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Abstract: In this work, by establishing new asymptotic properties of non-oscillatory solutions of
the even-order delay differential equation, we obtain new criteria for oscillation. The new criteria
provide better results when determining the values of coefficients that correspond to oscillatory
solutions. To explain the significance of our results, we apply them to delay differential equation of
Euler-type.
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1. Introduction

This work is devoted to study and discussion of the oscillatory behavior of solutions
of the even-order delay differential equations (DDEs)(

c(s)u(n−1)(s)
)′

+ p(s)u(θ(s)) = 0, s ≥ s0, (1)

under the hypotheses:

Hypothesis 1 (H1). n ≥ 4 is an even integer;

Hypothesis 2 (H2). c, p ∈ C([s0, ∞)), c(s) > 0, c′(s) ≥ 0, p(s) ≥ 0, and∫ ∞

s0

c−1(ξ)dξ < ∞; (2)

Hypothesis 3 (H3). θ ∈ C([s0, ∞)), θ(s) < s, θ′(s) ≥ 0, and lims→∞ θ(s) = ∞.

By a proper solution of (1), we mean a real-valued function u ∈ Cn−1([s0, ∞)) with
cu(n−1) ∈ C1([s0, ∞)), and sup{|u(ζ)| : ζ ≥ s} > 0, for s ∈ [s0, ∞), and u satisfies (1) on
[s0, ∞). A solution u of (1) is called non-oscillatory if it is eventually positive or eventually
negative; otherwise, it is called oscillatory. The equation itself is termed oscillatory if all its
solutions oscillate.

The interest in studying the qualitative properties of differential equations have been
increasing in recent years due to several applications of such equations in different life
sciences see [1–3]. Works [4–7] contributed to the development of the oscillation theory
of second-order DDEs, and works [8–10] to the development of the oscillation theory of
neutral DDEs.

Even-order differential equations are frequently experienced in mathematical models
of different biological, physical, and chemical phenomena. Applications include, for
example, issues of flexibility, deformity of constructions, or soil settlement; see [11].
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Our interest in this work is focused on DDEs of the even-order, which has attracted
the attention of researchers, for a follow-up to developments in the study the oscillation of
even-order DDEs in the canonical case, see for example [12–14].

Baculíková et al. [15] studied the oscillatory properties of the DDE(
c(s)

(
u(n−1)(s)

)α)′
+ p(s) f (u(θ(s))) = 0, (3)

in the canonical case ∫ ∞

s0

c−1/α(ξ)dξ = ∞,

and the non-canonical case ∫ ∞

s0

c−1/α(ξ)dξ < ∞. (4)

In the non-canonical case (4), they proved that if the first-order DDE

υ′(s) +
1

c1/β(s)

(∫ s

s0

p(ξ)
(

ε1θn−2(ξ)

(n− 2)!

)β

dξ

)1/β

υ(θ(s)) = 0

is oscillatory for some ε1 ∈ (0, 1), then there are no solutions to (3) that belong to the
following class

K :=
{

u(s) : u(s) > 0, u′(s) > 0, u(n−2)(s) > 0, and u(n−1)(s) < 0, eventually
}

.

By Riccati substitution, Zhang et al. [16,17] studied Equation (3) when f (u) := uα

where α is a quotient of odd positive integers, and created the criterion

lim sup
s→∞

∫ s

s0

((
ε2θn−2(ξ)

(n− 2)!

)β

p(ξ)
(∫ ∞

ξ
c−1/β(z)dz

)β

− (β/(β + 1))β+1

c1/β(ξ)
∫ ∞

ξ c−1/β(z)dz

)
dξ = ∞.

for some ε2 ∈ (0, 1), to ensure that the class K is empty. As an extension and complement
to the results in [17], Moaaz et al. [18] recently used a generalized Riccati substitution to
prove that if there is a ρ ∈ C1([s0, ∞),R+) that satisfies

lim sup
s→∞

(∫ ∞
s c−1/β(z)dz

)β

ρ(s)

∫ s

s0

(
ρ(ξ)p(ξ)

( ε3

2
θ2(ξ)

)β
− c(ξ)(ρ′(ξ))β+1

(β + 1)(β+1)ρβ(ξ)

)
dξ > 1,

for some ε3 ∈ (0, 1), then the class K is empty.
On the other hand, the study of oscillation of odd-order differential equations has

received great interest in the last two years, see for example [19–23]. The study of odd and
even differential equations differs in that when studying odd differential equations, the
different states of the derivatives of the positive solutions increase, which increases the
restrictions imposed when testing the oscillation. Therefore, most of the works interested
in studying the oscillation of delay differential equations focus only on one type, either
even or odd differential equations.

