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Abstract: In this work, we consider linear and nonlinear fractional stochastic delay systems driven
by the Rosenblatt process. With the aid of the delayed Mittag-Leffler matrix functions and the
representation of solutions of these systems, we derive the controllability results as an application. By
introducing a fractional delayed Gramian matrix, we provide sufficient and necessary criteria for the
controllability of linear fractional stochastic delay systems. Furthermore, by employing Krasnoselskii’s
fixed point theorem, we establish sufficient conditions for the controllability of nonlinear fractional
stochastic delay systems. Finally, an example is given to illustrate the main results.
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1. Introduction

Due to its effective modeling in numerous fields of science and engineering, includ-
ing economics, diffusion processes, control theory, viscoelastic systems, biology, physics,
medicine, finance, fluid dynamics, and others, fractional functional differential equations
and their applications have received a great deal of attention (see, for instance, [1–11]). In
particular, the fractional derivative of an order α with 1 < α ≤ 2 appears in several diffu-
sion problems used in physical and engineering applications, such as in the mechanism
of superdiffusion [12]. The typical variation in deterministic systems with environmental
noise is considered to be random in nature. Stochastic differential equations can be used
to simulate noise in financial mathematics, medicine, telecommunication networks, and
other fields.

The concept of controllability of systems is one of the most fundamental and important
concepts in contemporary control theory, which involves figuring out the control parame-
ters that direct a control system’s solutions from its initial state to its final state using the
set of permissible controls, where the initial and final states may vary across the entire
space. The representation of time delay system solutions has received recent attention. The
seminal studies [13,14] in particular yielded several novel results in the representation of
solutions, stability, and controllability of time delay systems (see, for instance, [15–23] and
the references therein).

The Hermite process of an order of one is known as fractional Brownian motion, while
the Hermite process of an order of two is known as the Rosenblatt process. Rosenblatt first
proposed the following distribution for x ≥ 0

ZU(x) = D(U)
∫
R2

(∫ x

0
(ϑ− t1)

−(1+U)/2
+ (ϑ− t2)

−(1+U)/2
+ dϑ

)
dJ(t1)dJ(t2),
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where U ∈
(

0, 1
2

)
, D(U) is a positive normalization constant depending only on U, and

{J(t), t ∈ U} is a standard Brownian motion. The process of ZU(1) is known as the ‘1
non-Gaussian limiting distribution’ (Rosenblatt distribution) (for more details, see [24]).
The Rosenblatt process is a non-Gaussian process with many interesting properties, such
as the stationary nature of the increments, long-range dependence, and self-similarity.
Therefore, it seems interesting to study a new class of fractional stochastic differential
equations driven by the Rosenblatt process. Shen and Ren [25] investigated the existence
and uniqueness of the mild solution for neutral stochastic partial differential equations with
finite delay driven by the Rosenblatt process in a real, separable Hilbert space. Maejima
and Tudor [26] presented a technique for constructing self-similar processes in the second
Wiener chaos using limit theorems. Shen et al. [27] used fixed point theory to examine
controllability and stability analysis for functional nonlinear neutral fractional stochastic
systems with delay driven by the Rosenblatt process (we refer the reader to [18,28–30] for
further details on the Rosenblatt process).

Elshenhab and Wang [15] established a novel formula to solve the linear delay differ-
ential systems (CDα

0+z
)
(x) + Ξz(x−ω) = g(x), x ≥ 0,

z(x) ≡ Π(x), z′(x) ≡ Π′(x), −ω ≤ x ≤ 0,
(1)

of the form

z(x) = Hω,α
(
Ξ(x−ω)α)Π(0) +Mω,α

(
Ξ(x−ω)α)Π′(0)

−Ξ
∫ 0
−ω Sω,α

(
Ξ(x− 2ω− ϑ)α)Π(ϑ)dϑ

+
∫ x

0 Sω,α
(
Ξ(x−ω− ϑ)α)g(ϑ)dϑ,

(2)

whereHω,α(Ξxα),Mω,α(Ξxα), and Sω,α(Ξxα) are the delayed Mittag-Leffler type matrix
functions defined by

Hω,α(Ξxα) :=



�, −∞ < x < −ω,
I, −ω ≤ x < 0,
I− Ξ xα

Γ(1+α)
, 0 ≤ x < ω,

...
...

I− Ξ xα

Γ(1+α)
+ Ξ2 (x−ω)2α

Γ(1+2α)

+ · · ·+ (−1)ςΞς (x−(ς−1)ω)ςα

Γ(1+ςα)
, (ς− 1)ω ≤ x < ςω,

(3)

Mω,α(Ξxα) :=



�, −∞ < x < −ω,
I(x + ω), −ω ≤ x < 0,
I(x + ω)− Ξ xα+1

Γ(2+α)
, 0 ≤ x < ω,

...
...

I(x + ω)− Ξ xα+1

Γ(2+α)
+ Ξ2 (x−ω)2α+1

Γ(2+2α)

+ · · ·+ (−1)ςΞς (x−(ς−1)ω)ςα+1

Γ(2+ςα)
, (ς− 1)ω ≤ x < ςω,

(4)
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and

Sω,α(Ξxα) :=



�, −∞ < x < −ω,

I (x+ω)α−1

Γ(α) , −ω ≤ x < 0,

I (x+ω)α−1

Γ(α) − Ξ x2α−1

Γ(2α)
, 0 ≤ x < ω,

...
...

I (x+ω)α−1

Γ(α) − Ξ x2α−1

Γ(2α)
+ Ξ2 (x−ω)3α−1

Γ(3α)

+ · · ·+ (−1)ςΞς (x−(ς−1)ω)α(ς+1)−1

Γ(α(ς+1)) , (ς− 1)ω ≤ x < ςω,

(5)

respectively, where the notations� and I are the n× n null and identity matrix, respectively,
Γ is a gamma function, and ς = 0, 1, 2, ....

Motivated by the aforementioned works, and based on [15], as an application, we
investigate the controllability of fractional stochastic linear delay systems driven by the
Rosenblatt process(CDα

0+z
)
(x) + Ξz(x−ω) = Bu(x) + ∆(x)dZH(x), x ∈ ∓ := [0, x1],

z(x) ≡ Π(x), z′(x) ≡ Π′(x), −ω ≤ x ≤ 0,
(6)

as well as the controllability of the corresponding fractional stochastic nonlinear delay
systems driven by the Rosenblatt process(CDα

0+z
)
(x) + Ξz(x−ω) = Bu(x) + ∆(x, z(x))dZH(x), x ∈ ∓,
z(x) ≡ Π(x), z′(x) ≡ Π′(x), −ω ≤ x ≤ 0,

(7)

where CDα
0+ is called the Caputo fractional derivative of the order α ∈ (1, 2] with a lower

index of zero, ω > 0 is a delay, x1 > (n− 1)ω, state vector z(x) ∈ Rn, Π ∈ C([−ω, 0],Rn),
Ξ ∈ Rn×n and B ∈ Rn×m are any matrices, u(x) ∈ Rm shows the control vector, and
∆ ∈ C(∓, T (Rn)), where the Thorin class, symbolized by T (Rn), is the smallest distribu-
tion class on Rn that comprises all Gamma distributions and is closed under convolution
and weak convergence. Let z(·) take a value in the separable Hilbert space Rn with
an inner product 〈·, ·〉 and norm ‖·‖. ZH(x) is a Rosenblatt process with the parameter
H ∈

(
1
2 , 1
)

on an another real separable Hilbert space (K, ‖·‖K, 〈·, ·〉K). Moreover, assume

∆ ∈ C
(
∓×Rn, L0

2
)
, where L0

2 = L2

(
Q

1
2 K,Rn

)
.

