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Abstract: We look at the stochastic fractional-space Bogoyavlenskii equation in the Stratonovich
sense, which is driven by multiplicative noise. Our aim is to acquire analytical fractional stochastic
solutions to this stochastic fractional-space Bogoyavlenskii equation via two different methods such
as the exp(−Φ(η))-expansion method and sine–cosine method. Since this equation is used to explain
the hydrodynamic model of shallow-water waves, the wave of leading fluid flow, and plasma physics,
scientists will be able to characterize a wide variety of fascinating physical phenomena with these
solutions. Furthermore, we evaluate the influence of noise on the behavior of the acquired solutions
using 2D and 3D graphical representations.

Keywords: fractional Bogoyavlenskii equation; stochastic Bogoyavlenskii equation; multiplicative
noise; exp(−Φ(η))-expansion method

1. Introduction

Fractional partial differential equations (FPDEs) have received much interest due to
their application in several fields of science including biochemistry and chemistry [1,2],
hydrology [3], biology [4,5], physics [6,7], finance [8], etc.

As a result, many researchers have recently focused their efforts on discovering new
and improved general closed form exact wave solutions of FPDEs such as
(G′/G)-expansion [9,10], Fan sub-equation [11], improved extended Fan subequation [12],
tanh-sech [13,14], sine–cosine [15], perturbation [16,17], Jacobi elliptic function [18,19],
F-expansion [20], exp(−ϕ(η))-expansion [21–23] methods, and the references therein.

On the other hand, stochastic partial differential equations (SPDEs) have been ex-
tensively studied as mathematical models for spatial–temporal physical, biological, and
chemical systems subject to random perturbations during the last few years. The impor-
tance of including stochastic effects in complicated system modeling has been highlighted.
For instance, there is a significant focus on using SPDEs to mathematically model com-
plex phenomena in finance, materials sciences, electrical and mechanical engineering,
information systems, condensed matter physics, biology, and climate systems [24–27].

It seems that studying FPDE models with stochastic influences is more important.
To the best of knowledge, little research has been conducted in order to obtain exact
solutions to fractional SPDEs, for instance [28–31]. As a result, the purpose of this paper
is to find the exact solution to the following space-fractional stochastic Bogoyavlenskii
equation (SFSBE) [32] in the Stratonovich sense:

4dψ + [D3α
xxyψ− 4ψ2Dα

y ψ− 4wDα
xψ]dt + ρψ ◦ dβ = 0,

ψDα
y ψ = Dα

xw, for 0 < α ≤ 1,
(1)

Fractal Fract. 2022, 6, 156. https://doi.org/10.3390/fractalfract6030156 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6030156
https://doi.org/10.3390/fractalfract6030156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0002-1402-7584
https://orcid.org/0000-0002-7585-5519
https://doi.org/10.3390/fractalfract6030156
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6030156?type=check_update&version=3


Fractal Fract. 2022, 6, 156 2 of 12

where ψ(x, y, t) and w(x, y, t) are real functions, Dα is the conformable derivative (CD) [33],
ρ is the noise strength, and β(t) is the standard Brownian motion.

Many authors have reviewed the deterministic Bogoyavlenskii Equation (1) with
integer-order derivatives (i.e., ρ = 0 and α = 1) to achieve analytical solutions using dif-
ferent techniques for example exp (−Φ(ζ))-expansion [34], Khater [35], multiple (G′/G)-
expansion [36], singular manifold [37], modified simple equation [38,39], modified ex-
tended tanh-function [40], generalized Riccati equation mapping [41], and sine–cosine [42].
Furthermore, the deterministic fractional Bogoyavlenskii Equation (1) has been solved
by utilizing multiple techniques including tan(Φ(ζ)/2)-expansion [43], exp (−Φ(ζ))-
expansion and rational tan(Φ(ζ))-expansion [44], first integral [45], (G′/G)-expansion [46],
improved fractional sub-equation [47], Bäcklund transformation [48], Jacobi elliptic equa-
tion [49], (G′/G, 1/G)-expansion and (1/G′)-expansion [50], and numerical multistep
approach [51]. On the other hand, the stochastic Bogoyavlenskii equation has not yet
been investigated.

