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Abstract: Inequality theory has attracted considerable attention from scientists because it can be
used in many fields. In particular, Hermite–Hadamard and Simpson inequalities based on convex
functions have become a cornerstone in pure and applied mathematics. We deal with Simpson’s
second-type inequalities based on coordinated convex functions in this work. In this paper, we
first introduce Simpson’s second-type integral inequalities for two-variable functions whose second-
order partial derivatives in modulus are convex on the coordinates. In addition, similar results are
acquired by considering that powers of the absolute value of second-order partial derivatives of these
two-variable functions are convex on the coordinates. Finally, some applications for Simpson’s 3/8
cubature formula are given.
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1. Introduction and Preliminaries

Simpson’s rules (Thomas Simpson 1710–1761) are well-known methods in numerical
analysis for the purpose of numerical integration and the numerical approximation of
definite integrals. Two famous Simpson rules are known in the literature, and one of them
is the following estimation known as Simpson’s second-type (Simpson’s 3

8 ) inequality.

Theorem 1. Let F : [a, b] ⊂ R→ R be a four-time continuously differentiable mapping on [a, b]
and ‖ F (4) ‖∞= supκ1∈[a,b] |F (4)| < ∞. Then, the following inequality holds:∣∣∣∣18

[
F (a) + 3F

(
2a + b

3

)
+ 3F

(
a + 2b

3

)
+F (b)

]
− 1

b− a

∫ b

a
F (κ1)dκ1

∣∣∣∣
≤ 1

6480
‖ F (4) ‖∞ (b− a)5.

This result is also named a Newton-type inequality in the literature. Simpson- and
Newton-type inequalities have attracted remarkable attention from the related researchers
because these results have wide application areas in the applied sciences of mathematics.
New Newton-type inequalities based on three-step quadratic kernels for various classes of
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functions have been developed by many authors. For illustration purposes, some Simpson-
type inequalities for s-convex functions were provided by Alomari et al. in [1]. In [2],
Sarikaya et al gave some inequalities of Simpson’s type based on s-convexity and their
applications for special means of real numbers. What is more, some Hadamard- and
Simpson-type results for functions’ second derivatives of which are s-convex in the second
sense were deduced by Park in [3]. In addition, Gao and Shi obtained new inequalities of
Newton’s type for functions whose absolute values of second derivatives are convex in [4].
Afterwards, Hermite–Hadamard-, Simpson- and Newton-type inequalities for harmonically
convex mappings have been observed by some researchers. As an example, authors have
examined Newton-type results for harmonic and p-harmonic convex functions in [5,6].

Dragomir introduced the concept of coordinated convex functions in [7] as follows:

Definition 1. A function F : ∆ = [a, b]× [c, d] → R is said to be coordinated convex on the
rectangle ∆ if

F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)) ≤ (1− τ1)(1− τ2)F (a, c) + (1− τ1)τ2F (a, d)

+ τ1(1− τ2)F (b, c) + τ1τ2F (b, d),

for all (a, b), (c, d) ∈ ∆ and τ1, τ2 ∈ [0, 1].

Recently, several papers have been written on convex functions and their variant
forms on the coordinates. For example, Sarikaya et al. [2] proved some new trapezoidal-
type inequalities for differentiable coordinated convex functions on a rectangle from the
plane R2. Later, Latif et al. [8] established some new midpoint-type inequalities for dif-
ferentiable coordinated convex functions with two variables. The authors provided some
Hermite–Hadamard-type inequalities for coordinated convex functions in [9–11]. Alomari
et al. [12] obtained the Hermite–Hadamard-type inequality for s-convex functions on the
coordinates. Latif et al. [13] proved the analogous results for h-convex functions on the
coordinates. Alomari et al. established some Hadamard-type inequalities for coordinated
log-convex functions in [14]. Simpson-type inequalities on coordinates were introduced
by Özdemir et al. [15]. For more recent developments and generalizations, see [8,16–20].
Chen [21] introduced the following lemma which generalized the previously known re-
sults; see [2,8,15]. For the appropriate and suitable choices of λ, he obtained several new
and known midpoints, trapezoidal and Simpson’s 1

3 -type inequalities for differentiable
coordinated convex and concave functions in two variables.

