 — 92) # 0. Suppose that F : X — R is a differentiable function. If F is
integrable on the .Fg - then the following equality holds:

o1+ FOo (22 —p1) 201+ Fj (2 — 9
¢ I v F(x)dx—F< 1 Fpale2 o)

f;’,ﬁm—cm) o1 2c

Fo(p2 —cp1) (11 1
_ T pA 1 82 - ({82 o 2
== {/0 (240 77 (o~ £2))ae - /1/2F(C +0F (o ))de}

Proof. Suppose that g1, o € X. Since X is generalized convex set with respect to .7-'5 A7
for every £ € [0,1], we have p + £ F7) (91 — 92) € X. Integrating by parts implies that

JWW{/ (2240 7 (on - "2))116_/11 F(2 +€f‘7/\(p1—))d€}

c
LR R (01— )

Forlpz—cpr)  [F(Z +€f‘ﬁ(pl—f)) dt
= « -
C ‘Fg/\<@1 ) 0 0 ‘7:;37:)\(@1 C)

CFCE T (01— @))M 1

A

FO’ (KJZ—Cpl) F 1

oA cF(gp1) c / ©2 ; o2
- N F(=+(F — 22ar

¢ ]:g,)\(c@l —¢2) ng(cpl — ) ( P oA (o1 B )

c 201+ F7 (02— 1))
G (FW i F( 2 ))]

B c p1+ F’A(T—m) p E 201 + fg,A(@z - @1)
B -F,‘JT,A(M—CM)/ Flx)dx = 2c '

In this way the proof is completed. [
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Theorem 9. Suppose I° is a generalized convex set with respect to ]-'g aand F:I° CR — Rbe

a differentiable mapping on 1°, 1, o € I° with p1 < (o and suppose that F' € L{pq, p2). If |F/|
is a generalized s-type convex function of Raina type on L{p1, o2, then

F(pl)+F(@l+ ]:17/\(7_@1)) c p1+ 7:;)7)\(7—@1)
/ F(x)dx

2 a IF(,T’A(@Z—Cpl) o1
FI\ (92 —cp1) (2 —
oA ST\ (92
< e S IRl + I (2)1]

holds.

Proof. Suppose that p1, p € I°. Since I° is a generalized convex set with respect to ]-'g v
forany ¢ € [0,1], we have gy + £ F7, (91 — 2) € I°.
Using Lemma 2, one has

F(p1) +F(p1 + F (2 = 01)) c o1+ FoA(F—p1)
3 - 7 (o2 = / F(x)dx
oA 82 cp1) Jo
'7:(7/\(@2_0@1) 1
= [ 20l (2 e F (o - ) e

Since, |F'| is generalized s-type convex function of Raina type on (g1, o1 + F o NG
©1)), we have

F(p1) +Flp1 + F (2 = 91)) B c /m+f,f,A(“3m) F(x)dx
2 Forlp2 —cp1)
Fi(p2 —cp1) f1
oA _ Ce(1 1 _ (2
< o [T =20 [0 = s(1= )F ()] + (1= s0)|F (22) ] at

F7, (g2 —
W{|F/(m)|/ol|12€1s(lf)d€+|F’<pC2>|/Ol|12€|(1sﬁ)dﬁ}. (10)

Since,

s—2
4

1 1
/ (1—s(1— £))[1 —26]de = / (1— s)[1 - 20|d¢ = —
JO 0
The proof of the theorem is completed by using the above computations in (10). O

Corollary 2. If we choose s = 1, then we attain the following inequality

F(p1) + F(p1 + ]:(T/\(*_@l)) c o1+ g NEz))
- =5 / F(x)dx
2 fp,A(PZ_C@l) 01

< Til2 =) 1) e (2 )

Corollary 3. If we choose fg, A (91 — 92) = @1 — o, then we attain the following inequality

< o2 2o (22 1o+ 7 (2))1]

F(pr) +F(52) c ?
2 (2 — cp1)

F(x)dx
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Corollary 4. If we choose s = 1 and .F"A(pl — p2) = @1 — @2, then we attain the
following inequality

Fp1) +F(2) c 7
2 (2 —cp1) /m Flx)dx

< w{ [IF' (o) +4lF (22)1]}-

Remark 7. Under the assumption of Theorem 9, if we take o = (1,1,...) withp = a, A =1, we
get the following inequality involving classical Mittag—Leffler function