The following is how the rest of this paper is structured. In Section 2, we provide some
introductions, fundamental notation and definitions, as well as some relevant lemmas. In
Section 3, using a fractional delayed Gramian matrix, we give sufficient and necessary
conditions for the controllability of Equation (6). In Section 4, by applying Krasnoselskii’s
fixed point theorem, we estabilish sufficient conditions for the controllability of Equation (7).
Finally, to illustrate the theoretical findings, we provide numerical examples.

2. Preliminaries

Throughout the paper, let (Ω,F,P) be the complete probability space with probability
measure P on Ω with a filtration {Fx| x ∈ ∓} generated by {ZH(s)| s ∈ [0, x]}. Let D, C
be two Banach spaces and Lb(D, C) be the space of the bounded linear operators from D
to C, while Q ∈ Lb(D,D) represents a nonnegative self-adjoint trace class operator on D.
Let L0

2 = L2

(
Q

1
2D, C

)
be the space of all Q Hilbert–Schmidt operators from Q

1
2D into C,

equipped with the norm

‖ϕ‖2
L0

2
=
∥∥∥ϕQ

1
2

∥∥∥2
= Tr

(
ϕQϕT

)
.
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Now, for some 1 < e < ∞, let Le(Ω,Fx1 ,Rn) be the Hilbert space of all Fx1-measurable,
eth-integrable variables with values in Rn with the norm ‖z‖e

Le = E‖z(x)‖e, where the
expectation E is defined by Ez =

∫
Ω zdP. Let Le

F(∓,Rn) be the Banach space of all functions
g : ∓ −→ Rn that are Bochner integrable, normed by ‖g‖Le

F(∓,Rn), and Fx1 -measurable

processes with values in Rn. Let F := C([−ω, 0] , Le(Ω,Fx1 ,P,Rn)) be the Banach space of
all eth-integrable and Fx1-adapted processes φ endowed with the norm

‖φ‖C =
(

supx∈[−ω,0] E‖φ(x)‖e
)1/e

. Additionally, we denote C(∓, Le(Ω,Fx1 ,P,Rn)) as
the Banach space of continuous function from ∓ −→ Le(Ω,Fx1 ,P,Rn) endowed with
the norm ‖z‖C(∓) =

(
supx∈∓ E‖z(x)‖e)1/e for a norm ‖·‖ on Rn and let the matrix norm

(column sum)

‖Ξ‖ = max

{
n

∑
i=1
|ai1|,

n

∑
i=1
|ai2|, . . . ,

n

∑
i=1
|ain|

}
,

where Ξ : Rn −→ Rn. We define a space

C1(∓, Le(Ω,Fx1 ,P,Rn))

=
{

z ∈ C(∓, Le(Ω,Fx1 ,P,Rn)) : z′ ∈ C(∓, Le(Ω,Fx1 ,P,Rn))
}

.

Furthermore, we let

‖Π‖C =

(
sup

s∈[−ω,0]
E‖Π(s)‖e

)1/e

and
∥∥Π′

∥∥
C =

(
sup

s∈[−ω,0]
E
∥∥Π′(s)

∥∥e
)1/e

.

The Wiener–Ito multiple integral of an order k with respect to the standard Wiener process
(G(ρ))ρ∈R is given by

Zk
H(x) = c(H, k)

∫
Rk

(∫ x

0

k
∏
j=1

(
ϑ− ρj

)−( 1
2+

1−H
k )

+
dϑ

)
dG(ρ1) . . . dG(ρk), (8)

where c(H, k) is a normalizing constant such that E
(

Zk
H(1)

)2
= 1 and ρ+ = max(ρ, 0). The

process
(

Zk
H(x)

)
x≥0

is called the Hermite process. If k = 1, then the Hermite process given

by Equation (8) is the fBm with a Hurst parameter H ∈
(

1
2 , 1
)

. Furthermore, the process is
not Gaussian for k = 2. Moreover, for k = 2, the Hermite process given by Equation (8) is
called the Rosenblatt process.

We provide some fundamental concepts and lemmas used in this work:

Lemma 1 ([31]). If σ : ∓ −→L0
2 satisfies∫ x1

0
‖σ(ϑ)‖2

L0
2
dϑ < ∞,

then, for a, b ∈ ∓ with b > a, we have

E
∥∥∥∥∫ x

0
σ(ϑ)dZH(ϑ)

∥∥∥∥2
≤ 2Hx2H−1

∫ x

0
‖σ(ϑ)‖2

L0
2
dϑ.

Definition 1 ([32]). If there exists a control function u ∈ L2(Ω,Rm) such that Equation (6) or (7)
has a solution z : [−ω, x1]→ Rn with z(0) = z0, then z′(0) = z′0 satisfies z(x1) = z1 for all z0,
z′0, z1 ∈ Rn, then the systems in Equation (6) or (7) are controllable on Ω = [0, x1].
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Definition 2 ([5]). The two-parameter Mittag-Leffler function is provided by

Eα,γ(x) =
∞

∑
ς=0

xς

Γ(ας + γ)
, α, γ > 0, x ∈ C.

In the case of γ = 1, then

Eα,1(x) = Eα(x) =
∞

∑
ς=0

xς

Γ(ας + 1)
, α > 0.

Definition 3 ([5]). The Caputo fractional derivative of the order α ∈ (1, 2] with a lower index 0 of
a function z : [−ω, ∞)→ Rn is given by

(
CDα

0+z
)
(x) =

1
Γ(2− α)

∫ x

0

z
′′
(ϑ)

(x− ϑ)α−1 dϑ, x > 0.

Lemma 2 ([23]). For any x ∈ [(ς− 1)ω, ςω], ς = 1, 2, ..., we have

‖Hω,α(Ξxα)‖ ≤ Eα(‖Ξ‖xα),

‖Mω,α(Ξxα)‖ ≤ (x + ω)Eα,2
(
‖Ξ‖(x + ω)α),

and
‖Sω,α(Ξxα)‖ ≤ (x + ω)α−1Eα,α

(
‖Ξ‖(x + ω)α).