In this paper, we derive new asymptotic properties of the solutions to Equation (1),
which belong to class K. Then, we improve these properties by using approaches of an
iterative nature. After that we get a new criterion that guarantees that there are no solutions
in class K. Finally, we discuss the effect of this new criterion on the oscillatory properties of
the solutions of (1).

The following lemmas are needed in the proofs of our main results.
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Lemma 1. ([24] (Lemma 2.2.3)) Suppose that G ∈ Cr([s0, ∞), (0, ∞)), G(r)(s) is of fixed sign
for all s ≥ s1 for some s1 ≥ s0, G(r) 6= 0 on a subray of [s0, ∞) and lims→∞ G(s) 6= 0. If
G(r−1)(s)G(r)(s) ≤ 0 for s ∈ [s1, ∞), then there is a sλ ≥ s1 such that

G(s) ≥ ε

(r− 1)!
sr−1

∣∣∣G(r−1)(s)
∣∣∣,

for ε ∈ (0, 1) and s ∈ [sλ, ∞).

2. Main Results

For brevity, we denote the set of all eventually positive solutions of (1) by U∗. More-
over, we define the operators wk by

w0(s) :=
∫ ∞

s
c−1(ξ)dξ, wk(s) :=

∫ ∞

s
wk−1(ξ)dξ, for k = 1, 2, ..., n− 2.

Lemma 2. Assume that u ∈ U∗ and satisfies

u′(s) and u(n−2)(s) are positive, and u(n−1)(s) is negative for s ≥ s1 ∈ [s0, ∞). (C1)

If ∫ ∞

s0

(
1

c(z)

∫ z

s2

θn−2(ξ)p(ξ)dξ

)
dz = ∞, (5)

then, for all ε0 ∈ (0, 1),

(c0,1) u(s) ≥ ε0

(n− 2)!
sn−2u(n−2)(s);

(c0,2) lim
s→∞

u(n−2)(s) = 0;

(c0,3) u(n−2)(s) ≥− w0(s)c(s)u(n−1)(s) and
d
ds

u(n−2)(s)
w0(s)

> 0.

Proof. For (c0,1): Using Lemma 1 with G = u and r = n− 1, we obtain that (c0,1) holds.
For (c0,2): From (1), we note that c · u(n−1) is non-increasing. Since u(n−2)η, we have that
lims→∞ u(n−2)(s) = $0 ≥ 0. If we suppose the contrary that $0 > 0, then there is a s2 ≥ s1
with u(n−2)(s) ≥ $0 for s ≥ s2, which with (1) and (c0,1) gives

(
c(s)u(n−1)(s)

)′
≤ −ε0

θn−2(s)
(n− 2)!

u(n−2)(s)p(s)

≤ − ε0$0

(n− 2)!
θn−2(s)p(s).

Integrating this inequality from s2 to s, we arrive at

c(s)u(n−1)(s) ≤ c(s2)u(n−1)(s2)−
ε0$0

(n− 2)!

∫ s

s2

θn−2(ξ)p(ξ)dξ

≤ − ε0$0

(n− 2)!

∫ s

s2

θn−2(ξ)p(ξ)dξ,

or
u(n−1)(s) ≤ ε0$0

(n− 2)!
1

c(s)

∫ s

s2

(
θn−2(ξ)

)
p(ξ)dξ.

By integrating again from s2 to s, we get

u(n−2)(s) ≤ u(n−2)(s2)−
ε0$0

(n− 2)!