F(p1) + F(p1 + f‘TA(*—pl)) c P1+Ea (22 —p1)
- / F(x)dx
2 Eu(2 —cp1)

e IR

Theorem 10. Suppose I° is a generalized convex set with respect to ]—"g ZandF:I°CR— R

be a differentiable mapping on 1°, o1, @2 € 1° with p1 < 2,9 > 1,% + % = 1 and suppose that
F' € L{p1, p2|. If |[F'|7 is generalized s-type convex function of Raina type on L1, ©2), then

F(p1) +F(p1 + ]‘—‘7,\(*—@1)) c o1+ FoA (B2 —p1)
- =5 / F(x)dx
2 Forlp2 —cpr)

Fllpa—cp)r 1 1YP(2—5 Vg
< P / q (92 a )
- 2c {p—o—l] { 2 [IF(W]N _HF(c)w

Proof. Suppose that p1, pp € I°. Since I° is a generalized convex set with respect to ]-"g v
forany ¢ € [0,1], we have pp + ¢ ]:(;',A(pl — ) € I°
Using Lemma 2 and Hoélder’s inequality, one has

F(x)dx

F(p1) +F(p1 + F, (%2 — 1)) c /W FO (2 —py)
2 Forlpz —cpr)

1

Forlpz —cp1) 1
= P 1)/0 1= 26||F (22 40 F (o = 72))lat

oal92—con) /o1 .
SM;C1</O |12€|’”d€) (/0 |F’(%+E}'(’A(p ))|W) (11)

Since, |F'|7 is generalized s-type convex function of Raina type on (1, 1 + ]—' 2 (g2 —
©1)), we have

/01|F’(% O (o1 = 2y at = |F(on)]? | (1—s(1—6))aw+|F’(%)|q/ol(1—s@dz.

Now, Equation (11) becomes

F(Pl) + F( p1+ ]:U (* - @1)) S— c /W1+ J’XA(WTZ—M) F(x)dx
2 fp,/\(pz 7C@1)
Forlpp—cpr)r 1 (Vr 1 ) 1/q
= "(p1)|7 —s(1— (22 _
< R [HJ (IF(m)I /0(1 s(1—0))dl +|F ( ; )| /0(1 se)de> (12)
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Since,

/01(1—5(1 )l = /1(1 —styat =22

0

1 1
/ 11— 20|Pdt = [}
0 p+1

The proof of the Theorem is completed by using the above computations in (12). O

Corollary 5. If we choose s = 1, then we attain the following inequality:

F(p1) +F(p1 + F, (%2 = 91)) c o1t Fy ) (F=p1)
- —= / F(x)dx
2 For(92 —cpr)
Forlpa—cp1) 1 1 V7P 1/4
pA o7+ [F' (22
< 1| [P F (2) e}

Corollary 6. If we choose .7-';)7, A (91 — 92) = @1 — 02, then we attain the following inequality:

Flp1) +F(2) c ?
2 (g2 — cp1) -/m Fx)dx

<t ] B r e e (2)r))

Corollary 7. If we choose s = 1 and .7-"“)7’ (o1 — 92) = @1 — @2, then we attain the
following inequality:

1/q

ey : Sl (2 —Ccm) /: i
<t [ e+ e ()]}

Remark 8. Under the assumptions of Theorem 10, if we take o = (1,1,...) withp =a, A =1,
we get the following inequality involving classical Mittag—Leffler function:

Flp1) +F(p1 + Ea(2 — 1)) c 91+Ea (2 —p1)
2 Ex(2 — cp1) / Fx)dx

- Ea(mzz cp1) Lﬂl-lr/p{z [|F’( D7+ |F’(pcz>|q”1/q

Theorem 11. Suppose I° is a generalized convex set with respect to ]-';37 aandF:I°CR — R

be a differentiable mapping on I1°, p1, 92 € I° with p1 < ©2,9 > 1,% + % = 1 and suppose that
F' € L{p1, o). If |[F'|7 is generalized s-type convex function of Raina type on L{p1, o], then

F(p1) +F(p1 + F (2 = 01)) c /g)ﬁfﬁ(cm)
2 -7:;77,)\(@2 _Cpl)