Lemma 3 (Krasnoselskii’s fixed point theorem [33]). Let M be a closed, bounded, and convex sub-
set of a real Banach space K, and let J1 and J2 be operators on M satisfying the following conditions:

(1) J1x + J2z ∈ M for x, z ∈ M;
(2) J1 is compact and continuous;
(3) J2 is a contraction mapping.

Then, there exists m ∈ M such that m = J1m + J2m.

We define the operator Qx1 ∈ Lb

(
Le
F(∓,Rm), Le(Ω,Fx1 ,Rn)

)
as

Qx1 u =
∫ x1

0
Sω,α

(
Ξ(x1 −ω− ϑ)α)Bu(ϑ)dϑ,

In addition, its adjoint operator QT
x1
∈ Lb

(
Le(Ω,Fx1 ,Rn), Le

F(∓,Rm)
)

is defined as

QT
x1

u = BTSω,α

(
ΞT(x1 −ω− x)α

)
E{u|Fx}.

Consider the linear controllability operator

Γx1
ω {·} = Qx1 QT

x1
{·}

=
∫ x1

0
Sω,α

(
Ξ(x1 −ω− ϑ)α)BBTSω,α

(
ΞT(x1 −ω− ϑ)α

)
E{·|Fϑ}dϑ,

as well as the fractional delayed Gramian matrix Wω,α[0, x1] ∈ Lb(Rn,Rn) defined by

Wω,α[0, x1] =
∫ x1

0
Sω,α

(
Ξ(x1 −ω− ϑ)α)BBTSω,α

(
ΞT(x1 −ω− ϑ)α

)
dϑ. (9)

Here, T denotes the transpose.
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3. Controllability of Linear Fractional Stochastic Delay Systems

In this section, we derive the controllability results for Equation (6) using the fractional
delayed Gramian matrix Wω,α[0, x1] defined by Equation (9):

Theorem 1. The stochastic system in Equation (6) is controllable if and only if Wω,α[0, x1] is
positive definite.

Proof. Sufficiency. Assuming that Wω,α[0, x1] is positive definite, then it is invertible.
Consequently, for any finite terminal conditions z1, z′1 ∈ Rn, we can derive the associated
control input u(x) as

u(x) = BTSω,α

(
ΞT(x1 −ω− x)α

)
W−1

ω,α[0, x1]β, (10)

where
β = z1 −Hω,α

(
Ξ(x−ω)α)Π(0)−Mω,α

(
Ξ(x−ω)α)Π′(0)

+Ξ
∫ 0
−ω Sω,α

(
Ξ(x− 2ω− ϑ)α)Π(ϑ)dϑ

−
∫ x1

0 Sω,α
(
Ξ(x−ω− ϑ)α)∆(ϑ)dZH(ϑ).

(11)

By applying Equation (2), the solution to Equation (6) can be expressed as

z(x) = Hω,α
(
Ξ(x−ω)α)Π(0) +Mω,α

(
Ξ(x−ω)α)Π′(0)

−Ξ
∫ 0
−ω Sω,α

(
Ξ(x− 2ω− ϑ)α)Π(ϑ)dϑ

+
∫ x

0 Sω,α
(
Ξ(x−ω− ϑ)α)Bu(ϑ)dϑ

+
∫ x

0 Sω,α
(
Ξ(x−ω− ϑ)α)∆(ϑ)dZH(ϑ).

(12)

From Equation (12), the solution z(x1) to Equation (6) can be given by

z(x1) = Hω,α
(
Ξ(x1 −ω)α)Π(0) +Mω,α

(
Ξ(x1 −ω)α)Π′(0)

−Ξ
∫ 0
−ω Sω,α

(
Ξ(x1 − 2ω− ϑ)α)Π(ϑ)dϑ

+
∫ x1

0 Sω,α
(
Ξ(x1 −ω− ϑ)α)Bu(ϑ)dϑ

+
∫ x1

0 Sω,α
(
Ξ(x1 −ω− ϑ)α)∆(ϑ)dZH(ϑ).

(13)

By substituting Equation (10) into Equation (13), we obtain

z(x1) = Hω,α
(
Ξ(x1 −ω)α)Π(0) +Mω,α

(
Ξ(x1 −ω)α)Π′(0)

−Ξ
∫ 0
−ω Sω,α

(
Ξ(x1 − 2ω− ϑ)α)Π(ϑ)dϑ

+
∫ x1

0 Sω,α
(
Ξ(x1 −ω− ϑ)α)BBTSω,α

(
ΞT(x1 −ω− ϑ)α)dϑ

×W−1
ω,α[0, x1]β

+
∫ x1

0 Sω,α
(
Ξ(x1 −ω− ϑ)α)∆(ϑ)dZH(ϑ).

(14)

From Equations (9), (11), and (14), we obtain

z(x1) = Hω,α
(
Ξ(x1 −ω)α)Π(0) +Mω,α

(
Ξ(x1 −ω)α)Π′(0)

− Ξ
∫ 0

−ω
Sω,α

(
Ξ(x1 − 2ω− ϑ)α)Π(ϑ)dϑ + β

+
∫ x1

0
Sω,α

(
Ξ(x1 −ω− ϑ)α)∆(ϑ)dZH(ϑ).

= z1.
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We can see from Equations (3), (4), and (12) that the boundary conditions z(x) ≡ Π(x),
z′(x) ≡ Π′(x), and −ω ≤ x ≤ 0 hold. Thus, Equation (6) is controllable.

Necessity. Let Equation (6) be controllable. Assume for the sake of a contradiction
that Wω,α[0, x1] is not positive definite and there exists at least a nonzero vector ρ ∈ Rn

such that ρTWω,α[0, x1]ρ = 0, which implies that

0 = ρTWω,α[0, x1]ρ

=
∫ x1

0
ρTSω,α

(
Ξ(x1 −ω− ϑ)α)BBTSω,α

(
ΞT(x1 −ω− ϑ)α

)
ρdϑ

=
∫ x1

0

[
ρTSω,α

(
Ξ(x1 −ω− ϑ)α)B][ρTSω,α

(
Ξ(x1 −ω− ϑ)α)B]T

dϑ

=
∫ x1

0

∥∥∥ρTSω,α
(
Ξ(x1 −ω− ϑ)α)B∥∥∥dϑ.

Hence, we have

ρTSω,α
(
Ξ(x1 −ω− ϑ)α)B = (0, . . . , 0) := 0T , for all ϑ ∈ ∓, (15)

where 0 denotes the n dimensional zero vector. Since Equation (6) is controllable, from
Definition 1, there exists a control function u1(x) that steers the initial state to z1 = 0 at
x = x1. Then, we have

z(x1) = Hω,α
(
Ξ(x1 −ω)α)Π(0) +Mω,α

(
Ξ(x1 −ω)α)Π′(0)

−Ξ
∫ 0
−ω Sω,α

(
Ξ(x1 − 2ω− ϑ)α)Π(ϑ)dϑ

+
∫ x1

0 Sω,α
(
Ξ(x1 −ω− ϑ)α)Bu1(ϑ)dϑ

+
∫ x1

0 Sω,α
(
Ξ(x1 −ω− ϑ)α)∆(ϑ)dZH(ϑ)

= 0.