∫ s

s2

(
1

c(z)

∫ z

s2

θn−2(ξ)p(ξ)dξ

)
dz, (6)
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which with (5) gives lims→∞ u(n−2)(s) = −∞, a contradiction. Therefore, u(n−2)(s) converges
to zero.
For (c0,3): From the properties of the derivatives in (C1), we have that

lim
s→∞

u(n−2)(s)− u(n−2)(s) =
∫ ∞

s

c(ξ)u(n−1)(ξ)

c(ξ)
dξ ≤ c(s)u(n−1)(s)w0(s),

or equivalently.
u(n−2)(s) ≥ −c(s)u(n−1)(s)w0(s).

Thus, we see that

w2
0

d
ds

u(n−2)(s)
w0(s)

= w0(s)u(n−1)(s) + c−1(s)u(n−2)(s) ≥ 0.

Lemma 3. Assume that u ∈ U∗which satisfies (C1), and (5) holds. If there exists a γ0 ∈ (0, 1)
such that

p(s)θn−2(s)c(s)w2
0(s) ≥

(n− 2)!
ε0

γ0, (7)

for all ε0 ∈ (0, 1), then there is s1 ∈ [s0, ∞) such that

(c1,0)
d
ds

u(n−2)(s)
wγ0

0 (s)
≤ 0;

(c2,0) lim
s→∞

u(n−2)(s)
wγ0

0 (s)
= 0,

for s ≥ s1.

Proof. Assume that u ∈ U∗which satisfies (C1). From Lemma 2, we have that (c0,1)− (c0,3)
hold. Performing some simple computation and using (1), (7), (c0,1) and (c0,3), we obtain(

c(s)u(n−1)(s)
)′

= −p(s)u(θ(s)) [using (1)]

≤ − ε0

(n− 2)!
p(s)θn−2(s)u(n−2)(θ(s)) [using (c0,1)] (8)

≤ − γ0

c(s)w2
0(s)

u(n−2)(s) [using (7)]. (9)

Integrating the above inequality from s1 to s, we get

c(s)u(n−1)(s) ≤ c(s1)u(n−1)(s1)− γ0

∫ s

s1

1
c(ξ)w2

0(ξ)
u(n−2)(ξ)dξ

≤ c(s1)u(n−1)(s1) + γ0
u(n−2)(s)

w0(s1)
− γ0

u(n−2)(s)
w0(s)

. (10)

From (c0,2), there is a s2 ≥ s1 such that

c(s1)u(n−1)(s1) + γ0
u(n−2)(s)

w0(s1)
≤ 0 for s ≥ s2.

Thus, (10) turn into

w0(s)u(n−1)(s) ≤ −γ0c−1(s)u(n−2)(s), (11)
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which yields (
u(n−2)(s)

wγ0
0 (s)

)′
=

w0(s)u(n−1)(s) + γ0c−1(s)u(n−2)(s)

wγ0+1
0 (s)

≤ 0. (12)

Now, from (12), we have u(n−2)(s)/wγ0
0 (s) is positive decreasing. Then,

lim
s→∞

u(n−2)(s)/wγ0
0 (s) = k ≥ 0.

Suppose that k > 0, and so there is a s2 ≥ s1 with

u(n−2)(s)
wγ0

0 (s)
≥ k, for s ≥ s2. (13)

We define the function

ξ(s) :=
u(n−2)(s) + w0(s)c(s)u(n−1)(s)

wγ0
0 (s)

.

Then, from (c0,3), ξ(s) > 0 for s ≥ s1. Differentiating ξ(s) and using (9), we get

ξ ′(s) =
wγ0+1

0 (s)
(

c(s)u(n−1)(s)
)′

+ γ0u(n−2)(s)c−1(s)wγ0−1
0 (s) + γ0wγ0

0 (s)u(n−1)(s)

w2γ0
0 (s)

≤ γ0u(n−1)(s)
wγ0

0 (s)
. (14)

Using (11) and (13), w0(s)u(n−1)(s) ≤ −$0γ0c−1(s)wγ0
0 (s), which with (14) gives

ξ ′(s) ≤ −$0γ2
0(1/(c(s)w0(s))). Integrating this inequality from s1 to s, we arrive at

ξ(s1) ≥ ξ(s1)− ξ(s) ≥ $0γ2
0 ln

w0(s1)

w0(s)
→ ∞ as s→ ∞,

which is a contradiction. Thus, u(n−2)(s)/wγ0
0 (s) converges to zero.