Folp2 —cpr) — ST, , a
< | (5 e e (2

p

F(x)dx

Proof. Suppose that 1, o € I°. Since I° is a generalized convex set with respect to .7:;)7, I
forany ¢ € [0,1], we have o, + ¢ FgA(pl — ) € I°
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Using Lemma 2 and Holder’s inequality, one has

F(p1) + F(p1 + F"A(@—m)) c o1+ Fo (%2 —p1)
/ F(x)dx
¢

2 a -7'—;771)\(@2—6@1)

71

1) 1
| =20F (22 4 0 7 (01 - 22)) e

-7:;;7,\(92 —cp1)

1
_ o270 0[] — e (92 >
- |, =20 =20 R (2 4 (o - 2 ) e

Fo (92 —cp1) 7 f1 p 14
<p2€(/0 1—2£|d£) (/ 11— ZEF’(M+€}"‘TA(Q1—))|‘ME> (13)

Since |F'|7 is generalized s-type convex function of Raina type on (p1, o1 + Forlpz =
©1)), we have

[ (2 0 7o~ 2 e = (o)t [ (01— 0)ae+ P (2) 0 [0 —styae

Now, Equation (13) becomes

Flp1) + Flp1 + F70 (2 —91)) c /@ﬁfb(pfm)F(x)dx
§

2 Forlpz2 —cp1)

F - v
SM(/ i-2dar) " (o0l [ 12610 -s1 - )
1/9
+|FI(%)W/O |1—2£|(1—s€)d€> (14

Since,

s—2

1 1
/0|1—2£|(1—s(1—€))d€:/0 11— 20](1 — s0)dl = —

1 1—2¢|de !
-2t = 5
The proof of the theorem gets completed by using the above computations in (14). [

Corollary 8. If we choose s = 1, then we attain the following inequality

F(p1) +F(p1 + F, (%2 — 1)) c o1+ Fo,\ (2 —p1)
i / F(x)dx
2 Forlp2 —cpr)

< FE’A(@E_CW lz(;“)]{[w'(m)l” P

q

Corollary 9. If we choose F g A (91 — 92) = ©1 — 02, then we attain the following inequality,
2

F(@l)"‘F(%Z)_ c © E(r)dx
2 92—0@1)/ Fx)d

(
< (@fccm L(”lf)] {215 [P (o017 +1F (£2)17] }W'

Corollary 10. If we choose s = 1 and ]—" (91— 92) = 91 — @2, then we attain the
following inequality,
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F(p1) + F(£2) c /ﬁz
CHLA. F(x)dx
2 (2 —cp1) Jou )

el 2 (e (2}

Remark 9. Under the assumptions of Theorem 11, if we take o = (1,1,...) withp =a, A =1,
we get the following inequality involving classical Mittag—Leffler function,

F(p1) + F(p1 + Ea (22 — p1)) c P1+Ea (2 1)
2 gArer i Fx)dx

< Lalvz—con) l (,,1“)] {225 [IF' ()17 + F'(K‘f)lﬂ}l/q
2

Theorem 12. Suppose I° is a generalized convex set with respect to .7-";7 ZandF:1°CR — R

be a differentiable mapping on I°, p1, 92 € I° with p1 < p2,9 > 1,% + % = 1 and suppose that
F' € L{p1, o). If |[F'|9 is generalized s-type convex function of Raina type on L{p1, 0], then

F(p1) +F(p1 + F, (2 = 1)) c /101+ FoA(Z—p1) F(r)dx

2 - Forlpz —cpr)
S Fg,A(pzzc—cpl){ : 1 )]1/;’[{3 25|F( )‘M \F’(m)| }1/q

2(p+1
Y ERLI )w+3*25|p/(@2)|q 1/g
6 1 6 c :

Proof. Suppose that g1, g2 € I°. Since, I° is a generalized convex set with respect to fﬁ’, v
for any ¢ € [0,1], we have pp + ¢ ng(pl — ) € I°.