(16)

Similarly, there is a control function u2(x) that steers the initial state to z1 = ρ at x = x1.
Then, we have

z(x1) = Hω,α
(
Ξ(x1 −ω)α)Π(0) +Mω,α

(
Ξ(x1 −ω)α)Π′(0)

−Ξ
∫ 0
−ω Sω,α

(
Ξ(x1 − 2ω− ϑ)α)Π(ϑ)dϑ

+
∫ x1

0 Sω,α
(
Ξ(x1 −ω− ϑ)α)Bu2(ϑ)dϑ

+
∫ x1

0 Sω,α
(
Ξ(x1 −ω− ϑ)α)∆(ϑ)dZH(ϑ).

= ρ.

(17)

By combining Equation (16) with Equation (17), we have

ρ =
∫ x1

0
Sω,α

(
Ξ(x1 −ω− ϑ)α)B[u2(ϑ)− u1(ϑ)]dϑ (18)

By multiplying Equation (18) by ρT and using Equation (15), we obtain ρTρ = 0. This is a
contradiction to ρ 6= 0. Thus, Wω,α[0, x1] is positive definite. This completes the proof.

4. Controllability of Nonlinear Fractional Stochastic Delay Systems

In this section, we present sufficient conditions for the controllability of Equation (7).
The following hypotheses are made:

(J1) The function ∆ : ∓×Rn −→ L0
2 is continuous, and there exists a constant L∆ ∈ Lq(∓,R+)

where q > 1 such that
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E‖∆(x, z1)− ∆(x, z2)‖e
L0

2
≤ L∆(x)‖z1 − z2‖e, for all x ∈ ∓, z1, z2 ∈ Rn.

Let e ∈ [2, ∞) and supx∈∓ E‖∆(x, 0)‖e
L0

2
= N∆ < ∞.

(J2) The linear stochastic delay system in Equation (6) is controllable on ∓.

Under the assumption of (J2), for some η > 0, we have E
〈
Γx1

ω z, z
〉
≥ ηE‖z‖e for all

z ∈ Le(Ω,Fx1 ,Rn) (see [34], Lemma 2). Furthermore,
∥∥∥(Γx1

ω

)−1
∥∥∥e
≤ 1/η := N1 (see [35]),

and we set N := max
{∥∥WMω [ϑ, x1]

∥∥e : ϑ ∈ ∓
}

:

Theorem 2. Let (J1) and (J2) be satisfied. Then, the nonlinear stochastic system in Equation (7) is
controllable on ∓ if there exists a constant τe > 0 such that

N2

[
1 + 5e−1NN1

]
< 1, (19)

where

N2 :=
5e−1τe(2H)e/2x

e(H+α−1)− 1
q

1

((α− 1)ep + 1)
1
p

(Eα,α(‖Ξ‖xα
1))

e‖L∆‖Lq(∓,R+),

and 1
p + 1

q = 1, p, q > 1.

Proof. Before beginning to prove this theorem, we consider the set

Bλ =

{
z ∈ F : ‖z‖e

F = sup
x∈[−ω,x1]

E‖z(x)‖e ≤ λ

}
,

for each postive number λ. Let x ∈ [0, x1]. With the aid of Equation (2), the solution to
Equation (7) can be expressed as

z(x) = Hω,α
(
Ξ(x−ω)α)Π(0) +Mω,α

(
Ξ(x−ω)α)Π′(0)

− Ξ
∫ 0

−ω
Sω,α

(
Ξ(x− 2ω− ϑ)α)Π(ϑ)dϑ

+
∫ x

0
Sω,α

(
Ξ(x−ω− ϑ)α)Bu(ϑ)dϑ

+
∫ x

0
Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, z(ϑ))dZH(ϑ),

In addition, its control function uz is defined as

uz(x) = BTSω,α
(
ΞT(x1 −ω− x)α)

×E
{(

Γx1
ω

)−1[z1 −Hω,α
(
Ξ(x1 −ω)α)Π(0)−Mω,α

(
Ξ(x1 −ω)α)Π′(0)

+Ξ
∫ 0
−ω Sω,α

(
Ξ(x1 − 2ω− ϑ)α)Π(ϑ)dϑ

−
∫ x1

0 Sω,α
(
Ξ(x1 −ω− ϑ)α)∆(ϑ, z(ϑ))dZH(ϑ)

]
|Fx
}

(20)

for x ∈ ∓. Additionally, we define the following operators L1, L2 on Bλ of the form
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(L1z)(x) = Hω,α
(
Ξ(x−ω)α)Π(0) +Mω,α

(
Ξ(x−ω)α)Π′(0)

−Ξ
∫ 0
−ω Sω,α

(
Ξ(x− 2ω− ϑ)α)Π(ϑ)dϑ

+
∫ x

0 Sω,α
(
Ξ(x−ω− ϑ)α)Buz(ϑ)dϑ,

(21)

(L2z)(x) =
∫ x

0
Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, z(ϑ))dZH(ϑ). (22)

Now, we see that Bλ is a closed, bounded, and convex set of F . Therefore, there are three
essential steps to our proof:

Step 1. We prove that there exists a λ>0 such that L1z + L2ρ ∈ Bλ for all z, ρ ∈ Bλ.
Using Equations (21) and (22), we obtain

‖L1z + L2ρ‖e
F

= supx∈[−ω,x1]
E‖(L1z + L2ρ)(x)‖e

≤ 5e−1
[∥∥Hω,α

(
Ξ(x−ω)α)∥∥eE‖Π(0)‖e +

∥∥Mω,α
(
Ξ(x−ω)α)∥∥eE‖Π′(0)‖e

+‖Ξ‖eE
∥∥∥∫ 0
−ω Sω,α

(
Ξ(x− 2ω− ϑ)α)Π(ϑ)dϑ

∥∥∥e

+E
∥∥∫ x

0 Sω,α
(
Ξ(x−ω− ϑ)α)Buz(ϑ)dϑ

∥∥e

+E
∥∥∫ x

0 Sω,α
(
Ξ(x−ω− ϑ)α)∆(ϑ, ρ(ϑ))dZH(ϑ)

∥∥e
]

= ∑5
n=1In,

(23)

for each x ∈ ∓ and z, ρ ∈ Bλ. From Lemma 2, we have

I1 = 5e−1∥∥Hω,α
(
Ξ(x−ω)α)∥∥eE‖Π(0)‖e

≤ 5e−1(Eα

(
‖Ξ‖(x−ω)α))eE‖Π‖e

C,

I2 = 5e−1∥∥Mω,α
(
Ξ(x−ω)α)∥∥eE

∥∥Π′(0)
∥∥e

≤ 5e−1(xEα,2(‖Ξ‖xα))eE
∥∥Π′

∥∥e
C,

I3 = 5e−1‖Ξ‖eE
∥∥∥∥∫ 0

−ω
Sω,α

(
Ξ(x− 2ω− ϑ)α)Π(ϑ)dϑ

∥∥∥∥e

≤ 5e−1‖Ξ‖eωe−1E‖Π‖e
C

∫ 0

−ω

∥∥Sω,α
(
Ξ(x− 2ω− ϑ)α)∥∥edϑ

≤ 5e−1‖Ξ‖eωe
(

xα−1Eα,α(‖Ξ‖xα)
)e

E‖Π‖e
C,

I4 = 5e−1E
∥∥∥∥∫ x

0
Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, ρ(ϑ))dZH(ϑ)