Lemma 1. Let F : ∆ ⊂ R2 → R be a partial differentiable mapping on the rectangle ∆ :=
[a, b] × [c, d] in R2 with a < b and c < d. If ∂2F

∂τ1∂τ2
∈ L(∆) and λ ∈ [0, 1], then for any

τ1, τ2 ∈ [0, 1] and (κ1,κ2) ∈ ∆, we possess the inequality

1
(b− a)(d− c)

∫ b

a

∫ d

c
F (κ1,κ2)dκ2dκ1 (1)

+ (1− λ)2F
(

a + b
2

,
c + d

2

)
+

λ(1− λ)

2

[
F
(

a,
c + d

2

)
+F

(
b,

c + d
2

)
+F

(
a + b

2
, c
)
+F

(
a + b

2
, d
)]

+
λ2

4
[F (a, c) +F (a, d) +F (b, c) +F (b, d)]

− 1
2(b− a)

∫ b

a

(
λF (κ1, c) + 2(1− λ)F

(
κ1,

c + d
2

)
+ λF (κ1, d)

)
dκ1

− 1
2(d− c)

∫ d

c

(
λF (a,κ2) + 2(1− λ)F

(
a + b

2
,κ2

)
+ λF (b,κ2)

)
dκ2

= (b− a)(d− c)
∫ 1

0

∫ 1

0
M(τ)

∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2dτ1,
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where

M(τ) =


(τ1 − λ

2 )(τ2 − λ
2 ), (τ1, τ2) ∈ [0, 1

2 ]× [0, 1
2 ]

(τ1 − λ
2 )(τ2 − (1− λ

2 )), (τ1, τ2) ∈ [0, 1
2 ]× ( 1

2 , 1]

(τ1 − (1− λ
2 ))(τ2 − λ

2 ), (τ1, τ2) ∈ ( 1
2 , 1]× [0, 1

2 ]

(τ1 − (1− λ
2 ))(τ2 − (1− λ

2 )), (τ1, τ2) ∈ ( 1
2 , 1]× ( 1

2 , 1].

Inspired and motivated by the ongoing research on coordinates, in this paper we es-
tablish an auxiliary result to obtain new Simpson second-type inequalities for coordinated
convex functions. With the help of this result, Simpson’s second-type integral inequali-
ties for mappings whose second-order partial derivatives in modulus are convex on the
coordinates on the rectangle from the plane are given. Additionally, new estimations for
Simpson’s 3/8 cubature formula are presented via the results developed in this study.

2. Main Results

In this section, we obtain the Simpson’s second-type integral inequalities based on the
following lemma in two variables.

Lemma 2. Suppose the function F : ∆ ⊂ R2 → R is partial differentiable on the rectangle
∆ := [a, b]× [c, d] in R2. If ∂2F

∂τ1∂τ2
∈ L(∆), then for any τ1, τ2 ∈ [0, 1] and (x, y) ∈ ∆, we have

S(a, b, x; c, d, y) (2)

= (b− a)(d− c)
∫ 1

0

∫ 1

0
K(τ1)K(τ2)

∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2dτ1,

where K(τ) and S(a, b, x; c, d, y) are defined by

K(τ) =


τ − 1

8 , τ ∈ [0, 1
3 )

τ − 1
2 , τ ∈ [ 1

3 , 2
3 )

τ − 7
8 , τ ∈ [ 2

3 , 1].

and

S(a, b, x; c, d, y) (3)

=
F (a, c) +F (a, d) +F (b, c) +F (b, d)

