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Abstract: The goal of this article is to establish several new formulas and new results related to the
Marichev-Saigo-Maeda fractional integral and fractional derivative operators which are applied on
the (p, q)-extended Bessel function. The results are expressed as the Hadamard product of the (p, q)-
extended Gauss hypergeometric function Fp,q and the Fox-Wright function rΨs(z). Some special
cases of our main results are considered. Furthermore, the (p, q)-extended Bessel-Wright function
is introduced. Finally, a variety of formulas for the Marichev-Saigo-Maeda fractional integral and
derivative operators involving the (p, q)-extended Bessel-Wright function is established.

Keywords: operators of fractional calculus; (p, q)-extensions of special functions; (p, q)-extended
Bessel function; (p, q)-extended Gauss hypergeometric function; (p, q)-extended Bessel-Wright
function; Fox-Wright function; Marichev-Saigo-Maeda fractional integral and fractional derivative
operators; Euler-Darboux partial differential equation

1. Introduction

Many generalizations and extensions of special functions of mathematical physics
have witnessed a significant evolution in recent years. This advancement in the theory
of special functions serves as an analytic foundation for the majority of problems in
mathematical physics and applied sciences, which have been solved exactly and which have
found broad practical applications. Further, the importance of Bessel functions appears
in many areas of applied mathematics, mathematical physics, astronomy, engineering, et
cetera. The Bessel function was first introduced by and named after Friedrich Wilhelm
Bessel (1784–1846) and it was subsequently developed by (among others) Euler, Lagrange,
Bernoulli, and others. The Bessel function is a solution of a homogeneous second-order
differential equation which is called the Bessel’s differential equation and it is given by
(see [1])

z2 d2u
dz2 + z

du
dz

+ (z2 − ν2)u = 0,
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where ν can be a real or complex number. The Bessel function Jν(z) of the first kind of
order ν has the following power-series representation (see [1]):

Jν(z) =
∞

∑
n=0

(−1)n

n! Γ(ν + n + 1)

( z
2

)2n+ν
, (1)

where z, ν ∈ C and <(ν) > −1.
The (p, q)-extended Bessel function Jν,p,q(z) of the first kind of order ν is defined as

follows (see [2]):

Jν,p,q(z) =
√

π

Γ(ν + 1)

∞

∑
n=0

(−1)nB
(

n + 1
2 , ν + 1

2 ; p, q
)

n! Γ
(

n + 1
2

)
B
(

1
2 , ν + 1

2

) ( z
2

)2n+ν
, (2)

where min{<(p),<(q)} = 0, and <(ν) > −1 when p = q = 0 and B(x, y; p, q) is the
(p, q)-extended Beta function, which is defined as follows (see [3]):

B(x, y; p, q) =
∫ 1

0
tx−1 (1− t)y−1 exp

(
− p

t
− q

1− t

)
dt, (3)

where
min{<(x),<(y)} > 0 and min{<(p),<(q)} = 0.

It should be remarked here that the existing literature on the subject contains much
more general extensions of the classical Beta function, especially in the case when p = q
(see, for example, [4,5]).

For p = q = 1, the (p, q)-extended Bessel function of the first kind Jν,p,q(z) and the
(p, q)-extended Beta function B(x, y; p, q) reduce to the Bessel function Jν(z) of the first
kind and the classical Beta function B(x, y), respectively.

The Bessel-Wright function Jµ
ν (z) was defined by Edward Maitland Wright (1906–2005)

as follows (see [6]):

Jµ
ν (z) =

∞

∑
n=0

(−z)n

n! Γ(µn + ν + 1)
, (4)

where z, ν ∈ C and µ > 0.
Recently, Bessel functions have become widely used in fractional calculus and its

applications (see, for example, [7,8]).
The Fox-Wright function rΨs(z) was introduced and studied by Charles Fox (1897–

1977) [9] and Wright [10]. It was proposed in the following form:

rΨs

 (a1, A1), · · · , (ar, Ar);

(b1, B1), · · · , (bs, Bs);
z

 :=
∞

∑
n=0

Γ(a1 + A1n) · · · Γ(ar + Arn)
Γ(b1 + B1n) · · · Γ(bs + Bsn)

zn

n!
, (5)

where r, s ∈ N0 = N∪ {0}; z, ai, bj ∈ C; Ai ∈ R+(i = 1, · · · , r); Bj ∈ R+(j = 1, · · · , s) and

1 +
s

∑
j=1

Bj −
r

∑
i=1

Ai > 0.

By comparing Equations (4) and (5), it can be easily seen that

Jµ
ν (z) = 0Ψ1

 ;

(ν + 1, µ);
− z

,

which relates the Bessel-Wright function Jµ
ν (z) to the widely- and extensively-investigated

Fox-Wright function rΨs(z) defined by Equation (5).
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The (p, q)-extended Gauss hypergeometric function Fp,q is defined as follows (see [3]):

Fp,q(a, b; c; z) =
∞

∑
n=0

(a)n
B(b + n, c− b; p, q)

B(b, c− b)
zn

n!
, (6)

where |z| < 1 and <(c) > <(b) > 0.
The third Appell function F3 (also known as one of the functions in Horn’s list) is

defined as follows (see [11]):

F3(α, α′, β, β′; γ; x; y) =
∞

∑
m,n

(α)m(α′)n(β)m(β′)n

(γ)m+n

xm

m!
yn

n!
(max{|x|, |y|} < 1).