∥∥∥∥e

= 5e−1E

{∥∥∥∥∫ x

0
Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, ρ(ϑ))dZH(ϑ)

∥∥∥∥2
}e/2

,
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By employing Lemma 1, the Kahane–khintchine inequality, and Hölder’s inequality, there
exists a constant τe such that

I4 ≤ 5e−1τe

{
E
∥∥∥∥∫ x

0
Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, ρ(ϑ))dZH(ϑ)

∥∥∥∥2
}e/2

≤ 5e−1τe

{
2Hx2H−1

∫ x

0
E
∥∥Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, ρ(ϑ))

∥∥2
L0

2
dϑ

}e/2

≤ 5e−1τe

(
2Hx2H−1

)e/2
{∫ x

0
E
∥∥Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, ρ(ϑ))

∥∥2
L0

2
dϑ

}e/2

≤ 5e−1τe

(
2Hx2H−1

)e/2

×
{(∫ x

0

(
E
∥∥Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, ρ(ϑ))

∥∥2
L0

2

)e/2
dϑ

)2/e(∫ x

0
dϑ

) e−2
e
}e/2

≤ 5e−1τe(2H)e/2xeH−1
1

∫ x

0
E
∥∥Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, ρ(ϑ))

∥∥e
L0

2
dϑ,

By employing Lemma 2 and (J1), we obtain

I4 ≤ 5e−1τe(2H)e/2xeH−1
1

∫ x
0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

E‖∆(ϑ, ρ(ϑ))‖e
L0

2
dϑ

≤ 5e−1τe(2H)e/2xeH−1
1

×2e−1
{∫ x

0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

E‖∆(ϑ, ρ(ϑ))− ∆(ϑ, 0)‖e
L0

2
dϑ

+
∫ x

0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

E‖∆(ϑ, 0)‖e
L0

2
dϑ
}

≤ 5e−12e−1τe(2H)e/2xeH−1
1

{∫ x
0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

L∆(ϑ)‖ρ(ϑ)‖edϑ

+N∆
∫ x

0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

dϑ
}

≤ 5e−12e−1τe(2H)e/2xeH−1
1

{
‖ρ‖e
F
∫ x

0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

L∆(ϑ)dϑ

+
xe(α−1)+1

1 N∆
e(α−1)+1

(
Eα,α

(
‖Ξ‖xα

1
))e
}

.

(24)

Moreover, from (J1) and the Hölder inequality, we have∫ x
0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

L∆(ϑ)dϑ

≤
(∫ x

0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))ep

dϑ
) 1

p
(∫ x

0 Lq
∆(ϑ)dϑ

) 1
q

≤
(
Eα,α

(
‖Ξ‖xα

1
))e
(∫ x

0 (x− ϑ)(α−1)epdϑ
) 1

p
(∫ x

0 Lq
∆(ϑ)dϑ

) 1
q

≤ x
(α−1)e+ 1

p
1

((α−1)ep+1)
1
p

(
Eα,α

(
‖Ξ‖xα

1
))e‖L∆‖Lq(∓,R+).

(25)
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By substituting Equation (25) into Equation (24), we find

I4 ≤ 5e−12e−1τe(2H)e/2xeH−1
1

×

 λx
(α−1)e+ 1

p
1

((α− 1)ep + 1)
1
p
(Eα,α(‖Ξ‖xα

1))
e‖L∆‖Lq(∓,R+)

+
xe(α−1)+1

1 N∆

e(α− 1) + 1
(Eα,α(‖Ξ‖xα

1))
e

}

= 2e−1N2λ +
(10)e−1τe(2H)e/2xe(H+α−1)

1 N∆

e(α− 1) + 1
(Eα,α(‖Ξ‖xα

1))
e.

Furthermore, using Equaiton (20), we obtain

I5 = 5e−1E
∥∥∥∥∫ x

0
Sω,α

(
Ξ(x−ω− ϑ)α)Buz(ϑ)dϑ

∥∥∥∥e

≤ 5e−1
∥∥∥WMω [0, x1]

∥∥∥e

×
{∥∥∥(Γx1

ω

)−1
∥∥∥e

5e−1
[
E‖z1‖e +

∥∥Hω,α
(
Ξ(x1 −ω)α)∥∥eE‖Π(0)‖e

+
∥∥Mω,α

(
Ξ(x1 −ω)α)∥∥eE

∥∥Π′(0)
∥∥e

+‖Ξ‖eE
∥∥∥∥∫ 0

−ω
Sω,α

(
Ξ(x1 − 2ω− ϑ)α)Π(ϑ)dϑ

∥∥∥∥e

+E
∥∥∥∥∫ x1

0
Sω,α

(
Ξ(x1 −ω− ϑ)α)∆(ϑ, z(ϑ))dZH(ϑ)

∥∥∥∥e]}
≤ 52(e−1)NN1

[
E‖z1‖e + θ(x1) +

(
2
5

)e−1
N2λ

]
,

where

θ(x) :=
(
Eα

(
‖Ξ‖(x−ω)α))eE‖Π‖e

C + (xEα,2(‖Ξ‖xα))eE
∥∥Π′

∥∥e
C

+ ‖Ξ‖eωe
(

xα−1Eα,α(‖Ξ‖xα)
)e

E‖Π‖e
C

+
2e−1τe(2H)e/2xe(H+α−1)N∆

e(α− 1) + 1
(Eα,α(‖Ξ‖xα))e.