64

+
3

64

{
F
(

a,
2c + d

3

)
+F

(
a,

c + 2d
3

)
+F

(
b,

2c + d
3

)
+F

(
b,

c + 2d
3

)
+F

(
2a + b

3
, c
)
+F

(
a + 2b

3
, c
)
+F

(
2a + b

3
, d
)
+F

(
a + 2b

3
, d
)}

+
9

64

{
F
(

2a + b
3

,
2c + d

3

)
+F

(
2a + b

3
,

c + 2d
3

)
+F

(
a + 2b

3
,

2c + d
3

)
+F

(
a + 2b

3
,

c + 2d
3

)}
− 1

8
1

b− a

∫ b

a

[
F (x, c) + 3F

(
x,

2c + d
3

)
+ 3F

(
x,

c + 2d
3

)
+F (x, d)

]
dx

− 1
8

1
d− c

∫ d

c

[
F (a, y) + 3F

(
2a + b

3
, y
)
+ 3F

(
a + 2b

3
, y
)
+F (b, y)

]
dy

+
1

(b− a)(d− c)

∫ b

a

∫ d

c
F (x, y)dydx,

respectively.
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Proof. We consider the double integral

∫ 1

0

∫ 1

0
K(τ1)K(τ2)

∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2dτ1 (4)

=
∫ 1

0
K(τ1)

{∫ 1

0
K(τ2)

∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2

}
dτ1.

Now, if we handle the integral inside the bracket, then we possess

∫ 1

0
K(τ2)

∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2 (5)

=
∫ 1

3

0

(
τ2 −

1
8

)
∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2

+
∫ 2

3

1
3

(
τ2 −

1
2

)
∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2

+
∫ 1

2
3

(
τ2 −

7
8

)
∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2.

Calculating the first integral in the right-side of (5) by using integration by parts, we
find that ∫ 1

3

0

(
τ2 −

1
8

)
∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2

=
1

d− c

{
5

24
∂

∂τ1
F
(
(1− τ1)a + τ1b,

2c + d
3

)
+

1
8

∂

∂τ1
F ((1− τ1)a + τ1b, c)

−
∫ 1

3

0

∂

∂τ1
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2

}
.

Adding the resulting equalities side by side after having calculated the other integrals
in the right-side of (5), one has the identity∫ 1

0
K(τ2)

∂

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2 (6)

=
1

d− c

{
1
8

∂

∂τ1
F ((1− τ1)a + τ1b, c) +

1
8

∂

∂τ1
F ((1− τ1)a + τ1b, d)

+
3
8

∂

∂τ1
F
(
(1− τ1)a + τ1b,

c + 2d
3

)
+

3
8

∂

∂τ1
F
(
(1− τ1)a + τ1b,

2c + d
3

)
−
∫ 1

0

∂

∂τ1
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2

}
:=

1
d− c

F(a, b, τ1; c, d, , τ2).
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Substituting the equality (6) in (4), we find that

(d− c)
∫ 1

0

∫ 1

0
K(τ1)K(τ2)

∂2

∂τ1∂τ2
F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)dτ2dτ1

=
∫ 1

0
K(τ1)F(a, b, τ1; c, d, , τ2)dτ1

=
∫ 1

3

0

(
τ1 −

1
8

)
F(a, b, τ1; c, d, , τ2)dτ1 +

∫ 2
3

1
3

(
τ1 −

1
2

)
F(a, b, τ1; c, d, , τ2)dτ1

+
∫ 1

2
3

(
τ1 −

7
8

)
F(a, b, τ1; c, d, , τ2)dτ1.

Computing these integrals and later using the change of the variable x = (1− τ1)a +
τ1b and y = (1− τ2)c + τ2d for τ1, τ2 ∈ [0, 1], we obtain the required equality.

Theorem 2. Let F : ∆ ⊂ R2 → R be a partial differentiable mapping on ∆ := [a, b]× [c, d] in
R2 with a < b and c < d. If

∣∣∣ ∂2F
∂τ1∂τ2

∣∣∣ is convex on the coordinates on ∆ and τ1, τ2 ∈ [0, 1], then, for
(x, y) ∈ ∆, the following inequality holds:

|S(a, b, x; c, d, y)| ≤ (b− a)(d− c)
625

331776

{∣∣∣∣ ∂2F
∂τ1∂τ2

(a, c)
∣∣∣∣+ ∣∣∣∣ ∂2F

∂τ1∂τ2
(a, d)

∣∣∣∣
+

∣∣∣∣ ∂2F
∂τ1∂τ2

(b, c)
∣∣∣∣+ ∣∣∣∣ ∂2F

∂τ1∂τ2
(b, d)

∣∣∣∣},

where S(a, b, x; c, d, y) is defined as in (3).