Our contribution of this work is to consider the stochastic fractional-space Bogoy-
avlenskii equation in the Stratonovich sense, which is driven by multiplicative noise. This
equation has never been discussed before via a combination of fractional space and multi-
plicative noise. Specifically, the exact solutions for the stochastic Bogoyavlenskii equation
have never been obtained before. In addition, after we get the solutions by two various
methods including the exp (−Φ(ζ))-expansion and sine–cosine, we address the impact
of noise on these solutions. As we know, the stochastic solutions are more accurate than
deterministic solutions. Therefore, the acquired solutions are very useful for scientists to
describe a wide variety of complicated physical phenomena because Equation (1) is used
to explain the wave of leading fluid flow, plasma physics, and the hydrodynamic model
of shallow-water waves. We also show how the stochastic term affects the behavior of
SFSBE analytical solutions by using graphical representations for various noise intensity
values. Moreover, some previously obtained solutions, for instance the one stated in [34,42],
were expanded.

The following is a summary of this paper: In Section 2, we give a definition and
features of the CD and Brownian motion. In Section 3, we utilize a convenient wave
transformation to attain the wave equation of the SFSBE (1). In Section 4, the analytical
space-fractional stochastic solution of the SFSBE (1) is obtained. While in Section 5, we
investigate how the Brownian motion influences the SFSBE (1) solution’s behavior. Finally,
we present the paper’s conclusions.

2. Preliminaries

Here, we state some definitions and features of the CD [33] and Brownian motion.
First, we define the CD as follows:

Definition 1. Define the CD of φ : (0, ∞)→ R of order α ∈ (0, 1] as

Dα
xφ(x) = lim

κ→0

φ(x + κx1−α)− φ(x)
κ

.

Theorem 1. Suppose φ, g : (0, ∞) → R are differentiable, and α is a differentiable function too,
then, the next rule satisfies:

Dα
x(φ ◦ g)(x) = x1−αg′(x)φ′(g(x)).

The following include some features of the CD:

1. Dα
x [c1φ(x) + c2g(x)] = c1Dα

xφ(x) + c2Dα
x g(x), c1, c2 ∈ R

2. Dα
x [C] = 0, C is a constant,

3. Dα
x [xγ] = γxγ−α, γ ∈ R,

4. Dα
x g(x) = x1−α dg

dx .
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In the next, we define the Brownian motion:

Definition 2 (cf. [52]). For t ≥ 0, β(t) is called Brownian motion if it satisfies: (1) β(t) is
continuous, (2) β(0) = 0, (3) β(t) has independent increments, (4) β(t) − β(s) has normal
distribution with variance t− s and mean 0.

It is worth noting that there are two types of stochastic integrals that are widely used:
Stratonovich and Itô [53]. Modeling considerations usually decide the type is appropriate,
but once one is selected, a similar equation of the other type can be established with the
same solutions. Hence, the following is a possible switch between Stratonovich (written as∫ t

0 Λ ◦ dβ) and Itô (written as
∫ t

0 Λdβ):

∫ t

0
Λ(s, Ys)dβ(s) =

∫ t

0
Λ(s, Ys) ◦ dβ(s)− 1

2

∫ t

0
Λ(s, Ys)

∂Λ(s, Ys)

∂x
ds, (2)

where {Yt, t ≥ 0} is a stochastic process and Λ is considered to be sufficiently regular.

3. The Wave Equation

Here, we implement the following wave transformation

ψ(x, y, t) = χ(η)e[−ρβ(t)−ρ2t], w(x, y, t) = Θ(η), η =
`

α
xα +

m
α

yα + kt, (3)

to get wave equation for SFSBE (1). χ and Θ defined in (3) are real deterministic functions,
`, m, k are constants. We see that

Dα
xψ = `χ′e[−ρβ(t)−ρ2t], Dα

y ψ = mχ′e[−ρβ(t)−ρ2t],

D3α
xxyψ = m`2χ′′′e[−ρβ(t)−ρ2t], Dα

xw = `Θ′, (4)

and

dψ = [(kχ′ +
1
2

ρ2χ− ρ2χ)dt− ρχdβ]e[−ρβ(t)−ρ2t]

= [(kχ′ − 1
2

ρ2χ)dt− ρχdβ]e[−ρβ(t)−ρ2t], (5)

= [kχ′dt− ρχ ◦ dβ]e[−ρβ(t)−ρ2t],

using Equation (2) in differential form and multiplying it by −1, we get

dψ = [kχ′dt− ρχ ◦ dβ]e[−ρβ(t)−ρ2t].

Embedding Equation (3) into (1) and utilizing (4) and (6), we obtain

4kχ′ + m`2χ′′′ − 4mχ2χ′e(2ρβ(t)−2ρ2t) − 4`χ′Θ = 0,
mχ′χe[2ρβ(t)−2ρ2t] = `Θ′.