Lemma 4. Assume that u ∈ U∗which satisfies (C1), and (5) holds. If

lim inf
s→∞

w0(θ(s))
w0(s)

:= κ < ∞, (15)

and there exists an increasing sequence {γr}m
r=0,

γr := γ0
κγr−1

1− γr−1
,

with γm ∈ (0, 1) and γ0 satisfies (7), then there is s1 ∈ [s0, ∞) such that

(c1,r)
d
ds

u(n−2)(s)
wγr

0 (s)
≤ 0;

(c2,r) lim
s→∞

u(n−2)(s)
wγr

0 (s)
= 0,

for all s ≥ s1.
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Proof. Assume that u ∈ U∗which satisfies (C1). From Lemma 2 and Lemma 3, we have
that (c0,1)− (c0,3), (c1,0) and (c2,0) hold. We will prove this lemma by induction. Now, we
assume that (c1,r) and (c2,r) hold for r > 0. Proceeding as in the proof of Lemma 3, we
arrive at (8) holds. Using (c1,r), (8) becomes

(
c(s)u(n−1)(s)

)′
≤ − ε0

(n− 2)!
p(s)θn−2(s)

wγr
0 (θ(s))
wγr

0 (s)
u(n−2)(s).

Integrating this inequality from s1 to s, we find

c(s)u(n−1)(s) ≤ c(s1)u(n−1)(s1)

− ε0

(n− 2)!

∫ s

s1

p(ξ)θn−2(ξ)
wγr

0 (θ(ξ))

wγr
0 (ξ)

u(n−2)(ξ)dξ

≤ c(s1)u(n−1)(s1)

− ε0

(n− 2)!
u(n−2)(s)

wγr
0 (s)

∫ s

s1

wγr−1
0 (ξ)p(ξ)θn−2(ξ)

wγr
0 (θ(ξ))

wγr
0 (ξ)

dξ,

which with (7) and (15) gives

c(s)u(n−1)(s) ≤ c(s1)u(n−1)(s1)− γ0κγr
u(n−2)(s)

wγr
0 (s)

∫ s

s1

wγr−2
0 (ξ)

c(ξ)
dξ

≤ c(s1)u(n−1)(s1) +
γ0κγr

1− γr

u(n−2)(s)
wγr

0 (s)
wγr−1

0 (s1)−
γ0κγr

1− γr

u(n−2)(s)
w0(s)

.

Thus, using the fact that lims→∞ u(n−2)(s)/wγr
0 (s) = 0, we find

c(s1)u(n−1)(s1) +
γ0κγr

1− γr

u(n−2)(s)
wγr

0 (s)
wγr−1

0 (s1) ≤ 0,

eventually, and then

c(s)u(n−1)(s) ≤ −γr+1
u(n−2)(s)

w0(s)
.

Therefore,(
u(n−2)(s)
wγr+1

0 (s)

)′
=

w0(s)u(n−1)(s) + γr+1c−1(s)u(n−2)(s)

wγr+1+1
0 (s)

≤ 0.

Now, we have that u(n−2)/wγr+1
0 is a positive decreasing function. Then,

lim
s→∞

u(n−2)(s)/wγr+1
0 (s) = h ≥ 0.

Assume that h > 0. Hence, u(n−2)(s)/wγr+1
0 (s) > h for all s ≥ s2 for some s2 ≥ s1.

Replacing γ0 with γr+1, and proceeding as in the proof of (c2,0), we can verify that (c2,r+1)
holds.

Theorem 1. Assume that (5), (15),

lim inf
s→∞

∫ s

θ(s)
p(ξ)

θn−1(ξ)

c(θ(ξ))
dξ >

(n− 1)!
e

, (16)

and

lim sup
s→∞

∫ s

s0

(
p(ξ)R(ξ)− (R′(ξ))2

R(ξ)R1(ξ)

)
dξ = ∞, (17)
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where

R(s) =
1

(n− 3)!