Proof. Taking the absolute value in both sides of (2), due to the properties of modulus, we
have the inequality

|S(a, b, x; c, d, y)|

≤ (b− a)(d− c)
∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|

∣∣∣∣ ∂2F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)
∂τ1∂τ2

∣∣∣∣dτ2dτ1.

On the grounds that | ∂2F
∂τ1∂τ2

| is convex function on the coordinates, one possesses

|S(a, b, x; c, d, y)|
≤ (b− a)(d− c)

×
{∣∣∣∣ ∂2F

∂τ1∂τ2
(a, c)

∣∣∣∣ ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|(1− τ1)(1− τ2)dτ2dτ1

+

∣∣∣∣ ∂2F
∂τ1∂τ2

(a, d)
∣∣∣∣ ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|(1− τ1)τ2dτ2dτ1

+

∣∣∣∣ ∂2F
∂τ1∂τ2

(b, c
∣∣∣∣ ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|τ1(1− τ2)dτ2dτ1

+

∣∣∣∣ ∂2F
∂τ1∂τ2

(b, d)
∣∣∣∣ ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|τ1τ2dτ2dτ1

}
.

On the other side, by fundamental integral calculation rules, we have∫ 1
0

∫ 1
0 |K(τ1)||K(τ2)|(1− τ1)(1− τ2)dτ2dτ1∫ 1

0

∫ 1
0 |K(τ1)||K(τ2)|(1− τ1)τ2dτ2dτ1∫ 1

0

∫ 1
0 |K(τ1)||K(τ2)|τ1(1− τ2)dτ2dτ1∫ 1

0

∫ 1
0 |K(τ1)||K(τ2)|τ1τ2dτ2dτ1


=

625
331776

. (7)
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In the light of these results, the desired inequality can be readily attained.

Theorem 3. Let F : ∆ ⊂ R2 → R be a partial differentiable mapping on ∆ := [a, b]× [c, d] in

R2 with a < b and c < d. If
∣∣∣ ∂2F

∂τ1∂τ2

∣∣∣q is convex on the coordinates on ∆, p, q > 1, 1
p + 1

q = 1 and
τ1, τ2 ∈ [0, 1], then, for (x, y) ∈ ∆, we have the inequality

|S(a, b, x; c, d, y)|

≤ (b− a)(d− c)

4
1
q

(
2

p + 1
3p+1 + 4p+1 + 5p+1

24p+1

) 2
p

×
(∣∣∣∣ ∂2F

∂τ1∂τ2
(a, c)

∣∣∣∣q + ∣∣∣∣ ∂2F
∂τ1∂τ2

(a, d)
∣∣∣∣q + ∣∣∣∣ ∂2F

∂τ1∂τ2
(b, c)

∣∣∣∣q + ∣∣∣∣ ∂2F
∂τ1∂τ2

(b, d)
∣∣∣∣q) 1

q

,

where S(a, b, x; c, d, y) is defined as in (3).

Proof. Using the well-known Hölder inequality for double integrals after having taken the
absolute value of both sides of (2), it is found that

|S(a, b, x; c, d, y)|

≤ (b− a)(d− c)
( ∫ 1

0

∫ 1

0
|K(τ1)K(τ2)|pdτ2dτ1

) 1
p

×
( ∫ 1

0

∫ 1

0

∣∣∣∣ ∂2F
∂τ1∂τ2

((1− τ1)a + τ1b, (1− τ2)c + τ2d)
∣∣∣∣qdτ2dτ1

) 1
q

.