Using Lemma 2 and Holder-fscan inequality, one has

F(p1) +F(p1 + F, (%2 = 91)) B c /m+ Fo (2 —p1) F(x)dx
2 For(92 —cpr)

Fo (92 —cpr1) 1 Vp /4

ZpANe _ _p|p (92 v _2\\q
< - </O (1-0)]1-2¢ d€> (/0( OIF (2 + 0 70 - 22))) dé)

1 r 7 ( §92 14
_ p o _ e q

+</0 01— 2¢] d€> </ £|F( +0F (o1 )\ de) (15)

Since, |F'|7 is generalized s-type convex function of Raina type on (g1, 1 + .7-" 2 (g2 —
©1)), we have

1
L2 e P = 2 ) ae

- \F'(pl)|‘7/0 (1—5(1—5))de+|F’(%)|q/01(1—se)dz

Now, Equation (15) becomes
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F(p1) +F(p1 + F, (2 = 91)) c o1+ o\ (2 —p1)
- =5 / F(x)dx
2 Forlp2 —cp1)

< Ttz oy [(/Olu o —zaf’de)l/p(w%mw/01<1 01— s(1 - D)t
+|F/(@Cz)|q/ol(1_e)(1—se)d£)1/q
(] 16|1—2€|Pde)1/p(F'<m>|q [ e s opae P (2 [ 1«(1_Se>de)”q]. a6)

Since,

/01(176)(175(176))0162/016(1756)016:7256_3.

1 1 5s—3
/Oé(l—s(l—é))déz/o (1—0)(1—st)dt = -2,

1 -1 1
m-zewz/ 1—¢ 1-2%15:{}
) n=atrae= [Fa—on-20par = | 5o

The proof of the Theorem is completed by using the above computations in (16). O

Corollary 11. If we choose s = 1, then we attain the following inequality,

F(p1) +F(p1 + F, (%2 = 01)) c o1+ Fo\(F—p1)
- —= / F(x)dx
2 ‘Fp,)\(pz - Cpl)
Forlpe—cpr)r 1 1VYP[(1 1 Vq
< P ZIF 9. 2 1F (22
= 2 [2(p+1)} {6|F(pl)| +5F (%)

AL 2|F'(p§)w}w].

Corollary 12. If we choose ]-"g (91 — 92) = 91 — 02, then we attain the following inequality:

F F(2 2
ORGP NS
1

[pe

< (p2—cp1) { 1 ]”P
2 (2 —cp1) - (p+1)
Corollary 13. If we choose s = 1 and ]-' (1 = 92) = @1 — @2, then we attain the

2(p+1

(o)1 + 225 F’(m)l‘?}l/q+{3§s (ol + 222 /(ﬁz)w}”ﬂ.

following inequality:
F(p1) +F(52) c /gf
— F(x)dx
2 (2 —cp1) Jou &)
(p2—cp)[ 1 T7P[[1 12y
< Z 94 = 24
=72 |2(p+0) 5IF (1)l +3|F(c)|

+H{3IF @0+ QF'(?)Q}W].
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Remark 10. Under the assumptions of Theorem 12, if we take o = (1,1,...) withp =a, A =1,
we get the following inequality involving classical Mittag—Leffler function,

Flp1) + Flp1 + Ea (2 — 1)) c p1+E(F —p1)
2 " Eu(p2 —cp1) / Fx)dx

SE'X(mzzcm [2(;71—}—1)]1/;)[{362% (o) + gSF’(pcz)W}l/
g e 2

Theorem 13. Suppose I° is a generalized convex set with respect to ]-";37 yand F:1° CR — Rbe

a differentiable mapping on I°, p1, oo € 1° with p1 < ©o,q > 1 and suppose that F' € L[, p2].
If |[F'|7 is a generalized s-type convex function of Raina type on L{pq, 2], then

F(p1) +F(p1 + ]‘—‘7,\(*—@1)) c o1+ Fo (B2 —p1)
- =5 / F(x)dx
2 Forlp2 —cpr)

< Tl o) (e At (20
+{41_65 (o)l + 222 3S|F'<p2>|q} /1'

Proof. Suppose that g1, pp € I°. Since I° is a generalized convex set with respect to }"g v
forany ¢ € [0,1], we have g, + £ F7, (91 — 2) € I°.
Using Lemma 2 and Improved power-mean inequality, one has

Flor) + Flor + F2,(2 — 1) — /wm(ﬁzm)F i
2

2 ~ Foalo—con

o1
1/q

< W [(/()1(1 —0h —2£|d€>11/q (/01(1 — O =200 (2 + 0 77 (1 - ))quf>

1 1-1/q9 , 11 1/q
1 82 T
+(/0 E|1—2£|d€) (/O 01 —2¢||F (T + 0 F (01 —))|w> ] (17)

Since |F’|7 is generalized s-type convex function of Raina type on (1, o1 + Forlpz —
©1)), we have

1
(2 e F (o= 2 ) rar

= |F’(@1)|q/o (1—5(1—5))d6+|F'(%)|ﬂ/01<1—se)de.