Let f and g be two functions having the following power-series representations:

f (z) =
∞

∑
n=0

anzn and g(z) =
∞

∑
n=0

bnzn.

Then the familiar Hadamard product (or convolution) of the functions f and g, is given by

( f ∗ g)(z) :=
∞

∑
n=0

anbnzn =: (g ∗ f )(z). (7)

The introduction of fractional calculus is a very important development in the field
of calculus due to the fact that it has proven to be widely applicable in many fields of
mathematical, physical and applied sciences. Initially, fractional calculus is the study of
derivative and integral operators with a real or complex order, and thus it is a generalization
of the traditional calculus. The fractional derivative was first discussed by l’Hôpital and
Leibniz in the 16th century and attracted the attention of many mathematicians such
as Euler, Laplace, Fourier, Abel, Liouville, Riemann, Grünwald, Letnikov, Weyl, Lévy,
and Riesz. Due to its usefulness in different emerging branches of applied mathematics,
physics, engineering, quantum mechanics, electrical engineering, telecommunications,
digital image processing, robotics, system identification, chemistry, and biology (see, for
example, [12–16]), it has been one of the most significant branches of applied mathematics.
The development and study of fractional calculus opens the possibility of generalizations
of formulas; furthermore, the generalized Marichev-Saigo-Maeda fractional integral was
introduced by Marichev [17] as Mellin-type convolution operators with the Appell function
F3 in their kernel.) These operators were rediscovered and studied by Saigo [18] (and,
subsequently, by Saigo and Maeda [19]) as generalizations of the Saigo fractional integral
operators, which were first studied by Saigo [20] and then applied by Srivastava and
Saigo [21] in their systematic investigation of several boundary-value problems involving
the Euler-Darboux partial differential equation.

We recall here the generalized Marichev-Saigo-Maeda fractional integral and fractional
derivative operators, introduced by Marichev [17], as Mellin type convolution operators
with the Appell function F3 in their kernel, which are defined as follows:(

Iα,α′ ,β,β′ ,γ
0+ f

)
(x) =

x−α

Γ(γ)

∫ x

0
(x− t)γ−1t−α′F3

(
α, α′, β, β′; γ; 1− t

x
, 1− x

t

)
f (t)dt, (8)

(
Iα,α′ ,β,β′ ,γ
− f

)
(x) =

x−α′

Γ(γ)

∫ ∞

x
(t− x)γ−1t−αF3

(
α, α′, β, β′; γ; 1− x

t
, 1− t

x

)
f (t)dt, (9)

(
Dα,α′ ,β,β′ ,γ

0+ f
)
(x) =

(
I−α′ ,−α,−β′ ,−β,−γ
0+ f

)
(x) (10)
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and (
Dα,α′ ,β,β′ ,γ
− f

)
(x) =

(
I−α′ ,−α,−β′ ,−β,−γ
− f

)
(x), (11)

where α, α′, β, β′, γ ∈ C. <(γ) > 0 and x > 0.
By first replacing the parameter α by α + β, and then setting α′ = β′ = 0, β = −η

and γ = α in Equations (8)–(11), the generalized Marichev-Saigo-Maeda fractional integral
and fractional derivative operators reduce to the Saigo fractional integral and derivative
operators Iα,β,η

0+ , Iα,β,η
− , Dα,β,η

0+ and Dα,β,η
− involving the hypergeometric function 2F1 in their

kernel, which are defined by (see [20]; see also [21]):

(
Iα,β,η
0+ f

)
(x) =

x−α−β

Γ(α)

∫ x

0
(x− t)α−1

2F1

(
α + β,−η; α; 1− t

x

)
f (t)dt, (12)

(
Iα,β,η
− f

)
(x) =

1
Γ(α)

∫ ∞

x
t−α−β (t− x)α−1

2F1

(
α + β,−η; α; 1− x

t

)
f (t)dt, (13)

(
Dα,β,η

0+ f
)
(x) =

(
I−α,−β,α+η
0+ f

)
(x) (14)

and (
Dα,β,η
− f

)
(x) =

(
I−α,−β,α+η
− f

)
(x), (15)

where α, β, η ∈ C and x > 0.
Moreover, by taking β = −α in Equations (12)–(15), the Saigo fractional integral and

fractional derivative operators reduce to the Riemann-Liouville integral and fractional
derivative operators of the function f (x) (x ∈ R+) with fractional order α ∈ C

(
<(α) > 0

)
,

which are defined as follows (see [22–24]):

(
Iα
0+ f

)
(x) =

1
Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, (16)

(Iα
− f )(x) =

1
Γ(α)

∫ ∞

x
(t− x)α−1 f (t)dt, (17)

(
Dα

0+ f
)
(x) =

(
d

dx

)n(
In−α
0+ f

)
=

1
Γ(n− α)

(
d

dx

)n ∫ x

0
(x− t)n−α−1 f (t)dt (18)

(
n = [<(α)] + 1

)
and

(Dα
− f )(x) =

(
− d

dx

)n(
In−α
− f

)
(x)(n = [<(α)] + 1)

=
1

Γ(n− α)

(
− d

dx

)n ∫ ∞

x
(t− x)n−α−1 f (t)dt (19)

(
n = [<(α)] + 1

)
.