Inasmuch as
∣∣∣ ∂2F

∂τ1∂τ2

∣∣∣q is convex function on the coordinates, one has

∫ 1

0

∫ 1

0

∣∣∣∣ ∂2F
∂τ2∂τ1

((1− τ1)a + τ1b, (1− τ2)c + τ2d)
∣∣∣∣qdτ2dτ1

≤ 1
4

(∣∣∣∣ ∂2F
∂τ1∂τ2

(a, c)
∣∣∣∣q + ∣∣∣∣ ∂2F

∂τ1∂τ2
(a, d)

∣∣∣∣q + ∣∣∣∣ ∂2F
∂τ1∂τ2

(b, c)
∣∣∣∣q + ∣∣∣∣ ∂2F

∂τ1∂τ2
(b, d)

∣∣∣∣q).

We also note that∫ 1

0

∫ 1

0
|K(τ1)K(τ2)|pdτ2dτ1

=
∫ 1

0
|K(τ1)|pdτ1

∫ 1

0
|K(τ2)|pdτ2 =

(∫ 1

0
|K(τ)|pdτ

)2

=

(
2

p + 1
3p+1 + 4p+1 + 5p+1

24p+1

)2

.

Hence, the proof is completed.
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Theorem 4. Let F : ∆ ⊂ R2 → R be a partial differentiable mapping on ∆ := [a, b]× [c, d] in R2

with a < b and c < d. If
∣∣∣ ∂2F

∂τ1∂τ2

∣∣∣q is convex on the coordinates on ∆ for q ≥ 1 and τ1, τ2 ∈ [0, 1],
then, for (x, y) ∈ ∆, the following inequality holds:

|S(a, b, x; c, d, y)| (8)

≤ 625
82944

(b− a)(d− c)

4
1
q

(∣∣∣∣ ∂2F
∂τ1∂τ2

(a, c)
∣∣∣∣q + ∣∣∣∣ ∂2F

∂τ1∂τ2
(a, d)

∣∣∣∣q

+

∣∣∣∣ ∂2F
∂τ1∂τ2

(b, c)
∣∣∣∣q + ∣∣∣∣ ∂2F

∂τ1∂τ2
(b, d)

∣∣∣∣q) 1
q

,

where S(a, b, x; c, d, y) is defined as in (3).

Proof. From Lemma 2, we possess

|S(a, b, x; c, d, y)|

≤ (b− a)(d− c)
∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|

∣∣∣∣ ∂2F ((1− τ1)a + τ1b, (1− τ2)c + τ2d)
∂τ1∂τ2

∣∣∣∣dτ2dτ1.

Using the well-known power mean inequality for double integrals, one has the inequality

|S(a, b, x; c, d, y)|

≤ (b− a)(d− c)
( ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|dτ2dτ1

)1− 1
q

×
( ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|

∣∣∣∣ ∂2F
∂τ1∂τ2

((1− τ1)a + τ1b, (1− τ2)c + τ2d)
∣∣∣∣qdτ2dτ1

) 1
q

.

Since
∣∣∣ ∂2F

∂τ1∂τ2

∣∣∣q is a convex function on the coordinates, one can possess the result

∣∣∣∣ ∂2F
∂τ1∂τ2

((1− τ1)a + τ1b, (1− τ2)c + τ2d)
∣∣∣∣q (9)

≤ (1− τ1)(1− τ2)

∣∣∣∣ ∂2F
∂τ1∂τ2

(a, c)
∣∣∣∣q + (1− τ1)τ2

∣∣∣∣ ∂2F
∂τ1∂τ2

(a, d)
∣∣∣∣q

+ τ1(1− τ2)

∣∣∣∣ ∂2F
∂τ1∂τ2

(b, c)
∣∣∣∣q + τ1τ2

∣∣∣∣ ∂2F
∂τ1∂τ2

(b, d)
∣∣∣∣q.