(6)

Considering expectation on both sides, where Θ and χ are deterministic functions,
we get

4kχ′ + m`2χ′′′ − 4mχ2χ′e−2ρ2tE[e2ρβ(t)]− 4`χ′Θ = 0,

mχ′χe−2ρ2tE[e2ρβ(t)] = `Θ′. (7)
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In fact, for every standard normal process Z, ρβ(t) is distributed similarly to ρ
√

tZ.
Therefore E(e2ρβ(t)) = e2ρ2t. Now, Equation (7) takes the form

4kχ′ + m`2χ′′′ − 4mχ2χ′ − 4`χ′Θ = 0,

mχ′χ = `Θ′. (8)

We have by integrating the second equation in (8) once and setting the integration
constant to zero

1
2

mχ2 = `Θ. (9)

By plugging Equation (9) into first equation in (8), we get

χ′′′ − 6
`2 χ2χ′ +

4k
m`2 χ′ = 0. (10)

Integrating (10) once and putting the constant of integration equal zero, we obtain

χ′′ − 2
`2 χ3 +

4k
m`2 χ = 0. (11)

4. Analytical Solutions of SFSBE

To get different analytical solutions of the SFSBE, we can apply many methods such
as Lie symmetry methods, Painlevé expansion, sine–cosine, generalized Riccati equation,
tanh–coth, exp(−Φ)-expansion, auxiliary equation, variational iteration, Backlund trans-
formation, first integral, etc. However, in this section, we use two distinct methods such as
exp(−Φ)-expansion and sine–cosine methods.

4.1. The exp(−Φ(η))-Expansion Method

Let us employ here the exp(−Φ(η))-expansion method [21–23,34] to find the traveling
wave solutions of (11) and then the exact solutions shown in Equation (1). First, we assume
the solutions of (11) are

χ(η) =
N

∑
i=0

h̄i[exp(−Φ(η))]i, such that h̄N 6= 0, (12)

where h̄0, h̄1 . . . , h̄N are constants to be calculated later. Φ = Φ(η) fulfills the next ODE:

Φ′ = exp(−Φ) + a exp(Φ) + b, (13)

where b, a are arbitrary constants. By balancing χ3 and χ′′ in (11), yields N = 1.
Hence, the solution of Equation (11) becomes

χ(η) = h̄0 + h̄1[exp(−Φ(η))]. (14)

By plugging Equation (14) into Equation (11), and utilizing Equation (13), we obtain a
polynomial of exp(−Φ). After that, we set the coefficients of exp(−Φ) to zero, which gives

2h̄1 −
2
`2 h̄3

1 = 0,

3bh̄1 −
6
`2 h̄0h̄2

1 = 0,

2ah̄1 + b2h̄1 −
6
`2 h̄2

0h̄1 +
4k

m`2 h̄1 = 0,

abh̄1 −
2
`2 h̄3

0 +
4k

m`2 h̄0 = 0. (15)
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Solving the above equations, we have

h̄0 =
`b
2

, h̄1 = `, k =
m`2

8
(4a− b2), (16)

where b, a are arbitrary constants.
Putting the values of h̄0, h̄1 into Equation (14), we get

χ(η) = ± `b
2
± ` exp(−Φ(η)). (17)

There are five cases for solutions of Equation (13) depending on the value of b and a:
Case I: When a 6= 0, b2 − 4a > 0, then the solution of Equation (13) is

Φ(η) = ln
(√(b2 − 4a) tanh

(√
(b2−4a)

2 (η + C)
)
+ b

−2a

)
. (18)

where C is an arbitrary constant. Plugging Equation (18) into (17), we attain

χ1(η) = ±
`b
2
∓ 2`a√

(b2 − 4a) tanh(
√

(b2−4a)
2 (η + C)) + b

. (19)

Therefore, the solutions of SFSBE (1), by substituting Equation (19) into Equation (3)
and using Equation (9), are

ψ1(t, x, y) = ±e[−ρβ(t)−ρ2t]
(
`b
2
− 2`a√

(b2 − 4a) tanh(
√

(b2−4a)
2 (η + C)) + b

)
, (20)

w1(t, x, y) = ±m
2

(
b
2
+

2a√
(b2 − 4a) tanh(

√
(b2−4a)