Further, by taking β = 0 in Equations (12)–(15), the Saigo fractional integral and
derivative operators reduce to the Erdélyi-Kober fractional integral and derivative oper-
ators of the function f (x) (x ∈ R+) with fractional order α ∈ C

(
<(α) > 0

)
, which are

defined as follows (see [25]):
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(
I+η,α f

)
(x) =

x−α−η

Γ(α)

∫ x

0
tη (x− t)α−1 f (t)dt, (20)

(
K−η,α f

)
(x) =

xη

Γ(α)

∫ ∞

x
t−α−η (t− x)α−1 f (t)dt, (21)

(
D+

η,α f
)
(x) = x−η

(
d

dx

)n 1
Γ(n− α)

∫ x

0
tα+η (x− t)n−α−1 f (t)dt (22)

(
n = [<(α)] + 1

)
and (

D−η,α f
)
(x) = xα+η

(
d

dx

)n 1
Γ(n− α)

∫ x

0
t−η (x− t)n−α−1 f (t)dt (23)

(
n = [<(α)] + 1

)
.

In order to obtain our main results, we shall make use of the following lemma:

Lemma 1. Let α, α′, β, β′, γ ∈ C and x ∈ R+. Then the Marichev-Saigo-Maeda fractional integral
and fractional derivative operators of the power function tσ−1 are given as follows (see [20]) :

1. If <(γ) > 0 and <(σ) > max{0,<(α + α′ + β− γ),<(α′ − β′)}, then(
Iα,α′ ,β,β′ ,γ
0+ tσ−1

)
(x)

=
Γ(σ)Γ(σ + γ− α− α′ − β)Γ(σ + β′ − α′)

Γ(σ + β′)Γ(σ + γ− α− α′)Γ(σ + γ− α′ − β)
xσ−α−α′+γ−1. (24)

2. If <(γ) > 0 and <(σ) < 1 + min{<(−β),<(α + α′ − γ),<(α + β′ − γ)}, then(
Iα,α′ ,β,β′ ,γ
− tσ−1

)
(x)

=
Γ(1− σ− β)Γ(1− σ− γ + α + α′)Γ(1− σ + α + β′ − γ)

Γ(1− σ)Γ(1− σ + α + α′ + β′ − γ)Γ(1− σ + α− β)
xσ−α−α′+γ−1. (25)

3. If <(γ) > 0 and <(σ) > max{0,<(γ− α− α′ − β′),<(β− α)}, then(
Dα,α′ ,β,β′ ,γ

0+ tσ−1
)
(x)

=
Γ(σ)Γ(σ− γ + α + α′ + β′)Γ(σ− β + α)

Γ(σ− β)Γ(σ− γ + α + α′)Γ(σ− γ + α + β′)
xσ+α+α′−γ−1. (26)

4. If <(γ) > 0 and <(σ) < 1 + min{<(β′),<(γ− α− α′),<(γ− α′ − β)}, then(
Dα,α′ ,β,β′ ,γ
− tσ−1

)
(x)

=
Γ(1− σ + β′)Γ(1− σ + γ− α− α′)Γ(1− σ− α′ − β + γ)

Γ(1− σ)Γ(1− σ− α− α′ − β + γ)Γ(1− σ− α′ + β′)
xσ+α+α′−γ−1. (27)

The study of fractional calculus provides many important tools for dealing with
derivative and integral equations involving certain special functions and provides the
generalized integrals and derivatives of arbitrary fractional order (see, for example, [21,26]).
For several general results associated with the Marichev-Saigo-Maeda fractional integrals
and derivatives, see the recent work by Srivastava et al. [27].

Motivated by these applications, in this work, we establish various formulas for the
Marichev-Saigo-Maeda fractional derivative and integral operators involving the (p, q)-
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extended Bessel function of the first kind of order ν in terms of the Hadamard product of
the Fox-Wright function and the (p, q)-extended Gauss hypergeometric function.

In the next section, we establish formulas for the Marichev-Saigo-Maeda fractional
integrals and derivatives involving the (p, q)-extended Bessel function Jν,p,q(z) in terms of
the Fox-Wright function rΨs and the (p, q)-extended Gauss hypergeometric function.

2. Marichev-Saigo-Maeda Fractional Integral of the Function Jν,p,q(z)

Now, we establish the Marichev-Saigo-Maeda fractional integral formulas involving
the (p, q)-extended Bessel function of the first kind of order ν; the results are expressed as
the Hadamard product of the Fox-Wright function and the (p, q)-extended Gauss hyperge-
ometric function.

Theorem 1. The Marichev-Saigo-Maeda fractional integral Iα,α′ ,β,β′ ,γ
0+ (α, α′, β, β′, γ, σ, ν ∈ C) of

the (p, q)-extended Bessel function of the first kind Jν,p,q(t) is given by

(
Iα,α′ ,β,β′ ,γ
0+ tσ−1 Jν,p,q(t)

)
(x) =

√
πxσ+ν−α−α′+γ−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− x2

4

)

∗ 3Ψ4

 (σ + ν, 2), (σ + ν + γ− α− α′ − β, 2), (σ + ν + β′ − α′, 2);(
1
2 , 1
)

, (σ + ν + β′, 2), (σ + ν + γ− α− α′, 2), (σ + ν + γ− α′ − β, 2);
− x2

4

, (28)

where <(σ + ν) > max{0,<(α + α′ + β− γ),<(α′ − β′)}, min{<(p),<(q)} = 0, <(ν) >
−1 when p = q = 1 and <(γ) > 0.