Due to the inequality (9), it follows that

∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|

∣∣∣∣ ∂2F
∂τ1∂τ2

((1− τ1)a + τ1b, (1− τ2)c + τ2d)
∣∣∣∣qdτ2dτ1

≤
∣∣∣∣ ∂2F
∂τ1∂τ2

(a, c)
∣∣∣∣q ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|(1− τ1)(1− τ2)dτ2dτ1

+

∣∣∣∣ ∂2F
∂τ1∂τ2

(a, d)
∣∣∣∣q ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|(1− τ1)τ2dτ2dτ1

+

∣∣∣∣ ∂2F
∂τ1∂τ2

(b, c)
∣∣∣∣q ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|τ1(1− τ2)dτ2dτ1

+

∣∣∣∣ ∂2F
∂τ1∂τ2

(b, d)
∣∣∣∣q ∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|τ1τ2dτ2dτ1.

If we use the identities given in (7) and the fact that∫ 1

0

∫ 1

0
|K(τ1)||K(τ2)|dτ2dτ1 =

625
82944

,
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then we readily obtain the inequality (8), which finishes the proof.

3. Applications to Simpson’s 3
8 Cubature Formula

In this section, we handle applications of the integral inequalities developed in the
main results section to obtain estimates of Simpson’s Cubature formula. First of all, we
recall Simpson’s quadrature formula. Supposing that ϕ is a division of the interval [a, b],
i.e., ϕ : a = x0 < x1 < x2, . . . ,< xn−1 < xn = b, hi =

(xi+1−xi)
3 . The Simpson’s 3

8 quadrature
formula is defined by

S(F , ϕ) =
n−1

∑
i=0

F (xi) + 3F (xi + hi) + 3F (xi + 2hi) +F (xi+1)

8
(xi+1 − xi).

Now, we define Simpson’s Cubature formula to derive new estimations. Assume that
Im : a = x0 < x1 < · · · < xm−1 < xm = b and In : c = y0 < y1 < · · · < yn−1 < yn = d are
divisions of the intervals [a, b] and [c, d]. Then, we have the summation

C
(
F , Im, In

)
(10)

:=
1
8

n−1

∑
j=0

k j

∫ xi+1

xi

[
F (t, yj) + 3F

(
t, yj + k j

)
+ 3F

(
t, yj + 2k j

)
+F (t, yj+1)

]
dt

+
1
8

m−1

∑
i=0

hi

∫ yj+1

yj

[
F (xi, s) + 3F

(
xi + hi, s

)
+ 3F

(
xi + 2hi, s

)
+F (xi+1, s)

]
ds

−
m−1

∑
i=0

n−1

∑
j=0

hik j

[F (xi, yj) +F (xi, yj+1) +F (xi+1, yj) +F (xi+1, yj+1)

64

+
3

64

{
F
(

xi, yj + k j
)
+F

(
xi, yj + 2k j

)
+F

(
xi+1, yj + k j

)
+F

(
xi+1, yj + 2k j

)
+F

(
xi + hi, yj

)
+F

(
xi + 2hi, yj

)
+F

(
xi + hi, yj+1

)
+F

(
xi + 2hi, yj+1

)}
+

9
64

{
F
(

xi + hi, yj + k j
)
+F

(
xi + 2hi, yj + k j

)
+F

(
xi + hi, yj + k j

)
+F

(
xi + hi, yj + 2k j

)}]
,

where hi =
xi+1−xi

3 and k j =
yj+1−yj

3 for i = 0, 1, 2, . . . , m− 1; j = 0, 1, 2, . . . , n− 1. So, we
suppose that the interested integrals can be more easily calculated than the original integral∫ b

a

∫ d

c
F (t, s)dsdt.

We give new Simpson’s cubature formulas in the following theorems.

Theorem 5. Let F : ∆ ⊂ R2 → R be as in Theorem 2. If Im and In divisions are defined as above,
then we have the cubature formula

∫ b

a

∫ d

c
F (t, s)dsdt = C(F , Im, In) + R(F , Im, In)
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where C(F , Im, In) is defined as in (10) and the remainder term R(F , Im, In) satisfies the estimation:

|R(F , Im, In)| (11)

≤ 625
331776

m−1

∑
i=0

n−1

∑
j=0

(xi+1 − xi)
2(yj+1 − yj

)2

×
{∣∣∣∣ ∂2F

∂t1∂t2
(xi, yj)

∣∣∣∣+ ∣∣∣∣ ∂2F
∂t1∂t2

(xi, yj)

∣∣∣∣+ ∣∣∣∣ ∂2F
∂t1∂t2

(xi+1, yj)

∣∣∣∣+ ∣∣∣∣ ∂2F
∂t1∂t2

(xi+1, yj+1)

∣∣∣∣}.