2 (η + C)) + b

)2

, (21)

where η = `
α xα + m

α yα − m`2

8 (b2 − 4a)t.
Case II: When a 6= 0, b2 − 4a < 0, then the solution of Equation (13) is

Φ(η) = ln
(√(4a− b2) tan

(√
(4a−b2)

2 (η + C)
)
− b

2a

)
. (22)

Substituting Equation (22) into (17), we have

χ2(η) = ±
`b
2
± 2`a√

(4a− b2) tan(
√

(4a−b2)
2 (η + C))− b

. (23)

Thus, the solutions of SFSBE (1), by substituting Equation (23) into Equation (3) and
using Equation (9), are

ψ2(t, x, y) = ±e[−ρβ(t)−ρ2t]
(
`b
2

+
2`a√

(4a− b2) tan(
√

(4a−b2)
2 (η + C))− b

)
, (24)

w2(t, x, y) = ±m
2

(
b
2
+

2a√
(4a− b2) tan(

√
(4a−b2)

2 (η + C))− b

)2

, (25)

where η = `
α xα + m

α yα + m`2

8 (4a− b2)t.
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Case III: When a = 0 and b 6= 0, then the solutions of Equation (13) is

Φ(η) = − ln
(

b
exp(b(η + C))− 1

)
. (26)

Substituting Equation (18) into (17), we obtain

χ3(η) = ±
`b
2
± `b

exp(b(η + C))− 1
. (27)

Therefore, the solutions of SFSBE (1), by substituting Equation (27) into Equations (3)
and using Equation (9), are

ψ3(t, x, y) = ±e[−ρβ(t)−ρ2t]
(
`b
2

+
`b

exp(b(η + C))− 1

)
, (28)

w3(t, x, y) = ±m
2

(
b
2
+

b
exp(b(η + C))− 1

)2

, (29)

where η = `
α xα + m

α yα − m`2b2

8 t.
Case IV: When a 6= 0, b 6= 0 and b2 − 4a = 0, then the solutions of Equation (13) is

Φ(η) = ln
(
−2b(η + C) + 4

b2(η + C))

)
. (30)

Substituting Equation (30) into (17), we obtain

χ4(η) = ±
`b
2
∓ b2`(η + C)

2b(η + C)) + 4
. (31)

Thus, the solutions of SFSBE (1), by substituting Equation (31) into Equation (3) and
using Equation (9), are

ψ4(t, x, y) = ±e[−ρβ(t)−ρ2t]
(
`b
2
− b2`(η + C)

2b(η + C)) + 4

)
, (32)

w4(t, x, y) = ±m
2

(
b
2
+

b2(η + C)
2b(η + C) + 4

)2

, (33)

where η = `
α xα + m

α yα.
Case V: When a = 0, b = 0 and b2 − 4a = 0, then the solution of Equation (13) is

Φ(ς) = ln(ς + E). (34)

Substituting Equation (34) into (17), we obtain

χ5(η) =
±`

η + C . (35)

Therefore, the solutions of SFSBE (1), by substituting Equation (35) into Equation (3)
and using Equation (9), are

ψ5(t, x, y) = ±`e[−ρβ(t)−ρ2t]
(

1
η + C

)
, (36)

w5(t, x, y) = ±m
`

(
1

η + C

)2

, (37)
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where η = `
α xα + m

α yα.

Remark 1. If we set ρ = 0 and α = 1 in Equations (20), (21), (24), (25), (28), (29), (32), (33), (36)
and (37), then we get the same results reported in [34].

4.2. Sine–Cosine Method

We implement here the sine–cosine method. We assume the solution of Equation (11)
depend on [15] are

χ(η) = AΨn, (38)

where
Ψ(η) = cos(Bη) or Ψ(η) = sin(Bη), (39)

where A and B are undefined constants. Putting Equation (38) into Equation (11), we have

AB2[−n2Ψn + n(n− 1)Ψn−2]− 2
`2 A3Ψ3n +

4k
m`2 AΨn = 0,

rewriting the equation above

(
4k

m`2 A− AB2n2)Ψn + n(n− 1)AB2Ψn−2 − 2
`2 A3Ψ3n = 0. (40)

Comparing the Ψ term in Equation (40), we get

3n = n− 2,

hence
n = −1.

Now, Equation (14) becomes

(
4k

m`2 A− AB2)Ψ−1 + (
−2
`2 A3 + 2AB2)Ψ−3 = 0.