Proof. Applying the Marichev-Saigo-Maeda fractional integral operator Iα,α′ ,β,β′ ,γ
0+ , which

is given by Equation (8) on the function Jν,p,q(t), which is given by Equation (2), we have(
Iα,α′ ,β,β′ ,γ
0+ tσ−1 Jν,p,q(t)

)
(x)

∗
∞

∑
n=0

(−1)n√πB
(

n + 1
2 , ν + 1

2 ; p, q
)

n! · 22n+νB
(

1
2 , ν + 1

2

)
Γ(ν + 1)Γ

(
n + 1

2

)(Iα,α′ ,β,β′ ,γ
0+ tσ+ν+2n−1

)
(x). (29)

Now, taking advantage of Equation (24) in Lemma 1 and Equation (29), which is
satisfied under the conditions of Theorem 1, we get

(
Iα,α′ ,β,β′ ,γ
0+ tσ−1 Jν,p,q(t)

)
(x) =

√
πxσ+ν+γ−α−α′−1

2νΓ(ν + 1)

∞

∑
n=0

B
(

n + 1
2 , ν + 1

2 ; p, q
)

B
(

1
2 , ν + 1

2

)
∗

∞

∑
n=0

[
Γ(σ + ν + 2n)Γ(σ + ν + γ− α− α′ − β + 2n)Γ(σ + ν + β′ − α′ + 2n)

Γ
(

n + 1
2

)
Γ(σ + ν + β′ + 2n)Γ(σ + ν + γ− α− α′ + 2n)

· 1
n! Γ(σ + ν + γ− α′ − β + 2n)

(
− x2

4

)n]
. (30)

Therefore, by expressing the above Equation (30) as the Hadamard product of the Fox-
Wright function rΨs, which is given by Equation (5) and the (p, q)-extended Gauss hyper-
geometric function Fp,q, which is given by Equation (6), we obtain the right-hand side of
Equation (28).

Theorem 2. The Marichev-Saigo-Maeda fractional integral Iα,α′ ,β,β′ ,γ
− (α, α′, β, β′, γ, σ, ν ∈ C) of

the (p, q)-extended Bessel function of the first kind is given by
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(
Iα,α′ ,β,β′ ,γ
− tσ−1 Jν,p,q

(
1
t

))
(x) =

√
πxσ−ν−α−α′+γ−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− 1
4x2

)

∗ 3Ψ4

 (1− σ + ν− β, 2), (1− σ + ν− γ + α + α′, 2), (1− σ + ν + α + β′ − γ, 2);(
1
2 , 1
)

, (1− σ + ν, 2), (1− σ + ν + α + α′ + β′ − γ, 2), (1− σ + ν + α− β, 2);
− 1

4x2

, (31)

where <(σ− ν) < 1 + min{<(−β),<(α + α′ − γ),<(α + β′ − γ)}, min{<(p),<(q)} = 0,
<(ν) > −1 when p = q = 1 and <(γ) > 0.

Proof. Performing the Marichev-Saigo-Maeda fractional integral operator Iα,α′ ,β,β′ ,γ
− , which

is given by Equation (9) on the function Jν,p,q(.), which is given by Equation (2), we have(
Iα,α′ ,β,β′ ,γ
− tσ−1 Jν,p,q

(
1
t

))
(x)

∗
∞

∑
n=0

(−1)n√πB
(

n + 1
2 , ν + 1

2 ; p, q
)

n! · 22n+νΓ
(

n + 1
2

)
Γ(ν + 1)B

(
1
2 , ν + 1

2

)(Iα,α′ ,β,β′ ,γ
− tσ−ν−2n−1

)
(x). (32)

Because of Lemma 1, and by using Equation (25) and Equation (32), which are satisfied
under the conditions stated in Theorem 2, we get

(
Iα,α′ ,β,β′ ,γ
− tσ−1 Jν,p,q

(
1
t

))
(x) =

√
πxσ+γ−ν−α−α′−1

2νΓ(ν + 1)

∞

∑
n=0

B
(

n + 1
2 , ν + 1

2 ; p, q
)

B
(

1
2 , ν + 1

2

)
∗

∞

∑
n=0

[
Γ(1− σ + ν− β + 2n)Γ(1− σ + ν− γ + α + α′ + 2n)

Γ
(

n + 1
2

)
Γ(1− σ + ν + 2n)Γ(1− σ + ν + α + α′ + β′ − γ + 2n)

· Γ(1− σ + ν + α + β′ − γ + 2n)
n! Γ(1− σ + ν + α− β + 2n)

(
− 1

4x2

)n
]

. (33)

Therefore, by expressing Equation (33) as the Hadamard product of the Fox-Wright function
rΨs, which is given by Equation (5) and the (p, q)-extended Gauss hypergeometric function
Fp,q, which is given by Equation (6), we obtain the right-hand side of Equation (31).

If we take α = α + β, α′ = β′ = 0, β = −η and γ = α in Theorems 1 and 2, we get
the image formula of the Saigo hypergeometric fractional integrals involving the (p, q)-
extended Bessel function of the first kind Jν,p,q(t), respectively, as follows.