Proof. Applying Theorem 2 to the interval [xi, xi+1] × [yj, yj+1], (i = 0, . . . , m − 1;
j = 0, . . . , n− 1), we obtain∣∣∣∣∣
∫ xi+1

xi

∫ yj+1

yj

F (t, s)dsdt + hik j

[F (xi, yj) +F (xi, yj+1) +F (xi+1, yj) +F (xi+1, yj+1)

64

+
3

64
{
F
(

xi, yj + 2k j
)
+F

(
xi, yj + k j

)
+F

(
xi+1, yj + 2k j

)
+F

(
xi+1, yj + k j

)
+F

(
xi + 2hi, yj

)
+F

(
xi + hi, yj

)
+F

(
xi + 2hi, yj+1

)
+F

(
xi + hi, yj+1

)}
+

9
64
{
F
(

xi + 2hi, yj + 2k j
)
+F

(
xi + 2hi, yj + k j

)
+F

(
xi + hi, yj + 2k j

)
+F

(
xi + hi, yj + k j

)}]
− 1

8
k j

∫ xi+1

xi

[
F (t, yj) +F (t, yj+1) + 3F

(
t, yj + 2k j

)
+ 3F

(
t, yj + k j

)]
dt

−1
8

hi

∫ yj+1

yj

[F (xi, s) +F (xi+1, s) + 3F (xi + 2hi, s) + 3F (xi + hi, s)]ds
]∣∣∣∣∣

≤ 625
331776

(xi+1 − xi)
2(yj+1 − yj

)2

×
{∣∣∣∣ ∂2F

∂t1∂t2
(xi, yj)

∣∣∣∣+ ∣∣∣∣ ∂2F
∂t1∂t2

(xi, yj+1)

∣∣∣∣+ ∣∣∣∣ ∂2F
∂t1∂t2

(xi+1, yj)

∣∣∣∣+ ∣∣∣∣ ∂2F
∂t1∂t2

(xi+1, yj+1)

∣∣∣∣}
for all i = 0, . . . , m− 1; j = 0, . . . , n− 1 and where hi =

xi+1−xi
3 and k j =

yj+1−yj
3 . Summing

over i from 0 to m− 1 and over j from 0 to n− 1 by considering the generalized triangle
inequality, the estimation (11) can be attained.

Theorem 6. Let F : ∆ ⊂ R2 → R be as in Theorem 3. If Im and In divisions are defined as in
above, then we have the cubature formula

∫ b

a

∫ d

c
F (t, s)dsdt = C(F , Im, In) + R(F , Im, In)

where C(F , Im, In) is defined as in (10) and the remainder term R(F , Im, In) satisfies the estimation:

|R(F , Im, In)| (12)

≤ 1

4
1
q

(
2

p + 1
3p+1 + 4p+1 + 5p+1

24p+1

) 2
p m−1

∑
i=0

n−1

∑
j=0

(xi+1 − xi)
2(yj+1 − yj

)2

×
{∣∣∣∣ ∂2F

∂t1∂t2
(xi, yj)

∣∣∣∣q + ∣∣∣∣ ∂2F
∂t1∂t2

(xi, yj+1)

∣∣∣∣q + ∣∣∣∣ ∂2F
∂t1∂t2

(xi+1, yj)

∣∣∣∣q + ∣∣∣∣ ∂2F
∂t1∂t2

(xi+1, yj+1)

∣∣∣∣q
} 1

q

.

Proof. Applying similar methods in the proof of Theorem 5 by considering the inequality
given in the Theorem 3, the desired result can be readily obtained.
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