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Abstract: In this paper, we used Lyapunov theory and Linear Matrix Inequalities (LMI) to design a
generalized observer by adding more complexity in the output of the dynamic systems. Our designed
observer is based on the optimization problem, minimizing error between trajectories of master and
slave systems subject to the incremental quadratic constraint. Moreover, an algorithm is given in our
paper used to demonstrate a method for obtaining desired observer and gain matrixes, whereas these
gain matrixes are obtained with the aid of LMI and incremental multiplier matrix (IMM). Finally,
discussion of two examples are an integral part of our study for the explanation of achieved analytical
results using MATLAB and SCILAB.

Keywords: dynamic systems; fractional order chaotic systems; observer; synchronization; incremen-
tal quadratic constraint; linear matrix inequalities

1. Introduction

A system of differential equations of the form żi = Ψi(zi); i = 1, 2, · · · , n is said to be
a dynamic system, whereas a special property in which a dynamic system is sensitive to
initial conditions and parameters involved in given system is known as a chaotic system. It
was Lorenz in 1963, the pioneer of chaos, who found unpredictability for the first time in
observing a climate-based system. Since then, infinitely many chaotic systems were derived.
The variety of their applications can be found in several fields other than mathematics
such as finance [1,2], medicine [3–5], biology [6,7] and environmental science [8]. However,
apart from above applications, chaos can be found in engineering-based subjects as well.
In 2017, Qi considered the brushless DC motor [9] and analyzed its chaotic dynamics by
decomposing their torque terms into four parts using the energy casimir function. The
chaotic dynamics and multi-pulse orbits in cantilevered pipes for conveying pulsating fluid
with harmonic force are discussed with the aid of energy-phase method in [10]. A four
rotor-based drone [11] is being considered by Bi et al. for detecting chaos using energy
functions. In 2019, Yang and Qi [12] worked on plasma chaotic system using generalized
competitive mode and mechanism analysis for the discussion of its various dynamic modes.

In 1823, Abel used a technique based on fractional calculus for the first time while
investigating a physical problem and then Liouville followed the same work by introducing
physical applications of fractional calculus into potential theory. Since then, this topic
spread to other fields such as inequalities [13,14], optimization [15], nonlinear dynamics [16],
cyber-security [17] and many more. Fractional calculus has a great influence on chaotic
systems and its impact can be seen not only in detecting chaos, but also a variety of work
can be found in bifurcation [18–20], synchronization [16,21] and stability [22,23]. Fractional
derivatives in dynamic systems is one of the most interesting topics for researchers at
present. In 2020, Rajeev et al. [24] focused on the convergence of series solution in the
fractional generalized Korteweg–de Vries equation. The Adomian decomposition scheme
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is used as a solver for fractional order delay differential equations [25] and several other
recent works in fractional calculus linking with dynamic systems can be found in [26–28]
and the references there in.

A control-based strategy in which at least two identical or non-identical dynamic
systems overlap their trajectories is known as synchronization. In other words, synchro-
nization occurs when one or more drive systems start following a single master system.
Several computer-based applications of synchronization can be found in the literature such
as [29–31] and the references therein. Observers can be found as a best example of synchro-
nization for engineering-based work and a system is said to be observable if rank(A, B) is
full ranked. In 2011, Açıkmeşe et al. [32] used implicit relationship with quadratic inequal-
ity constraint for chaotic system. Then, Lipshitz [33,34] and monotonic [35] inequalities
satisfying IQC were used and in-response special matrixes were created. After that, Zhou
et al. [36] combined IQC with the bounds of system as faces of octahedron and designed
Incremental Multiplier Matrix (IMM). In 2020, Sabir et al. worked on an observer with
single linear and nonlinear outputs for quadrotor chaotic system [37]. Recently in 2022, Liu
et al. worked on observers for fractional order chaotic systems using functional impulsive
response [38].