Corollary 1. Let α, β, η, σ, ν ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p =
q = 1 and <(σ + ν) > max{0,<(β− η)}. Then the following Saigo hypergeometric fractional
integral of the function Jν,p,q(t) holds true:

(
Iα,β,η
0+ tσ−1 Jν,p,q(t)

)
(x) =

√
πxσ+ν−β−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− x2

4

)
∗ 2Ψ3

[
(σ + ν + η − β, 2), (σ + ν, 2);(

1
2 , 1
)

, (σ + ν− β, 2), (σ + ν + α + η, 2);
− x2

4

]
. (34)
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Corollary 2. Let α, β, η, σ, ν ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p =
q = 1 and<(σ− ν) > 1+min{<(β),<(η)}. Then the following Saigo hypergeometric fractional
integral Iα,β,η

− of the function Jν,p,q

(
1
t

)
holds true:

(
Iα,β,η
− tσ−1 Jν,p,q

(
1
t

))
(x) =

√
π xσ−ν−β−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− 1
4x2

)

∗ 2Ψ3

[
(1− σ + β + ν, 2), (1 + ν− σ + η, 2);(

1
2 , 1
)

, (1− σ + ν, 2), (1− σ + ν + α + β + η, 2);
− 1

4x2

]
. (35)

If we take β = −α in Corollary 1 and Corollary 2, we obtain the Riemann-Liouville
fractional integrals of the function Jν,p,q as follows.

Corollary 3. Let α, ν, σ ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p = q = 1
and <(σ + ν) > 0. Then the following Riemann-Liouville fractional integral Iα

0+ of Jν,p,q(t)
holds true: (

Iα
0+tσ−1 Jν,p,q(t)

)
(x) =

√
πxσ+ν+α−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− x2

4

)
∗ 1Ψ2

[
(σ + ν, 2);(

1
2 , 1
)

, (σ + ν + α, 2);
− x2

4

]
. (36)

Corollary 4. Let α, σ, ν ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p = q = 1
and <(σ− ν) > 1 + min{<(α)}. Then the following Riemann-Liouville fractional integral Iα

− of

the function Jν,p,q

(
1
t

)
holds true:

(
Iα
−tσ−1 Jν,p,q

(
1
t

))
(x) =

√
πxσ−ν+α−1

2νΓ(ν + 1
2 )

Fp,q

(
1,

1
2

; ν + 1;− 1
4x2

)

∗ 1Ψ2

[
(1− σ− α + ν, 2);(

1
2 , 1
)

, (1− σ + ν, 2);
− 1

4x2

]
. (37)

Upon setting β = 0 in Corollary 1 and Corollary 2, we obtain the Erdélyi-Kober
fractional integrals of the function Jν,p,q as follows.

Corollary 5. Let α, σ, η, ν ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p = q =
1 and <(σ + ν) > −<(η). Then, the following Erdélyi-Kober fractional integral I+α,η , which is
given by Equation (21) and involves the function Jν,p,q(t), holds true:

(
I+α,ηtσ−1 Jν,p,q(t)

)
(x) =

√
πxσ+ν−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− x2

4

)
∗ 1Ψ2

[
(σ + ν + η, 2);(

1
2 , 1
)

, (σ + ν + α + η, 2);
− x2

4

]
. (38)

Corollary 6. Let α, σ, η, ν ∈ C be such that min{<(p),<(q)} = 0,<(ν) > −1 when p = q = 1
and <(σ− ν) < 1 +<(η). Then the following Erdélyi-Kober fractional integral K−α,η , given by

Equation (22) and involving the function Jν,p,q

(
1
t

)
, holds true:
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(
K−α,ηtσ−1 Jν,p,q

(
1
t

))
(x) =

√
πxσ−ν−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− 1
4x2

)

∗ 1Ψ2

[
(1 + ν− σ + η, 2);(

1
2 , 1
)

, (1− σ + ν + α + η, 2);
− 1

4x2

]
. (39)

Remark 1. If we take p = q = 1 in Theorems 1 and 2, we get the results established by Purohit
et al. [8].

3. Marichev-Saigo-Maeda Fractional Derivative of the Function Jν,p,q(z)

In this section, we establish Marichev-Saigo-Maeda fractional derivatives of the (p, q)-
extended Bessel function of the first kind of order ν.

Theorem 3. The Marichev-Saigo-Maeda fractional derivative Dα,α′ ,β,β′ ,γ
0+

(α, α′, β, β′, γ, σ, ν ∈ C) of the function Jν,p,q(t) is given by

(
Dα,α′ ,β,β′ ,γ

0+ tσ−1 Jν,p,q(t)
)
(x) =

√
πxσ+ν+α+α′−γ−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− x2

4

)
∗ 3Ψ4

[
(σ + ν, 2), (σ + ν− γ + α + α′ + β′, 2), (σ + ν− β + α, 2);(

1
2 , 1
)

, (σ + ν− β, 2), (σ + ν− γ + α + α′, 2), (σ + ν− γ + α + β′, 2);
− x2

4

]
, (40)

where <(σ + ν) > max{0,<(γ− α− α′ − β′),<(β− α)}, min{<(p),<(q)} = 0, <(ν) >
−1 when p = q = 1 and <(γ) > 0.