Now, Equation (17) becomes
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F(x)dx

F(p1) + F(p1 + f‘TA(*—m)) c /m+f‘ﬁ(7—m)
2 Forlp2 —cpr)

< Tealezz e [(/Olu_e)u _zem)lW(|F’<p1>ff/01<1—f>|1 — 261 s(1 - €))t
+|F,(%)|q/01(1 —0)[1-2¢0(1 —se)cw)w

1 1-1/q
+ (/ 01— 2£|d£)
0

’ ! 1 2 1 14
><<|F(@1)|'7/0 O1—26(1=s(1— e +|F (227 [ €|1—2£|(1—s€)d£> 1 (18)
Since,
1 1 35 —4
/0(1—£)|1—2€\(1—s(1—£))d£:/0 01— 26](1 - st)dt = ==
ot 20)(1— s - 0))de = [ (1= 0)1— 261 - st)dt = =
| =200 -sa -0y = [Fa- o)1 -260(1 - syae = -2

1 1 1
1-2¢|dl = 1-0)|1-2¢|dt = |—]|.
[ en—20ae = [[a-on-20a = |

The proof of the theorem is completed by using the above computations in (18). O

Corollary 14. If we choose s = 1, then we attain the following inequality:

F(p1) +F(p1 + F, (%2 = 91)) c o1+ Fop\(F—p1)
- — / F(x)dx
2 ‘Fp,)\(pz _Cpl)
Forlpa—cp1) 111Vl (1 3 14
< A *|F/(@1)|q+*|F/(@)|q
2c 4 16 16 c

/9
3 o q 1 /92 q !
H g Pl + g (Z)ir} |,

Corollary 15. If we choose ]-";; (901 — 92) = p1 — p2, then we attain the following inequality:
ARSI Sy LB
2 (2 —cp1)

< ) [ﬂl_w[{“‘ i R (2) )

AP e ()}
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Corollary 16. If we choose s = 1 and .7-"‘72\(@1 — ©2) = 1 — @2, then we attain the
following inequality:
2 2

F(p1) +F(£2) c <
2 (2 —cp1) /m Flx)dx

(2 —cp)) [TV 11, 3 (02 1/
< Z q q
=T e 4 16" (¥l +16|F(c>‘
3. 1 2 Va
q ! q
+{16|F(@1)| +F(2) } .

Remark 11. Under the assumptions of Theorem 13, if we take o = (1,1,...) withp =a, A =1,
we get the following inequality involving classical Mittag—Leffler function,

F(x)dx

F(p1) + F(p1 + E« (22 — p1)) c /W”E“(pcz_m)
2  Eu(p2 —cgn) Js

_ Ex(p2—cpn) HH/‘?HAL 3 o)

- 2c 4 (Kf)w}
Jr{41—65 (p1)|‘7+4 3S|F <p2>|q}1/q].

Theorem 14. Suppose I° is a generalized convex set with respect to ]-'g yandF:1° CR — Rbe

a differentiable mapping on I°, p1, p2 € I° with o1 < 3,9 > 1, and suppose that F' € L{p1, o).
If |[F'|7 is generalized s-type convex function of Raina type on L(p1, ©2], then

71

F(p1) +F(p1 + F (%2 = 01)) c 1+ T, (B =p1)
- / F(x)dx
2 For(p2 —cpr) Jg

01

Folpa—cor) (170 (2 — 1/
pA - STF (o9 + |F (827
= 2c u { 4 [‘F(pm +|F(c>|” ‘

Proof. Suppose that p1, pp € I°. Since I° is a generalized convex set with respect to ]-"p”: v
forany ¢ € [0,1], we have pp + ¢ ng(pl — ) € I°
Using Lemma 2 and Power-mean inequality, one has

Flp1) + Flpr+ F7, (2 — 1)) c /gaﬁ FoA(B—pn)
2 Forlpz —cpr) Jg

91

Fi(p2 —cp1) f1
< o [T—20lF (2 0 7 (o1 - 2)) e

F7 (2 —cp 1-1/q 1 1/q
PA(l(/ |1—2€|d€> (/O 1 - 20||F p2+£F”A(p1—))|qd£> (19)