From I1 to I5, Equation (23) becomes

‖L1z + L2ρ‖e
F

≤ 5e−1
{(
Eα

(
‖Ξ‖(x−ω)α))eE‖Π‖e

C

+(xEα,2(‖Ξ‖xα))eE
∥∥Π′

∥∥e
C

+‖Ξ‖eωe
(

xα−1Eα,α(‖Ξ‖xα)
)e

E‖Π‖e
C

+

(
2
5

)e−1
N2λ +

2e−1τe(2H)e/2xe(H+α−1)
1 N∆

e(α− 1) + 1
(Eα,α(‖Ξ‖xα

1))
e

+5e−1NN1

[
E‖z1‖e + θ(x1) +

(
2
5

)e−1
N2λ

]}
≤ 5e−1

{
θ(x1)

(
1 + 5e−1NN1

)
+5e−1NN1E‖z1‖e +

(
2
5

)e−1
λN2

(
1 + 5e−1NN1

)}
.
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Thus, for some sufficiently large λ, and from Equation (19), we have L1z + L2ρ ∈ Bλ.
Step 2. We prove L1 : Bλ −→ F is a contraction. Using Equation (20), we obtain

E‖(L1z)(x)− (L1ρ)(x)‖e

= E
∥∥∥∥∫ x

0
Sω,α

(
Ξ(x−ω− ϑ)α)B[uz(ϑ)− uρ(ϑ)

]
dϑ

∥∥∥∥e

≤
∥∥∥WMω [0, x1]

∥∥∥e∥∥∥(Γx1
ω

)−1
∥∥∥e

× E
∥∥∥∥∫ x1

0
Sω,α

(
Ξ(x−ω− ϑ)α)[∆(ϑ, ρ(ϑ))− ∆(ϑ, z(ϑ))]dZH(ϑ)

∥∥∥∥e

≤ τeNN1(2H)e/2xeH−1
1

×
∫ x

0
E
∥∥Sω,α

(
Ξ(x−ω− ϑ)α)[∆(ϑ, ρ(ϑ))− ∆(ϑ, z(ϑ))]

∥∥e
L0

2
dϑ

≤ τeNN1(2H)e/2xeH−1
1 E‖z− ρ‖e

F

∫ x

0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

L∆(ϑ)dϑ

≤ NN1
τe(2H)e/2x

e(H+α−1)− 1
q

1

((α− 1)ep + 1)
1
p

(Eα,α(‖Ξ‖xα
1))

e‖L∆‖Lq(∓,R+)E‖z− ρ‖e
F

≤ NN1N2

5e−1 E‖z− ρ‖e
F

≤ µE‖z− ρ‖e
F ,

for each x ∈ ∓ and z, ρ ∈ Bλ, where µ := NN1N2/5e−1. We may deduce from Equation (19)
and, noting µ < 1, that L1 is a contraction mapping.

Step 3. We prove L2 : Bλ −→ F is a continuous compact operator.
First, we show that L2 is continuous. Let {zn} be a sequence such that zn −→ z as

n −→ ∞ in Bλ. Thus, for each x ∈ ∓, using Equation (22) and Lebesgue’s dominated
convergence theorem, we obtain

E‖(L2zn)(x)− (L2z)(x)‖e

≤ τe(2H)e/2xeH−1
1

∫ x

0

∥∥Sω,α
(
Ξ(x−ω− ϑ)α)∥∥eE‖∆(ϑ, zn(ϑ))− ∆(ϑ, z(ϑ))‖e

L0
2
dϑ

≤ τe(2H)e/2xeH−1
1

∫ x

0

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

L∆(ϑ)

E‖zn(ϑ)− z(ϑ)‖edϑ −→ 0, as n −→ ∞.

Hence, L2 : Bλ −→ F is continuous.
After that, we prove that L2 is uniformly bounded on Bλ. For each x ∈ ∓, z ∈ Bλ,

we obtain
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‖L2z‖e
F = sup

x∈∓
E‖(L2z)(x)‖e

≤ sup
x∈∓

{
E
∥∥∥∥∫ x

0
Sω,α

(
Ξ(x−ω− ϑ)α)∆(ϑ, z(ϑ))dZH(ϑ)

∥∥∥∥e}

≤
(

2
5

)e−1
N2λ +

2e−1τe(2H)e/2xe(H+α−1)
1 N∆

e(α− 1) + 1
(Eα,α(‖Ξ‖xα

1))
e,

which leads to L2 being uniformly bounded on Bλ.
It remains to be proven that L2 is equicontinuous. For x2, x3 ∈ ∓, 0 < x2 < x3 ≤ x1,

and z ∈ Bλ, using Equation (22), we obtain

(L2z)(x3)− (L2z)(x2)

=
∫ x3

0
Sω,α

(
Ξ(x3 −ω− ϑ)α)∆(ϑ, z(ϑ))dZH(ϑ)

−
∫ x2

0
Sω,α

(
Ξ(x2 −ω− ϑ)α)∆(ϑ, z(ϑ))dZH(ϑ)

= Ψ1 + Ψ2,

where
Ψ1 =

∫ x3

x2

Sω,α
(
Ξ(x3 −ω− ϑ)α)∆(ϑ, z(ϑ))dZH(ϑ),

and

Ψ2 =
∫ x2

0

[
Sω,α

(
Ξ(x3 −ω− ϑ)α)− Sω,α

(
Ξ(x2 −ω− ϑ)α)]∆(ϑ, z(ϑ))dZH(ϑ).

Thus, we have

E‖(L2z)(x3)− (L2z)(x2)‖e = E‖Ψ1 + Ψ2‖e

≤ 2e−1{E‖Ψ1‖e + E‖Ψ2‖e}.
(26)

Now, we can check ‖Ψi‖ −→ 0 as x2 −→ x3, i = 1, 2. For Ψ1, we obtain

E‖Ψ1‖e = E
∥∥∥∥∫ x3

x2

Sω,α
(
Ξ(x3 −ω− ϑ)α)∆(ϑ, z(ϑ))dZH(ϑ)

∥∥∥∥e

≤ τe(2H)e/2(x3 − x2)
eH−1

∫ x3

x2

E
∥∥Sω,α

(
Ξ(x3 −ω− ϑ)α)∆(ϑ, z(ϑ))

∥∥e
L0

2
dϑ

≤ 2e−1τe(2H)e/2(x3 − x2)
eH−1

×
{
‖z‖e
F

∫ x3

x2

(
(x− ϑ)α−1Eα,α

(
‖Ξ‖(x− ϑ)α))e

L∆(ϑ)dϑ

+
(x3 − x2)

e(α−1)+1N∆

e(α− 1) + 1
(Eα,α(‖Ξ‖xα

3))
e

}
−→ 0, as x2 −→ x3.
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For Ψ2, we find

E‖Ψ2‖e

= E
∥∥∥∥∫ x2

0

[
Sω,α

(
Ξ(x3 −ω− ϑ)α)− Sω,α

(
Ξ(x2 −ω− ϑ)α)]∆(ϑ, z(ϑ))dZH(ϑ)

∥∥∥∥e

≤ τe(2H)e/2xeH−1
2

×
∫ x2

0
E
∥∥[Sω,α

(
Ξ(x3 −ω− ϑ)α)− Sω,α

(
Ξ(x2 −ω− ϑ)α)]∆(ϑ, z(ϑ))

∥∥e
L0

2
dϑ

≤ 2e−1τe(2H)e/2xeH−1
2

×
{

λ
∫ x2

0

∥∥Sω,α
(
Ξ(x3 −ω− ϑ)α)− Sω,α

(
Ξ(x2 −ω− ϑ)α)∥∥eL∆(ϑ)dϑ

+N∆

∫ x2

0

∥∥Sω,α
(
Ξ(x3 −ω− ϑ)α)− Sω,α

(
Ξ(x2 −ω− ϑ)α)∥∥edϑ

}
≤ 2e−1τe(2H)e/2xeH−1

2

×
{

λ‖L∆‖Lq(∓,R+)

×
(∫ x2

0

(∥∥Sω,α
(
Ξ(x3 −ω− ϑ)α)− Sω,α

(
Ξ(x2 −ω− ϑ)α)∥∥e

)p
)1/p

dϑ

+N∆

∫ x2

0

∥∥Sω,α
(
Ξ(x3 −ω− ϑ)α)− Sω,α

(
Ξ(x2 −ω− ϑ)α)∥∥edϑ

}
From Equation (4), we know that Sω,α

(
Ξ(x)α) is uniformly continuous for x ∈ ∓. Hence,

we have ∥∥Sω,α
(
Ξ(x3 −ω− ϑ)α)− Sω,α

(
Ξ(x2 −ω− ϑ)α)∥∥ −→ 0, as x2 −→ x3.