The above cited work and our knowledge of the literature reveals that a class of
observers, satisfying incremental quadratic constraints, was confined to less non-linearity
in output and integer ordered dynamic systems. This idea encouraged us to fill the gap in
the literature by providing a scheme, which can help in the synchronization of master and
slave system with more complexity in output for fractional as well as integer order dynamic
systems. For this purpose, we have provided Theorem 1, Corollaries 1–3, Remark 2 and
Algorithm 1 to attain generalized observer with n nonlinear outputs. The following five
steps can be followed to make our methodology more feasible and user friendly:

1. Convert fractional/integer order dynamic systems into class (9).
2. Obtain the symmetric incremental multiplier matrix σm using the following inequality:(

σm11 + σm12 θi + θT
i σm

T
12 θT

i σm22
σm22 θi −σm22

)
> 0; i = 1, 2, · · · , 6 (1)

for nonlinear function; f(r) with faces of the octahedron; ∑n
i=1 zi θi =

∂f
∂r .

3. Check the bound of dynamic system. If the system is bounded, then go to the next
step. Otherwise, the method does not work here.

4. Use matrix; σm into inequality (27) to compute gain matrixes; Tq, T1, T2j; j = 1, 2, · · · , n
and symmetric matrix ℘.

5. Calculate generalized observer (10) by substituting matrixes obtained in step 4.

This paper follows the following pattern: Section 2 consists of basic results including
definitions, Lemmas and remarks for the better understanding of rest of the work. In
Section 3, we stated and proved Theorem 1 for generalized observer satisfying IQC with
n nonlinear outputs. This section also contains an algorithm, which plays a vital role in
obtaining the gain matrixes and procedure for achieving result of our designed observer.
Numerical simulations for gain matrixes with suitable dimension and phase portraits
for fractional order Lorenz and gyrostat chaotic systems were illustrated in Section 4. A
comparison of our designed observer with other techniques is available in Section 5, while
Section 6 contains the concluding remarks.
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2. Prerequisite

Some basic definitions, theorems and lemmas are given in this section which can be
helpful in understanding rest of the work. For convenience, a symmetric matrix N = N T

can be rewritten as:

N =

N11 ? s
N T

12 N22 ~
N T

13 N T
23 N33

 =

N11 N12 N13
N T

12 N22 N23
N T

13 N T
23 N33

 (2)

in the mentioned form throughout our study.

Definition 1 ([32]). A symmetric matrix:

σm =

(
σm11 σm12
σm

T
12 σm22

)
(3)

is said to be incremental multiplier matrix for nonlinear function f(r), if the following condition
is satisfied: (

∆z

∆f

)T

σm

(
∆z

∆f

)
≥ 0, (4)

where ∆z = z− z̆ and ∆f = f(r) − f(r̆), while condition given in inequality (4) is famous as
Incremental Quadratic Constraint (IQC).

Several researchers worked on various types of inequalities satisfying incremental
quadratic constraint. Here, Table 1 indicates the obtained increment matrix multiplier for
special conditions on inequalities.

Table 1. Results of inequalities leading to special matrixes satisfying IQC.

Rule Inequality Condition Matrix

Açıkmeşe et al. [32] Incremental quadratic Implicit relationship −−
Zhang et al. [33] one-sided Lipschitz ∆ΦT∆z ≤ ρ∆zT∆z β

(
ρI − 1

2 I
− 1

2 I 0

)
Zhou et al. [34] Lipchitz ||∆Φ|| ≤ γ||∆z|| β

(
γ2 I 0

0 −I

)
Gupta et al. [35] Generalized

monotone
∆zT∆Φ + ∆ΦT∆z ≥

µ∆zT∆z β

(
−µI I

I 0

)
Zhao et al. [34] non decreasing ∆zT∆Φ ≥ 0 β

(
0 I
I 0

)

Finally, the following standard Lemmas will be useful in the proofs given in Section 3.

Lemma 1 ([39]). Let R =

(
R11 R12
RT

12 R22

)
be a symmetric matrix. Then the following properties

are equivalent:

a. R < 0,
b. R11 < 0, R22 −RT

12R
−1
11 R12 < 0,

c. R22 < 0, R11 −R12R
−1
22 RT

12 < 0.

Lemma 2 ([40]). Let us considerW = zT℘z with a symmetric matrix; ℘. Then, it holds

λmin(℘)||z||2 ≤ W ≤ λmax(℘)||z||2, (5)

where λmin(℘), λmax(℘) are the minimum and maximum eigenvalues of ℘.
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Lemma 3 ([41]). Suppose ∇(·) be an uncertain function satisfying inequality (6). Then, there
exists a non-negative function γ, such that:

(a− b)(Ψ(a)−Ψ(b) +∇(a)ϕm) ≥ −γ|ϕm|, (6)

where a, b, ϕm are in real number set.