Since, |F'|7 is generalized s-type convex function of Raina type on (g1, o1 + Forlpz—
©1)), we have

1
L2 e F (o= 2 ) rae

- \F'(pl)w/o (1—5(1—£))de+|F’(%)|q/01(1—s£)de
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Now, Equation (19) becomes

F(p1) + F(p1 + F"A(**m)) c o1+ FO, (82 —p1)
= / F(x)dx
2 For(p2 —cpr)

< W—Cm(/ |1—2£|d€)1 % <|F’(@1)|q/0 11— 2£](1—s(1—£))de
+|p/(%)|ﬂ/@ |1—2€|(1—s€)d€>1/q (20)

Since,

1 1 s—2
/|1—2£|(1—s(1—£))d€:/ [1—26](1 - st)de =~
0 0

11 20\ds 1
) 120t =5

The proof of the theorem gets completed by using the above computations in (20). [

Corollary 17. If we choose s = 1, then we attain the following inequality:

Flp1) +Flp1 + F7A (2 —p1)) c /@1+ Fo\(Z—p1) Fx)dx
2 Forlp2 —cpr)
-FUA(pZ_CPl) © 1/q
< TR e (2]}
T c

Corollary 18. If we choose ]-"g (91 — 92) = 91 — 02, then we attain the following inequality:

92

Fp1) +F(*2) c ¢
] /m F(x)dx

2 (2 — cpn

e )}

— (@, then we attain the

(92 — 1) [1} -

<
- 2c 2

Corollary 19. If we choose s = 1 and fg;\(pl — ) = ¢

following inequality:
F(p1) + F(*2) c ? (92 —cp1) ([ 2 1a
— <L 2= o7 q I 22 )19 .
2 (2 — c1) /m F(x)dx| < 272‘1;16 {[‘F (p)[+IF ( c )| }}

Remark 12. Under the assumptions of Theorem 14, if we take 0 = (1,1,...) withp = a, A =1,

we get the following inequality involving classical Mittag—Leffler function:

F F E. (22 _ p1+E(22—p1)
(p1) + F(p1 + E« (2 — 1)) c / 1 e () dx
2 Ea(p2 —cpn) Jo,

< W B] 1_5{2 —[IF o0l +1F (2)17] }“T
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Theorem 15. Suppose I° is a generalized convex set with respect to ‘7:;37, ZandF:I°CR— R
be a differentiable mapping on 1°, p1, @2 € I° with p1 < 2,9 > 1,% + % = 1 and suppose that
F' € L{p1, o). If |[F'|7 is generalized s-type convex function of Raina type on L{p1, 2], then

o1t Fop(F—p1) 201+ Fo (2 — 1
—_— < / b l F(x)dx — F ol )
]:p,A(WZ —cp1) Jo 2c

Fo (2 —cn) 1 \YP(2_5 1/q
< PA ! q 10 82\1q
< (1) (B5IF@or+F )

1/
H{EZIFr+ P (2] q].

Proof. Suppose that 1, pp € I°. Since I° is a generalized convex set with respect to ]:g, A
for any ¢ € [0,1], we have py + ¢ F7 A(pl p2) €1°.
Using Lemma 3 and Holder’s mequahty, one has

+ Foa (B o) 201+ Fo (P2 —p
§ C /@1 A 91 F(x)dx—F 1 p,A( 2 1)
-Fp,/\(@Z —cp1) Jo, 2

Folpa—cp1) (11 1
_ A {2 o (92 o _ P2
_ {/0 (F ( 2L F (o1 - ))dﬁ /1/2F ( 2 LF (o1 = 2 ))de}

c

[

FI (92— cp1) 1 Up ¢ m o
‘0’/\— p / / @ o _@ q
: ¢ </0 ¢ dé) { 0 IF ( c +£‘Fp,/\(§’l c )>| de
2 1/q
/ o 92\ g
+{/1/2|F( +LF, P )>| dé} ]

< Toalincon) (Pil)l/p{/ [1=s(1=O1F (p1) W”/ |F/<m>|qd€}l/q

[

[ -st-onFpars [ -soe (2)nae)
= ffaf,A(piCm) (p‘l"1>l/P{225[|F’(pl)|q+|F/(pcz)|q]}l/q
+{4 3S[|F’(pl)|q+||:/(pc)|q]}l/q‘|‘