Therefore, we have ‖Ψi‖ −→ 0 as x2 −→ x3, i = 1, 2, which implies, using Equation (26), that

E‖(L2z)(x3)− (L2z)(x2)‖e −→ 0, as x2 −→ x3,

for all z ∈ Bλ. As a result, L2 is compact on Bλ by applying the Arzelà–Ascoli theorem.
Thus,L1 +L2 has a fixed point z onBλ using Krasnoselskii’s fixed point theorem (Lemma 3).
Moreover, z is also a solution to Equation (7), and (L1z + L2z)(x1) = z1. This indicates
that uz steers the system in Equation (7) from z0 to z1 in a finite time x1, , implying that
Equation (7) is controllable on ∓. This completes the proof.

5. An Example

Consider the following linear delay fractional stochastic controlled system:(CD1.5
0+ z
)
(x) + Ξz(x− 0.5) = Bu(x) + ∆(x)dZH(x), for x ∈ Ω := [0, 1],

z(x) ≡ Π(x), z′(x) ≡ Π′(x) for − 0.5 ≤ x ≤ 0,
(27)

where

Ξ =

(
1 2
0 1

)
, B =

(
1
2

)
, ∆(x) =

( √
xe−x

4√
xe−x

4

)
,

and

Π(x) =
(

2x
x

)
, Π′(x) =

(
2
1

)
.
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By constructing the corresponding fractional delayed Gramian matrix of Equation (27) via
Equation (9), we obtain

W0.5,1.5[0, 1] =
∫ 1

0
S0.5,1.5

(
Ξ(0.5− ϑ)1.5

)
BBTS0.5,1.5

(
ΞT(0.5− ϑ)1.5

)
dϑ

=: O1 + O2,

where

O1 =
∫ 0.5

0
S0.5,1.5

(
Ξ(0.5− ϑ)1.5

)
BBTS0.5,1.5

(
ΞT(0.5− ϑ)1.5

)
dϑ,

for (0.5− ϑ) ∈ (0, 0.5),

O2 =
∫ 1

0.5
S0.5,1.5

(
Ξ(0.5− ϑ)1.5

)
BBTS0.5,1.5

(
ΞT(0.5− ϑ)1.5

)
dϑ,

for (0.5− ϑ) ∈ (−0.5, 0), and

H0.5,1.5

(
Ξx1.5

)
:=


�, −∞ < x < −0.5,
I, − 0.5 ≤ x < 0,
I− Ξ x1.5

Γ(2.5) 0 ≤ x < 0.5,

I− Ξ x1.5

Γ(2.5) + Ξ2 (x−0.5)3

Γ(4) , 0.5 ≤ x < 1,

M0.5,1.5

(
Ξx1.5

)
:=


�, −∞ < x < −0.5,
I(x + 0.5), − 0.5 ≤ x < 0,
I(x + 0.5)− Ξ x2.5

Γ(3.5) , 0 ≤ x < 0.5,

I(x + 0.5)− Ξ x2.5

Γ(3.5) + Ξ2 (x−0.5)4

Γ(5) , 0.5 ≤ x < 1,

in addition to

S0.5,1.5

(
Ξx1.5

)
:=



�, −∞ < x < −0.5,

I (x+0.5)0.5

Γ(1.5) , − 0.5 ≤ x < 0,

I (x+0.5)0.5

Γ(1.5) − Ξ x2

Γ(3) , 0 ≤ x < 0.5,

I (x+0.5)0.5

Γ(1.5) − Ξ x2

Γ(3) + Ξ2 (x−0.5)3.5

Γ(4.5) , 0.5 ≤ x < 1.

Next, we can calculate that

O1 =

(
0.1274 0.5036
0.5036 −0.11406

)
, O2 =

(
0.15915 0.3183
0.3183 0.6366

)
.

Then, we obtain

W0.5,1.5[0, 1] = O1 + O2 =

(
0.28655 0.8219
0.8219 0.52254

)
,

and

W−1
0.5,1.5[0, 1] =

(
−0.99382 1.5632

1.5632 −0.54500

)
.

Therefore, we see that W0.5,1.5[0, 1] is positive definite. Hence, the system in Equation (27)
is controllable on [0, 1] by Theorem 1, which implies that the assumption (J2) is satisfied.
Furthermore, consider the corresponding nonlinear fractional stochastic delay system of
Equation (27) as follows:(CD1.5

0+ z
)
(x) + Ξz(x− 0.5) = Bu(x) + ∆(x, z(x))dZH(x), for x ∈ ∓ := [0, 1],

z(x) ≡ Π(x), z′(x) ≡ Π′(x) for − 0.5 ≤ x ≤ 0,
(28)
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where

∆(x, z(x)) =

( √
xe−x

4 z1(x)√
xe−x

4 z2(x)

)
.

Next, by selecting e = p = q = 2, we find

E‖∆(x, z)− ∆(x, ρ)‖2
L0

2
=

(√
xe−x

4

)2[
(z1(x)− ρ1(x))2 + (z2(x)− ρ2(x))2

]
=

xe−2x

16
‖z− ρ‖2

L0
2
.

for all x ∈ ∓, and z(x), ρ(x) ∈ R2. We set L∆(x) = x exp(−2x)/16 such that
L∆ ∈ L2(∓,R+) in (J1), and we have

‖L∆‖L2(∓,R+) =

(∫ 1

0

[
ϑ exp(−2ϑ)

16

]2

dϑ

) 1
2

= 0.00964.

Then, by choosing α = 1.5, τe = 0.018, and H = 0.75, we obtain

N2 :=
5e−1τe(2H)e/2x

e(H+α−1)− 1
q

1

((α− 1)ep + 1)
1
p

(Eα,α(‖Ξ‖xα
1))

e‖L∆‖Lq(∓,R+) = 0.01.

Furthermore, we have

E〈W0.5,1.5[0, 1]z, z〉 =
(

0.28655z2
1 0.8219z2

2
0.8219z2

1 0.52254z2
2

)
≥ ηE‖z‖2,

where 0 < η ≤ 0.28655, and thus N1 = 3.4898 and N = 1.8075. Finally, we calculate that

N2

[
1 + 5e−1NN1

]
= 0.32539 < 1,

which implies that all the conditions of Theorem 2 are met. Therefore, the system in
Equation (28) is controllable.