Here in this work, we tried to design an observer for fractional order chaotic systems.
Therefore, this portion concerns with some basics about fractional derivatives.

Definition 2. Let us consider a function g(w), then its fractional order integration can be de-
fined as:

Iβ
w0 g(w) =

∫ w

w0

w− τ

Γ(β)
g(τ)dτ, (7)

where β is any non−integer number.

Remark 1. If w0=0 is used into Equation (7), then one can write Iβ
0 = g(w)~ φ(w), where ~

is convolution operator and

φ(w) =

{
wβ−1

Γ(β)
; w > 0

0 ; w ≤ 0.

The work of Caputo in 1967 on derivative, famous as Caputo’s Derivative (CD), was
the generalized form of derivatives in fractional calculus and played important role in
Fractional Order Dynamic Systems (FODS). Several researchers have been working on
modification of CD in recent decades. However, the CD, which researchers are using in the
field of nonlinear analysis for fractional order systems can be found in [42].

Definition 3. Fractional order derivative of a function g(w) is defined as:

Dβ
w0 g(w) =

d
dw

∫ w

w0

w− τ

Γ(1− β)
g(τ)dτ. (8)

We used a fractional derivative for achieving a solution for chaotic systems.

3. Generalized Observer for FOCS

In this section, a theorem is proved to design generalized observer for a class of
fractional order chaotic systems. The proposed observer can cover a wide range of chaotic
systems such as [43–45]. Throughout this section, we consider Fos as a class of fractional
ordered chaotic systems of the form:

Fos :


Dβz = Az+ Bf(r) + v,
y1 = Cz,
y2j = Dj[Ψj +∇j(ν)ϕm j] for j = 1, 2, · · · , n,

(9)

whereA ∈ Rk1×k1 , B ∈ Rk2×r, C ∈ Rk1a×k2 ,Dj are scalar numbers and solution of system (9)
belongs to euclidean space of k1 tuples. Moreover, y1 and y2j; j = 1, 2, · · · , n are linear and
nonlinear outputs of master system (9), whereas r = Gz, G ∈ Rkq×k2 and ν = Mz such that
M is any real numbered row matrix of order 1× k1. A generalized observer for class (9) is:

Dβ z̆ = Az̆+ Bf(r̆) + T1(y1 − C z̆) +
n

∑
j=1
T2j[y2j −DjΨj(ν̆)], (10)
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where z̆ is estimated state variable, while r̆ = G z̆+ Tr(y1 − C z̆) and ν̆ = Mz̆ are estimations
of r and ν, respectively. The matrixes; Tr ,T1, T2j, j = 1, 2, . . . , n including in Equation (10)
are real valued gain matrixes.

Theorem 1. Suppose a system belongs to class (9) satisfying IQC, the matrix inequality:[
℘(A− T1C) + (A− T1C)T℘+ (G − TrC)Tσm11(G − TrC) + 2α℘ ?

BT℘+ σm
T
12(G − TrC)T σm22

]
≤ 0 (11)

and the equality:

℘
n

∑
j=1
T2jDj − γj MT

j = 0 (12)

constraints hold with known increment multiplier matrix. Then, system (10) is generalized observer
for a class of fractional order chaotic systems (9). Moreover, the error terms E(t) are bounded and
convergent for all t ≥ 0.

Proof. Control and synchronization-based strategies work on the concept of error dynamic
system. Therefore, in our case error is the difference between z ∈ Fos and estimated
variable z̆:

E(t) = z(t)− z̆(t). (13)

The fractional order derivative of Equation (13) is:

DβE(t) = Dβz(t)− Dβ z̆(t). (14)

Putting Equations (9) and (10) into Equation (14) yields:

DβE(t) = (A− T1C)E+ B∆f−
n

∑
j=1

(
T2jDj[∆Ψj +∇j(ν̆)ϕm j]

)
, (15)

where ∆f = f(r)− f(r̆) and ∆Ψ = Ψ(ν)−Ψ(ν̆). Moreover, the difference between r and r̆
gives us:

∆r = (G − TrC)E. (16)

Now, using Equations (15) and (16) in combination with incremental multiplier matrix
for E and ∆f yields: [

E

∆f

]T

ΥTσmΥ
[
E

∆f

]
≥ 0, (17)

where

Υ =

[
(G − TrC) 0

0 I

]
. (18)