Proof. Benefiting from Equations (10) and (2) in the left-hand side of Equation (40), we
have(

Dα,α′ ,β,β′ ,γ
0+ tσ−1 Jν,p,q(t)

)
(x)

=
∞

∑
n=0

(−1)n√π B
(

n + 1
2 , ν + 1

2 ; p, q
)

n! · 22n+νB
(

1
2 , ν + 1

2

)
Γ(ν + 1)Γ

(
n + 1

2

)(Dα,α′ ,β,β′ ,γ
0+ tν+σ+2n−1

)
(x), (41)

Thus, by using Equations (26) and (41), which are satisfied under the conditions stated
with Theorem 3, we get

(
Dα,α′ ,β,β′ ,γ

0+ tσ−1 Jν,p,q(t)
)
(x) =

√
π xσ+ν−γ+α+α′−1

2ν Γ(ν + 1)

∞

∑
n=0

[
B
(

n + 1
2 , ν + 1

2 ; p, q
)

B
(

1
2 , ν + 1

2

)
· Γ(σ + ν + 2n)Γ(σ + ν− γ + α + α′ + β′ + 2n)

Γ
(

n + 1
2

)
Γ(σ + ν− β + 2n)Γ(σ + ν− γ + α + α′ + 2n)

· Γ(σ + ν− β + α + 2n)
n! Γ(σ + ν− γ + α + β′ + 2n)

(
− x2

4

)n]
. (42)

Therefore, by expressing the above equation (42) as the Hadamard product of the Fox-
Wright function rΨs given by Equation (5) and the (p, q)-extended Gauss hypergeometric
function Fp,q given by Equation (6), we obtain the right-hand side of Equation (40).
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Theorem 4. The Marichev-Saigo-Maeda fractional derivative Dα,α′ ,β,β′ ,γ
−

(α, α′, β, β′, γ, σ, ν ∈ C) of the function Jν,p,q

(
1
t

)
is given by

(
Dα,α′ ,β,β′ ,γ
− tσ−1 Jν,p,q

(
1
t

))
(x) =

√
πxσ−ν+α+α′−γ−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− 1
4x2

)

∗ 3Ψ4

[
(1− σ + ν + β′, 2), (1− σ + ν + γ− α− α′, 2), (1− σ + ν− α′ − β + γ, 2);(

1
2 , 1
)

, (1− σ + ν, 2), (1− σ + ν− α− α′ − β + γ, 2), (1− σ + ν− α′ + β′, 2);
− 1

4x2

]
, (43)

where <(σ − ν) < 1 + min{<(β′),<(γ− α− α′),<(γ− α′ − β)}, min{<(p),<(q)} = 0,
<(ν) > −1 when p = q = 1 and <(γ) > 0.

Proof. In view of Equations (11), (2) and the left-hand side of Equation (43), we have(
Dα,α′ ,β,β′ ,γ
− tσ−1 Jν,p,q

(
1
t

))
(x)

=
∞

∑
n=0

(−1)n√πB
(

n + 1
2 , ν + 1

2 ; p, q
)

n! · 22n+νΓ(ν + 1)Γ
(

n + 1
2

)
B
(

1
2 , ν + 1

2

)(Dα,α′ ,β,β′ ,γ
− tσ−ν−2n−1

)
(x), (44)

Thus, making use of Equation (27) in Lemma 1 and Equation (44), which is satisfied under
the conditions stated with Theorem 4, we get

(
Dα,α′ ,β,β′ ,γ
− tσ−1 Jν,p,q

(
1
t

))
(x) =

√
πxσ−γ−ν+α+α′−1

2νΓ(ν + 1)

∞

∑
n=0

B
(

n + 1
2 , ν + 1

2 ; p, q
)

B
(

1
2 , ν + 1

2

)
·

∞

∑
n=0

[
Γ(1− σ + β′ + ν + 2n)Γ(1− σ + ν + γ− α− α′ + 2n)

Γ
(

n + 1
2

)
Γ(1− σ + ν + 2n)Γ(1− σ + ν− α− α′ − β + γ + 2n)

· Γ(1− σ + ν− α′ − β + γ + 2n)
n! Γ(1− σ + ν− α′ + β′ + 2n)

(
− 1

4x2

)n
]

. (45)

Therefore, by expressing the above Equation (45) as the Hadamard product of the Fox-
Wright function rΨs, given by Equation (5) and the (p, q)-extended Gauss hypergeometric
function Fp,q given by Equation (6), we obtain the right-hand side of Equation (43).

If we take α = α + β, α′ = β′ = 0, β = −η and γ = α in Theorem 3 and Theorem 4, we
get the Saigo hypergeometric fractional derivatives of the (p, q)-extended Bessel function
of the first kind Jν,p,q, respectively, as follows.

Corollary 7. Let α, β, η, ν, σ ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p =
q = 1 and<(σ+ ν) > −max{0,<(β),<(α + β + η)}. Then the following Saigo hypergeometric
fractional derivative of the function Jν,p,q(t) holds true:

(
Dα,β,η

0+ tσ−1 Jν,p,q(t)
)
(x) =

√
πxσ+ν+β−1

2νΓ
(

ν + 1
2

) Fp,q

(
1,

1
2

; ν + 1;− x2

4

)

∗ 2Ψ3

[
(σ + ν, 2), (σ + ν + α + β + η, 2);(

1
2 , 1
)

, (σ + ν + η, 2), (σ + ν + β, 2);
− x2

4

]
. (46)
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Corollary 8. Let α, β, η, σ, ν ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p =
q = 1 and <(σ− ν) > 1 + min{<(−β),<(α + η)}. Then, the following Saigo hypergeometric
fractional derivative of the function Jν,p,q

(
1
t

)
holds true:

(
Dα,β,η
− tσ−1 Jν,p,q

(
1
t

))
(x) =

√
πxσ−ν+β−1

2νΓ
(

ν + 1
2

) Fp,q

(
1,

1
2

; ν + 1;− 1
4x2

)

∗ 2Ψ3

[
(1− σ− β + ν, 2), (1 + ν− σ + α + η, 2);(

1
2 , 1
)

, (1− σ + ν, 2), (1− σ + ν− β + η, 2);
− 1

4x2

]
. (47)

If we take β = −α in Corollaries 7 and 8, we obtain the Riemann-Liouville fractional
derivatives of the function Jν,p,q as follows.