O

Corollary 20. If we choose s = 1, then we attain the following inequality:

14+ FO\ (2 —p1) 201+ FJ -
‘ c /Pl oA o1 F(x)dx — F( 01 A(@Z @1)) ’
[

-7:;,7//\(@2 —Cp1) S ZC

Fo _ 1/ 1/ 1/
< T LN e e 2} (SR e+ ) q].

c
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Corollary 21. If we choose ]:;77, A (91 — 92) = 91 — o, then we attain the following inequality:

c 2 + ©2)
e [P (21)
(92 —cp1) Jou 2c

Fo (g2 —cp1) 1 \YP(2-5s a
< et "o o [ (F2y)
< () BRI er

_ 13 )
+{4 83 [|F’(pl)q+|F/(pcz)|q]} q‘|.

Corollary 22. If we choose s = 1 and ]:;)T,A(Wl — ©2) = 1 — @2, then we attain the
following inequality:

92

m/pf F(x)dx — F(@l;@z))‘

1/ v Y
(Pil) p{;HF’(m)WJrIF’(pCZ”]} q+{313[|F/(pl)|q+|F/(g22)|q]} q]'

< (g2 — cp1)
C

Remark 13. Under the assumption of Theorem 15, if we take o = (1,1,...) withp =a, A =1,
we get the following inequality involving classical Mittag—Leffler function,

o) +Ea(@TZ—‘)) _
c /“ o1 F(x)dx_F<2@1+Ea(m @1))
Ex(2 —cp1) Jou 2c
Ey (2 — cp1) 1 \YP(2-s., ) L4
< q q
£ [ R E TS IENICT

_ 3 y
+{4 83 [|F/(pl)|q+|F’(§f)|q]} q‘|‘

Theorem 16. Suppose 1° is a generalized convex set with respect to F' g/ yandF:1° CR — Rbe
a differentiable mapping on 1°, 1, 2 € 1° with o1 < 2,9 > 1, and suppose that F' € L{p1, p2].
If |[F'|7 is generalized s-type convex function of Raina type on L[p1, @2), then

o1t Fy o (2 —p1) 201+ Fy (2 — 1)
——— < / b ' F(x)dx — F o2
Forlpz —cp1) Jg 2c

< }XA@%-—%ﬁ)l<1)l‘”q
- 2

21

[

_ _ 1/ o 1/
B+ 222 "+ Z e e r + [ (2)p] q].

Proof. Suppose that 1, o € I°. Since I° is a generalized convex set with respect to ]-"g’ Y
forany ¢ € [0,1], we have pp + ¢ ng(pl — ) € I°.
Using Lemma 3 and power-mean inequality, one has
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o1+ F9 (T—g) ) 2@ + FY 2 —
_ c / 1 0. 1 F(x)dx—F 1 A( 2 1)
]:p,,\(pz —cp1) Jon ZC
Fo(p2—cp1) (1 1
_pA (92 v _ P2 _ (92 v _ 2
_ - {/0 o 2 40 F (0 )t /MF ( A ))de}

< Wl(/oledé)l_l/q{/olm’(m +EFoa (o1 — ))IW}

c

+{/1/2|F’(m +LF (1 — 2 )W} /q]
¢ Thalin—con) [@“”{ [ s o onpas [ s (2) el
1/q

+{/112[1—s(1—€)]|F’(p1)qd€+/112[1—s£]|F’(pcz>|qd£}
_ Fg,A(K’Z —cp1)

1 1=1/a 3 ¢ 3—2s (@W /4
c 2 6 6 c

1/
H{EZE IR el + P2y q].

O
Corollary 23. If we choose s = 1, then we attain the following inequality
o1t Fy ) (2 —p1) 201+ Fo (2 — 1
| ol lF(x)dx—F( e o
¢

]'-;;7,)\(@2 —cp1) 01

Forlpz —co1) [ 1\ (1 1 14
<2 NE) {GF e gR 2

(p1)

2

- c

1/
IR+ F(Z)n )} q].

Corollary 24. If we choose ]-"g, (91 — 92) = p1 — p2, then we attain the following inequality:

92
c © (1t )
/m F(x)dx —F (Zc > ‘

(92 —cp1)
B 1-1/g (o B 1/
< (92 CC@l) [(;) q{?’6s||:/(pl) 3 625 (@CZ)W} !