We select a quadratic Lyapunov function in terms of errors:

W(E) = ET℘E. (19)
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Differentiating Equation (19) along its state trajectories:

DβW(t) = ET
[
℘(A− T1C) + (A− T1C)T℘

]
E+ ET℘B∆f

+∆fTBT℘E− 2
n

∑
j=1

(
ET℘T2jDj[∆Ψj +∇j(ν̆)ϕm j]

)
. (20)

Rewriting Equation (20) into matrix form after shifting 2 ∑n
j=1

(
ET℘T2jDj[∆f+∇j(ν̆)ϕm j]

)
to the other side gives:

DβW(t) + 2
n

∑
j=1

(
ET℘T2jDj[∆Ψj +∇j(ν̆)ϕm j]

)
=

[
℘(A− T1C) + (A− T1C)T℘− 2α℘ ?

BT℘ 0

]
. (21)

Finally, we obtain our desired result (1) by multiplying [ET ∆fT ]T from both ends with
the right side of Equation (21) and then adding with the inequality (17). For bounded con-
vergence of error term, we obtain the following inequality using Equations (20) and (21):

DβW(t) + 2
n

∑
j=1

(
ET℘T2jDj[∆Ψj +∇j(ν̆)ϕm j]

)
+ 2αW ≤ 0. (22)

In view of Lemma 3, inequality (22) can be rewritten as:

DβW(t) ≤ −2

(
αW +

n

∑
j=1

℘T2jDj

(
[∆Ψj +∇j(ν̆)ϕm j]

))

≤ −2

(
αW +

n

∑
j=1

γj(ν− ν̆)
(
[Ψj(ν)−Ψj(ν̆) +∇j(ν̆)ϕm j]

))
(23)

≤ −2αW + 2
n

∑
j=1

ηj|ϕm j|,

where ℘T2jDj = γj∆ν. Solving inequality (23) forW gives:

W(t) ≤ W(0) exp(−2αt) +
n

∑
j=1

(
γjηj|ϕm j|

α

)
. (24)

From Equation (19), one can observe thatW is the combination of error term E and
symmetric matrix ℘. Therefore, in view of Lemma 2, inequality (24) can be rewritten as:

λmin(℘)||E(t)||2 ≤ W(t) ≤ λmax(℘)||E(t)||2

≤ λmax(℘)||E(0)||2 exp(−2αt) +
n

∑
j=1

(
γjηj|ϕm j|

α

)
. (25)

Hence,

E(t) ≤ E0 exp(−2αt) +

√√√√ n

∑
j=1

(
γjηj|ϕm j|
αλmin℘

)
, (26)

where E0 is the ratio between max and min eigenvalues of a symmetric matrix ℘. This com-
pletes our required proof and shows that the observer given in Equation (10) synchronizes
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to class of fractional order chaotic systems (9) after some time ‘t’ with the convergence of
error term.

3.1. Lmis and Algorithm for Gain Matrices

We designed an algorithm in this section to find gain matrixes Tr, T1, T2j; j = 1, 2, · · · , n
and a symmetric matrix ℘, which are helpful in the calculation of an observer system (10).
For linear matrix inequalities, we use Shurs Lemma 1 on inequality (11) to obtain: Ω℘ ? s

BT℘+ σm
T
12(G − TrC)T σm22 0

(G − TrC)σm
11 0 −σm11

 ≤ 0, (27)

where Ω℘ = 2α℘+ ℘A+AT℘− (QC + CTQT) such that Q = ℘T1. Inequality given in
(27) can also be useful in achieving the feasibility condition of obtained solution.

Corollary 1. Let us suppose j = 1 into system (10) with β = 1 then, we obtain the observer given
in [36].

Corollary 2. Suppose β = [β1, β2, β3] is considered 1 in system (9). Then, observer (10) is valid
for integer ordered chaotic systems.

Corollary 3. Introducing Dj = 0 into system (10), then one can achieve results of [35,41].

4. Numerical Simulations

In this section, we used fractional order Lorenz and Gyrostat chaotic systems as exam-
ples for using Algorithm 1 in the finding of gain matrixes and trajectories of generalized
full order observer.