Corollary 9. Let α, η, ν, σ ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p =
q = 1 and <(σ + ν) > max{0,<(α),<(−η)}. Then the following Riemann-Liouville fractional
derivative of the function Jν,p,q(t) holds true:

(
Dα

0+tσ−1 Jν,p,q(t)
)
(x) =

√
πxσ+ν−α−1

2νΓ
(

ν + 1
2

) Fp,q

(
1,

1
2

; ν + 1;− x2

4

)

∗ 1Ψ2

[
(σ + ν, 2);(

1
2 , 1
)

, (σ + ν− α, 2);
− x2

4

]
. (48)

Corollary 10. Let α, η, σ, ν ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p = q =
1 and <(σ− ν) > 1 + min{<(α),<(α + η)}. Then the following Riemann-Liouville fractional
derivative of the function Jν,p,q

(
1
t

)
holds true:

(
Dα
−tσ−1 Jν,p,q

(
1
t

))
(x) =

√
πxσ−ν−α−1

2νΓ
(

ν + 1
2

) Fp,q

(
1,

1
2

; ν + 1;− 1
4x2

)

∗ 1Ψ2

[
(1− σ + α + ν, 2);(

1
2 , 1
)

, (1− σ + ν, 2);
− 1

4x2

]
. (49)

Furthermore, for β = 0, Corollaries 7 and 8 yield the following results for the Erdélyi-
Kober fractional derivatives, respectively.

Corollary 11. Let α, η, ν, σ ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p = q =
1 and <(σ + ν) > −max{0,<(α + η)}. Then the following Erdélyi-Kober fractional derivative
Dα,η

0+ of the function Jν,p,q(t) holds true:

(
Dα,η

0+ tσ−1 Jν,p,q(t)
)
(x) =

√
πxσ+ν−1

2νΓ
(

ν + 1
2

) Fp,q

(
1,

1
2

; ν + 1;− x2

4

)

∗ 1Ψ2

[
(σ + ν + α + η, 2);(

1
2 , 1
)

, (σ + ν + η, 2);
− x2

4

]
. (50)

Corollary 12. Let α, η, σ, ν ∈ C be such that min{<(p),<(q)} = 0, <(ν) > −1 when p =
q = 1 and <(σ− ν) > 1 +<(α + η). Then the following Erdélyi-Kober fractional derivative Dα,η

−
of the function Jν,p,q

(
1
t

)
holds true:
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(
Dα,η
− tσ−1 Jν,p,q

(
1
t

))
(x) =

√
πxσ−ν−1

2νΓ
(

ν + 1
2

) Fp,q

(
1,

1
2

; ν + 1;− 1
4x2

)

∗ 1Ψ2

[
(1 + ν− σ + α + η, 2);(

1
2 , 1
)

, (1− σ + ν + η, 2);
− 1

4x2

]
. (51)

4. Marichev-Saigo-Maeda Fractional Calculus of the (p, q)-Extended
Bessel-Wright Function

In this section, we first introduce the (p, q)-extended Bessel-Wright function. We
then establish the results for the Marichev-Saigo-Maeda fractional integrals and fractional
derivatives involving the (p, q)-extended Bessel-Wright function.

The (p, q)-extended Bessel-Wright function Jµ
ν,p,q(z) is defined, in terms of the (p, q)-

extended Beta function, by

Jµ
ν,p,q(z) =

1

Γ
(

ν + 1
2

) ∞

∑
n=0

B
(

µn + 1
2 , ν + 1

2 ; p, q
)

Γ
(

µn + 1
2

) (−z)n

n!
, (52)

or, equivalently, by

Jµ
ν,p,q(z) =

√
π

Γ(ν + 1)

∞

∑
n=0

B
(

µn + 1
2 , ν + 1

2 ; p, q
)

B
(

1
2 , ν + 1

2

)
Γ
(

µn + 1
2

) (−z)n

n!
, (53)

where ν, z ∈ C, µ > 0, min{<(p),<(q)} = 0, <(ν) > −1 when p = q = 1 and B(x, y; p, q)
is given by the Equation (3).

We now establish the following formulas of the Marichev-Saigo-Maeda fractional
integrals involving the (p, q)-extended Bessel-Wright function Jµ

ν,p,q(z) in terms of the
Hadamard product of the Fox-Wright function rΨs and the (p, q)-extended Gauss hyperge-
ometric function.

Theorem 5. The Marichev-Saigo-Maeda fractional integral Iα,α′ ,β,β′ ,γ
0+ (α, α′, β, β′, γ, σ, ν ∈ C) of

the (p, q)-extended Bessel-Wright function Jµ
ν,p,q(t) is given by

(
Iα,α′ ,β,β′ ,γ
0+ tσ−1 Jµ

ν,p,q(t)
)
(x) =

√
πxσ−α−α′+γ−1

Γ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;−x
)

∗ 3Ψ4

[
(σ, 1), (σ + γ− α− α′ − β, 1), (σ + β′ − α′, 1);(

1
2 , µ
)

, (σ + β′, 1), (σ + γ− α− α′, 1), (σ + γ− α′ − β, 1);
− x

]
, (54)

where <(σ) > max{0,<(α + α′ + β− γ),<(α′ − β′)}, min{<(p),<(q)} = 0, <(ν) > −1
when p = q = 1, <(γ) > 0 and µ > 0.