∫ ∞

s
(ξ − l)n−3w0(ξ)dξ;

R1(s) =
1

(n− 4)!

∫ ∞

s
(ξ − l)n−4w0(ξ)dξ.

If there exists a γ0 ∈ (0, 1) satisfies (7) and

lim inf
s→∞

∫ s

θ(s)
p(ξ)w0(ξ)θ

n−2(ξ)dξ > (n− 2)!
1− γm

ε0e
, (18)

then every solution of (1) is oscillatory, where γm < 1 is defined as in Lemma 4.

Proof. Assume the contrary that ψ ∈ U∗. Then, from Lemma 2.2.1 [24], we have the
following three cases, eventually:

(a) u(j)(s) > 0 for j = 0, 1, n− 1 and u(n)(s) < 0;

(b) u(j)(s) > 0 for j = 0, 1, n− 2 and u(n−1)(s) < 0;

(c) (−1)ju(j)(s) > 0 for j = 0, 1, ..., n− 1.

From [17] (Theorem 2.1), the conditions (16) and (17) rule out the cases (a) and (c),
respectively.

Then, we have (b) holds. From Lemma 4, we have that (c1,m) and (c2,m) hold. Now,
we define

M(s) = cu(n−1)(s)w0(s) + u(n−2)(s). (19)

Then, from (c0,3), M(s) > 0 for s ≥ s2, and

M′(s) =
(

cu(n−1)(s)
)′

w0(s),

and so
M′(s) =

(
cu(n−1)(s)

)′
w0(s) ≤ −p(s)w0(s)u(θ(s)). (20)

From (c1,m) and (19), we get

M(s) ≤ (1− γm)u(n−2)(s).

Using (c0,1), we have

M(s) ≤ (1− γm)u(n−2)(s) ≤ (1− γm)
(n− 2)!
ε0sn−2 u(s).

Thus, (20) becomes

M′(s) + p(s)w0(s)
ε0θn−2(s)

(n− 2)!(1− γm)
M(θ(s)) ≤ 0. (21)

Hence, M is a positive solution of the differential inequality (21). Using Theorem 1
in [25], the equation

M′(s) + p(s)w0(s)
ε0θn−2(s)

(n− 2)!(1− γm)
M(θ(s)) = 0 (22)

has also a positive solution. However, from Theorem 2 in [26] that condition (18) implies
oscillation of (22), a contradiction.
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Example 1. Consider the DDE of Euler type

(s4u′′′(s))′ + p0u(θ0s) = 0, (23)

where s ≥ 1, θ0 ∈ (0, 1) and p0 < 18/θ0. Then, we conclude that

w0(s) =
1

3s3 , w1(s) =
1

6s2 , w2(s) =
1
6s

,

and so (5) holds. Now, conditions (16) and (17) reduce to

p0 ln
1
θ0

>
6θ0

e
,

and p0 > 6. By choosing γ0 = 1
18 θ0 p0 < 1, we obtain that (7) holds, and (18) becomes

p0 ln
1
θ0

<
1

3eθ2
0
(18− θ0 p0).

Using Theorem 1, equation (23) is oscillatory if

p0 > max

{
6,

6θ0

e ln(1/θ0)
,

18
θ0 + 3θ2

0e ln(1/θ0)

}
. (24)

Remark 1. In particular, consider the DDE (s4u′′′(s))′ + p0u(s/2) = 0. To the best of our
knowledge, the results in [17,18] provide the sharp criterion for the oscillation of this equation,
which is p0 > 18. However, the condition (24) provides a sharper result, p0 > 9.4087.

3. Conclusions

A new criterion of oscillation of a class of even-order delay differential equations is
established. The approach used is based on improving the asymptotic properties of the
positive solutions of the studied equation. The new criterion inferred provides more sharp
results compared to the related results in the literature. It is interesting to extend the results
obtained on the neutral delay differential equations.
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