Algorithm 1 Generalized full order observer for a class of fractional order chaotic systems

1 We transform any fractional order chaotic system into the form (9).
2 The algorithm given in [36] is used to achieve the matrix σm for f(r).
3 Then, we use σm into inequality given in (27) to compute all unknown symmetric and

gain matrixes.
4 Finally, we compute generalized full order observer (10) with n nonlinear outputs for

a class of systems (9).

4.1. Fractional Order Lorenz Chaotic System

Our first example is fractional order Lorenz system [46]:
Dβ1z1 = σ(z2 − z1),
Dβ2z2 = ρz1 − z2 − z1z3,
Dβ3z3 = z1z2 − bz3,


y1a = z1 + z2,
y2a = z3,
y3a = z3,


y21 = D1[(M1z)

4 + ν1],
y22 = D1[(M2z)

2 + ν2],
y23 = D1[(M3z)

3 + ν3],

(28)

where M1 = [5,−3, 1], M2 = [2, 0,−7], M3 = [1, 2, 0], Di=10−5, while y1=[y1a, y1b, y1c]
T is the

linear output. System (28) can be transformed into class (9) with:

A =

−σ σ 0
ρ −1 0
0 0 −b

, B =

 0 0
−1 0
0 1

, f(r) =
[

r1r3
r1r2

]
(29)

and v is zero column matrix of order 3. The faces of octahedron using ∂f
∂r and incremental

multiplier matrix σm for system (28) can be found in [36]. The above information is useful
in achieving the following gain matrixes:
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Tq =

1.0044 0.138 0.773
0.0004 −4.6995 −1.6966

0 0.6813 0.262

, T1 =

 40.5 0.0002 −30.4942
0.0026 1396.6371 6973.1994
0.0042 4713.7746 −306.98629

,

T21 =

 2703.57
−8004949.35
3525593.882

, T22 =

 1081.05
810376.06
−2.224

, T23 =

 540.79
5259454.389
−231535.941

. (30)

Theorem 1 is proved for n nonlinear outputs, but for convenience, we are considering
three nonlinear outputs.

In Figure 1, we can observe six trajectories moving with respect to time, in which
the full dashed lines shows trajectories of fractional order chaotic system (28) and double
dashed lines illustrates observer that is designed in Equation (10). It is further observed in
the same figure that z̆ overlap and follow path of z as time advances and error dynamic
system (15) approach to zero.

Figure 1. Trajectories of observer and fractional order Lorenz chaotic system.

Remark 2. Let us consider β1 = β2 = β3 = 1 with single nonlinear output T21 in Equation (28),
then we can obtain results of Zhou et al. [36].

4.2. Fractional Order Gyro Chaotic System

Our second example is fractional order Gyrostat system [47], which is not discussed
anywhere in the field of control theory for observers. Therefore in this section, we will find
its incremental multiplier matrix; IMM as well:

IaDβ1z1 = (Ib − Ic)z2z3 − hcz2 + hbz3 − µaz1 + La,
IbDβ2z2 = (Ic − Ia)z1z3 + hcz1 + µbz2 + Lb,
IcDβ3z3 = (Ia − Ib)z1z2 − hbz1 − µcz3 + Lc,
y1a = z1 + 3z2 − 2z3,
y2a = z2 + 3z3,
y3a = 4z1 + z2,


y21 = D1[(M1z)

2 + ν1],
y22 = D2[(M2z)

5 + ν2],
y23 = D3[(M3z)

3 + ν3],

(31)

where M1 = [1, 3, 2], M2=[5, 2,−2], M3 = [1, 2, 19], Di = 10−5, while y1 = [y1a, y1b, y1c]
T is

linear output. System (31) can be transformed into class (9) with:

A =

−
µa
Ia
− hc

Ia

hb
Ia

hc
Ib

µb
Ib

0

− hb
Ic

0 − µc
Ic

, f(r) =

r2r3
r1r3
r1r2

, (32)
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B = diag( Ib−Ic
Ia

, Ic−Ia
Ib

, Ia−Ib
Ic

) and v = [ La
Ia

, Lb
Ib

, Lc
Ic
]T . System (31) is integer order for

β1 = β2 = β3 = 1 and is obviously chaotic [47]. However, for β1, β2, β3 = β ∈ [0.80, 0.99],
system (31) is fractional order. Figure 2 shows 3D phase portrait of fractional order gyrostat
chaotic system for different values of β. Physically, trajectories of gyrostat are momentum in
their respective axis. Therefore, Figure 2 illustrates the unpredictable attitude of momentum
in gyrostat with the advancement in time. These unpredictabilities occur due to negligible
changes in the initial condition or bifurcation parameter.