6. Conclusions

In this paper, using a fractional delayed Gramian matrix and the exact solutions of
linear fractional stochastic delay systems, we derived the controllability results. Further-
more, by applying Krasnoselskii’s fixed point theorem and the exact solutions of nonlinear
fractional stochastic delay systems, we established the controllability results.

The results of this paper will be supplemented in the future to derive the Hyers–Ulam
stability of fractional stochastic delay systems of the order α ∈ (1, 2].
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14. Khusainov, D.Y.; Diblík, J.; Růžičková, M.; Lukáčová, J. Representation of a solution of the Cauchy problem for an oscillating

system with pure delay. Nonlinear Oscil. 2008, 11, 276–285. [CrossRef]
15. Elshenhab, A.M.; Wang, X.T. Representation of solutions for linear fractional systems with pure delay and multiple delays. Math.

Methods Appl. Sci. 2021, 44, 12835–12850. [CrossRef]
16. Elshenhab, A.M.; Wang, X.T. Representation of solutions of linear differential systems with pure delay and multiple delays with

linear parts given by non-permutable matrices. Appl. Math. Comput. 2021, 410, 126443. [CrossRef]
17. Elshenhab, A.M.; Wang, X.T. Representation of solutions of delayed linear discrete systems with permutable or nonpermutable

matrices and second-order differences. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 2022, 116, 58. [CrossRef]
18. Sathiyaraj, T.; Wang, J.; O’Regan, D. Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt

distribution. Proc. R. Soc. Edinb. Sect. A 2021, 151, 217–239. [CrossRef]
19. Elshenhab, A.M.; Wang, X.T. Controllability and Hyers–Ulam stability of differential systems with pure delay. Mathematics 2022,

10, 1248. [CrossRef]
20. Elshenhab, A.M.; Wang, X.T.; Mofarreh, F.; Bazighifan, O. Exact solutions and finite time stability of linear conformable fractional

systems with pure delay. CMES 2022, 134, 1–14. [CrossRef]
21. Elshenhab, A.M.; Wang, X.T.; Bazighifan, O.; Awrejcewicz, J. Finite-time stability analysis of linear differential systems with pure

delay. Mathematics 2022, 10, 539. [CrossRef]
22. Liang, C.; Wang, J.; O’Regan, D. Controllability of nonlinear delay oscillating systems. Electron. J. Qual. Theory Differ. Equ. 2017,

2017, 1–18. [CrossRef]
23. Elshenhab, A.M.; Wang, X.T.; Cesarano, C.; Almarri, B.; Moaaz, O. Finite-Time Stability Analysis of Fractional Delay Systems.

Mathematics 2022, 10, 1883. [CrossRef]
24. Rosenblatt, M. Independence and dependence. In Proceedings of the 4th Berkeley Symposium on Mathematical Statistics

and Probability, Berkeley, CA, USA, 20 June–30 July 1960; University of California Press: Berkeley, CA, USA, 1961; Volume 2,
pp. 431–443.

25. Shen, G.J.; Ren, Y. Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space.
J. Korean Stat. Soc. 2015, 4, 123–133. [CrossRef]

26. Maejima, M.; Tudor, C.A. Selfsimilar processes with stationary increments in the second Wiener chaos. Probab. Math. Stat. 2012,
32, 167–186.

27. Shen, G.; Sakthivel, R.; Ren, Y.; Li, M. Controllability and stability of fractional stochastic functional systems driven by Rosenblatt
process. Collect. Math. 2020, 71, 63–82. [CrossRef]

http://doi.org/10.1016/j.petrol.2017.03.015
http://dx.doi.org/10.1002/andp.200351511-1203
http://dx.doi.org/10.1007/s00397-005-0043-5
http://dx.doi.org/10.1007/s10492-015-0103-9
http://dx.doi.org/10.1002/rnc.2908
http://dx.doi.org/10.1007/s10959-013-0520-1
http://dx.doi.org/10.1016/j.camwa.2009.05.004
http://dx.doi.org/10.1080/17442508.2013.879143
http://dx.doi.org/10.1016/j.na.2012.10.009
http://dx.doi.org/10.1007/s11072-008-0030-8
http://dx.doi.org/10.1002/mma.7585
http://dx.doi.org/10.1016/j.amc.2021.126443
http://dx.doi.org/10.1007/s13398-021-01204-2
http://dx.doi.org/10.1017/prm.2020.11
http://dx.doi.org/10.3390/math10081248
http://dx.doi.org/10.32604/cmes.2022.021512
http://dx.doi.org/10.3390/math10091359
http://dx.doi.org/10.14232/ejqtde.2017.1.47
http://dx.doi.org/10.3390/math10111883
http://dx.doi.org/10.1016/j.jkss.2014.06.002
http://dx.doi.org/10.1007/s13348-019-00248-3


Fractal Fract. 2022, 6, 664 18 of 18

28. Maejima, M.; Tudor, C.A. On the distribution of the Rosenblatt process. Stat. Probab. Lett. 2013, 83, 1490–1495. [CrossRef]
29. Tudor, C.A. Analysis of the Rosenblatt process. ESAIM Probab. Stat. 2008, 12, 230–257. [CrossRef]
30. Sakthivel, R.; Revathi, P.; Ren, Y.; Shen, G. Retarded stochastic differential equations with infinite delay driven by Rosenblatt

process. Stoch. Anal. Appl. 2018, 36, 304–323. [CrossRef]
31. Lakhel, E.H.; McKibben, M. Controllability for time-dependent neutral stochastic functional differential equations with Rosenblatt

process and impulses. Int. J. Control Autom. Syst. 2019, 17, 286–297. [CrossRef]
32. Sharma, J.P.; George, R.K. Controllability of matrix second order systems: A trigonometric matrix approach. Electron. J. Diff. Equ.

2007, 80, 1–14.
33. Smart, D.R. Fixed Point Theorems; University Press: Cambridge, UK, 1980.
34. Mahmudov, N.I.; Zorlu, S. Controllability of non-linear stochastic systems. Int. J. Control 2003, 76, 95–104. [CrossRef]
35. Klamka, J. Stochastic controllability of linear systems with state delays. Int. J. Appl. Math. Comput. 2007, 55, 5–13. [CrossRef]

http://dx.doi.org/10.1016/j.spl.2013.02.019
http://dx.doi.org/10.1051/ps:2007037
http://dx.doi.org/10.1080/07362994.2017.1399801
http://dx.doi.org/10.1007/s12555-016-0363-5
http://dx.doi.org/10.1080/0020717031000065648
http://dx.doi.org/10.2478/v10006-007-0001-8

	Introduction
	Preliminaries
	Controllability of Linear Fractional Stochastic Delay Systems
	Controllability of Nonlinear Fractional Stochastic Delay Systems
	An Example
	Conclusions
	References