Theorem 6. The Marichev-Saigo-Maeda fractional integral Iα,α′ ,β,β′ ,γ
− (α, α′, β, β′, γ, σ, ν ∈ C) of

the (p, q)-extended Bessel-Wright function Jµ
ν,p,q(t) is given by(

Iα,α′ ,β,β′ ,γ
− tσ−1 Jµ

ν,p,q

(
1
t

))
(x) =

√
πxσ−α−α′+γ−1

Γ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− 1
x

)

∗ 3Ψ4

[
(1− σ− β, 1), (1− σ− γ + α + α′, 1), (1− σ + α + β′ − γ, 1);(

1
2 , µ
)

, (1− σ, 1), (1− σ + α + α′ + β′ − γ, 1), (1− σ + α− β, 1);
− 1

x

]
, (55)

where <(σ) < 1 + min{<(−β),<(α + α′ − γ),<(α + β′ − γ)}, min{<(p),<(q)} = 0,
<(ν) > −1 when p = q = 1,<(γ) > 0 and µ > 0.
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We also establish the following results of the Marichev-Saigo-Maeda fractional deriva-
tives involving the (p, q)-extended Bessel-Wright function Jµ

ν,p,q(z) in terms of the Hadamard
product of the Fox-Wright function rΨs and the (p, q)-extended Gauss hypergeometric
function.

Theorem 7. The Marichev-Saigo-Maeda fractional derivative Dα,α′ ,β,β′ ,γ
0+ (α, α′, β, β′, γ, σ, ν ∈ C)

involving the (p, q)-extended Bessel-Wright function Jµ
ν,p,q(t) of the first kind is given by

(
Dα,α′ ,β,β′ ,γ

0+ tσ−1 Jµ
ν,p,q(t)

)
(x) =

√
πxσ+α+α′−γ−1

2νΓ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;−x
)

∗ 3Ψ4

[
(σ, 1), (σ− γ + α + α′ + β′, 1), (σ− β + α, 1);(

1
2 , µ
)

, (σ− β, 1), (σ− γ + α + α′, 1), (σ− γ + α + β′, 1);
− x

]
, (56)

where <(σ) > max{0,<(γ− α− α′ − β′),<(β− α)}, min{<(p),<(q)} = 0, <(ν) > −1
when p = q = 1, <(γ) > 0 and µ > 0.

Theorem 8. The Marichev-Saigo-Maeda fractional derivative Dα,α′ ,β,β′ ,γ
− (α, α′, β, β′, γ, σ, ν ∈ C)

of the (p, q)-extended Bessel-Wright function Jµ
ν,p,q

(
1
t

)
is given by

(
Dα,α′ ,β,β′ ,γ
− tσ−1 Jµ

ν,p,q

(
1
t

))
(x) =

√
πxσ+α+α′−γ−1

Γ(ν + 1)
Fp,q

(
1,

1
2

; ν + 1;− 1
x

)

∗ 3Ψ4

[
(1− σ + β′, 1), (1− σ + γ− α− α′, 1), (1− σ− α′ − β + γ, 1);(

1
2 , µ
)

, (1− σ, 1), (1− σ− α− α′ − β + γ, 1), (1− σ− α′ + β′, 1);
− 1

x

]
, (57)

where <(σ) < 1 + min{<(β′),<(γ− α− α′),<(γ− α′ − β)}, min{<(p),<(q)} = 0,
<(ν) > −1 when p = q = 1, <(γ) > 0 and µ > 0.

The proofs of Theorems 5, 6, 7 and 8 are similar to those that we have already fully
described for Theorems 1, 2, 3 and 4, respectively. We, therefore, choose to omit the details
involved.

5. Conclusions

Motivated by the demonstrated usages and the potential for applications of the various
operators of fractional calculus (that is, fractional integral and fractional derivative) and
also of the considerably large spectrum of special functions and higher transcendental
functions in mathematical, physical, engineering, biological and statistical sciences, we
have established here several new formulas and new results for the Marichev-Saigo-Maeda
fractional integral and fractional derivative operators, which are applied on the (p, q)-
extended Bessel function Jν,p,q(z). Our results have been expressed as the Hadamard
product of the (p, q)-extended Gauss hypergeometric function Fp,q(a, b; c; z) and the Fox-
Wright function rΨs(z). Some special cases of our main results have also been considered.
Furthermore, we have introduced and investigated the (p, q)-extended Bessel-Wright
function Jµ

ν,p,q(z). Finally, we have proved several new formulas for the Marichev-Saigo-
Maeda fractional integral and fractional derivative operators involving the (p, q)-extended
Bessel-Wright function Jµ

ν,p,q(z).
In concluding this investigation, we choose to indicate the possibility of further

researches involving basic or quantum (or q-) extensions of the results which we have
presented in this paper. At the same time, in order not to encourage the current trend
of some amateurish-type publications, the authors should refer the interested reader to
the well-demonstrated observations in [24] (pp. 1511–1512) that this trend of trivially and
inconsequentially translating known q-results into the corresponding (p, q)-results leads to
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no more than a straightforward and shallow variation of the known q-results by means of
a forced-in redundant (or superfluous) parameter p.
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