Inserting each coefficient of Ψ−3 and Ψ−1 equal zero, we obtain

−2
`2 A3 + 2AB2 = 0, (41)

and
4k

m`2 A− AB2 = 0. (42)

By solving these equation we get

A = ±2

√
k
m

and B = ±2
`

√
k
m

. (43)

There are two cases:
First case: If k

m > 0, hence the solutions of Equation (11) take the form:

χ(η) = ±2

√
k
m

sec(
2
`

√
k
m

η) or χ(η) = ±2

√
k
m

csc(
2
`

√
k
m

η).

Therefore, the solutions of SFSBE (1) are

ψ2,1(x, y, t) = ±2

√
k
m

sec(
2
`

√
k
m
(
`

α
xα +

m
α

yα + kt))e[−ρβ(t)−ρ2t], (44)
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w2,1(x, y, t) =
2k
`

sec2(
2
`

√
k
m
(
`

α
xα +

m
α

yα + kt)), (45)

or

ψ2,2(x, y, t) = ±2

√
k
m

csc(
2
`

√
k
m
(
`

α
xα +

m
α

yα + kt))e[−ρβ(t)−ρ2t], (46)

w2,2(x, y, t) =
2k
`

csc2(
2
`

√
k
m
(
`

α
xα +

m
α

yα + kt)). (47)

Second case: If k
m < 0, then the solutions of Equation (11) are

χ(η) = ±2

√
k
m

sech(
2
`

√
k
m

η) or χ(η) = ±2

√
k
m

csch(
2
`

√
k
m

η).

Therefore, the solutions of SFSBE (1) take the form

ψ2,3(x, y, t) = ±2

√
k
m

sech(
2
`

√
k
m
(
`

α
xα +

m
α

yα + kt))e[−ρβ(t)−ρ2t], (48)

w2,3(x, y, t) =
2k
`

sech2(
2
`

√
k
m
(
`

α
xα +

m
α

yα + kt)), (49)

or

ψ2,4(x, y, t) = ±2

√
k
m

csch(
2
`

√
k
m
(
`

α
xα +

m
α

yα + kt))e[−ρβ(t)−ρ2t], (50)

w2,4(x, y, t) =
2k
`

csch2(
2
`

√
k
m
(
`

α
xα +

m
α

yα + kt)). (51)

Remark 2. If we set ρ = 0 and α = 1 in Equations (44)–(51), then we acquire the same solutions
stated in [42].

5. Impact of Multiplicative Brownian Motion

We address in this section the influence of the multiplicative Brownian motion on the
solutions of the SFSBE (1). We employ MATLAB tools [54] to display some graphical repre-
sentations for distinct values of the noise strength and explore the influence of multiplicative
Brownian motion on these solutions. We fixed the parameters ` = 1, k = −2, m = 1. In the
following, we plot the solution (48) for x ∈ [0, 5], y = 1 and t ∈ [0, 5]:

When we look at Figures 1 and 2 below, we can see that:

1. The surface shrank as the order of the fractional operator α decreases,
2. At ρ = 0, the surface is not completely flat and has some fluctuation,
3. After minor transit patterns, the surface becomes considerably flatter when noise is

included and its strength is increased ρ = 0.5, 1, 2.

ρ = 0 ρ = 0.5

Figure 1. Cont.
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ρ = 1 ρ = 2

Figure 1. Three-dimensional (3D) plots of the solution (48) with α = 1.

ρ = 0 ρ = 0.5

ρ = 1 ρ = 2

Figure 2. Three-dimensional (3D) plots of the solution (48) with α = 0.5.

Thus, we can deduce from Figures 1–3 that the multiplicative Brownian motion
influences the solutions of SFSBE and it stabilizes the solutions around zero.

Figure 3. Two-dimensional (2D) plots of the solution (48) with α = 1.
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6. Conclusions

In this study, we considered the stochastic fractional-space Bogoyavlenskii equation
with multiplicative Brownian motion in the Stratonovich sense. We attained the exact
fractional stochastic solutions of the SFSBE via two distinct methods: for instance, the
exp(−Φ(η))-expansion method and sine–cosine method. We extended some previously
acquired results, including the results sated in [34,42]. These forms of solutions can be
applied to a wide range of complex physical phenomena because Equation (1) is used to
explain the wave of leading fluid-flow, plasma physics, and the hydrodynamic model of
shallow-water waves. Finally, we demonstrated how Brownian motion affects solution
behavior and indicated that Brownian motion stabilizes the solutions of SFSBE around zero.
We can consider multi-dimensional multiplicative noise and additive noise in future work.
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