_ )
+{483S[|F/(pl)|q + |F/(pcz)q]} q]'

= land F7,\(p1 — 2) =

01 — g2, then we attain the

Corollary 25. If we choose s
following inequality:

£2
¢ 3 (o1t e2)
/@ F(x)dx F<72c ) ’

1-1/ 1/
Rl) RIS Lol MR RS h] }

< (2 — cp1)

c 2
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Remark 14. Under the assumption of Theorem 16, if we take o = (1,1,...) withp =a, A =1,
we get the following inequality involving classical Mittag—Leffler function:

© +Eu(%27g‘>) _
c / 1 1 F(x)dx_F(prEa(m m))
Ex(p2 —cp1) Jou 2c
Eo(pr —con) [ (1\"V7(3—5s 3—2s , 2 1
< =rve 007 — —|F q F/(22)1]4
< . 5 6|(m)|+ 3 I(C)\

_ 3 ,
+{4 83 [|F’(pl)|v]+||:/(pcz)|q]} q‘|‘

6. Applications to Special Means

In this section, we recall the following special means of two positive numbers o1, >
with o1 < pp:
(1) The arithmetic mean

_ Pt

A= A(p1, 92) >

(2) The geometric mean
G = G(p1,02) = Vo192
(3) The harmonic mean

2012

H = H(pq, = .
(@1 @z) 01+ 02

The following relationship is well-known in the literature.

H(p1, 02) < G(p1,02) < A(p1, 02)-
Proposition 3. Let 0 < o1 < @ and s € [0,1]. then

1
2—3

1 For(o1—92) +2¢2)
(2 + 5 Foalpr —p2)) < & > < Alpr92)(2—s). (21

Proof. We attain the above inequality (21), if we put F(v) = v for v > 0 in Theorem 8. [J

Proposition 4. Let o1, o5 € (0,1] with p1 < gy and s € [0,1], then

1
P2(p2+ F (01— 2

1 1 2—s
5 InGlpLp) < ) < In(p2 + 5 Fralor = 2))—— (22)

Proof. We attain the above inequality (22), if we put F(v) = —Inv for v € (0,1] in
Theorem 8. [

Remark 15. Under the assumption of Proposition 4, if we take o = (1,1,...) withp =a, A =1,
we get the following inequality involving classical Mittag—Leffler function:

1

1 2—s
o2(p2 + Ealpr —92)) = In(pr + =Ea(p1 — 92)) . (23)

2 2

1
—1 <
55 nGlpLp2) <
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Proposition 5. Let o1, o € (0,00) with p1 < ppand s € [0,1], then
FO (o1 —
1 <1n(1—|—4p//\(gzl m)) __2-s (24)
(2—5)(P2+%f&(@1—@2)) = Foalpr—e2) T Hlpy )

References

Proof. We attain the above inequality (24), if we put F(v) = % for v > 0in Theorem 8. [

Remark 16. Under the assumption of Proposition 5, if we take o = (1,1,...) withp = a, A =1,
we get the following inequality involving classical Mittag—Leffler function:

In(1 Ey(p1—2) .
} < i G <275 (25)
(2—5)(g2 + 3Ea(p1 — 92)) Ex(1 — 2) H(p1,92)

7. Conclusions

In this article, we addressed a novel idea for the generalized preinvex function, namely
the s-type preinvex function. Some algebraic properties were examined concerning the
proposed definition. In the manner of the newly proposed definition, we described the
novel version of Hermite-Hadamard type inequality. Further, we made two new lemmas.
Our attained results in the order of new lemmas can be considered as refinements and
remarkable extensions to the new family of preinvex functions. Our novel results can
be deduced from the previously known results. Applications to special means were
considered. In addition we made some comments; the above estimations on the mentioned
lemmas need an interesting and amazing comparison. On Lemma 2, we examined three
Theorems 10~12, in which we used the Holder and Holder-I scan inequality. In comparison,
Theorem 12 gives a better result as compared to the other Theorems 10 and 11. Similarly,
On Lemma 2, we examined two Theorems 13 and 14, in which we used power mean and
improved power mean inequality. In comparison, Theorem 13 gives a better result as
compared to the other Theorem 14. We hope the consequences and techniques of this
article will energize and inspire researchers to explore a more interesting sequel in this area.
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