(a) Single scrolled fractional order (b) Multi scrolled fractional order

Figure 2. Three dimensional phase portraits of single to multi scrolled fractional order gyro chaotic
system for β ∈ [0.80, 0.99].

According to second step in Algorithm 1, we differentiate the nonlinear part f(r)
given in Equation (32) with respect to r for faces of the octahedron tangent to the edges
of hyperboloid:

Θ1 = ρ

0 0 0
0 0 1
0 1 0

, Θ2 = ρ

0 0 1
0 0 0
1 0 0

, Θ3 = ρ

0 1 0
1 0 0
0 0 0

, (33)

and Θ4,5,6 = −Θ1,2,3, where ρ is the hyperboloid bound [47] of gyrostat chaotic system:

µa

(
z1 −

La

2µa

)2
− µb

(
z2 −

Lb
2µb

)2
+ µc

(
z3 −

Lc

2µc

)2
≤ 22.409. (34)

The incremental multiplier matrix σm for system (31), with the aid of faces of octahe-
dron (33), hyperboloid bound (34) and algorithm in [36], is:

σm =



53159.2564 0 0 −13.6991 0 0
0 53159.2564 0 0 −13.6991 0
0 0 53159.2564 0 0 −13.6991

−13.6991 0 0 −61.315 0 0
0 −13.6991 0 0 −61.315 0
0 0 −13.6991 0 0 −61.315

. (35)

According to third step given in Section 1, our proposed observer work if given
dynamic system is bounded. Therefore, it is observed in Figure 3 that system (31) is
bounded by a hyperboloid (34) whose edges are tangent to an octahedron, whereas faces
of octahedron are achieved using Equation (33). Gain matrixes for fractional order gyro
chaotic system:



Fractal Fract. 2022, 6, 189 10 of 13

Tq =

0.7276 0 −0.7276
0 0 1.544
0 0.4863 0

, T1 =

454.3538 −1.2307 −455.3502
0 0 2062.4869
0 3521.76 0

,

T21 =

0.9111
8.0152
9.4217

, T23 =

 45555.59
53434.66
−94216.53

, T24 =

 9111.12
53434.66

895058.04

. (36)

are obtained by following steps mentioned in Algorithm 1 using Equation (27).

Figure 3. Bounded fractional order Gyro chaotic system inside octahedron.

Figure 4 illustrates synchronization of fractional gyro chaotic system and its observer.
For the convenience of readers, we have zoom a part of Figure 4, where especially synchro-
nization takes place. This shows that our designed observer works well in fractional order
chaotic systems. There are many nonlinear terms included for bringing more complexity,
but both examples show that the designed Algorithm 1 is generalized form for fractional as
well as integer order chaotic systems.

Figure 4. Trajectories of observer and fractional order Gyrostat chaotic system.

5. Comparison between Observers for Dynamic Systems

Since the usage of control inputs in synchronization, variety of techniques have been
established. There are several applications of synchronization in engineering, but designing
a suitable observer is the main focus of interest in present research. This paper shows
design of a generalized full order observer for a class of dynamic systems, which can cover
both fractional as well as integer order. comparison between different methods for the
accuracy of our technique is presented in Table 2.
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Table 2. Comparison between observers for dynamic systems.

Rule IQC & σm Order of System Numbers of
Nonlinear Outputs

Lan et al. [48] No Integer 1
Zulfiqar et al. [49] No Integer 1
Assaad et al. [50] No Fractional 1
Zhao et al. [51] Yes Integer 1

Moysis et al. [52] No Rectangular integer 1
Moysis et al. [53] Yes Rectangular integer 1
Zhao et al. [36] Yes Integer 1
Liu et al. [38] Yes Fractional 1
Our method Yes Integer/ Fractional n

Mostly, observers subject to incremental quadratic constraints were limited to single
nonlinear output, but our method is the most generalized form and can handle a lot of non-
linearity for fractional as well as integer order dynamic systems. Apart from generalization,
our technique has a demerit; if the dynamic system is unbounded, then our technique does
not work.

6. Conclusions

Based on the LMI and incremental quadratic constraints, this paper presents a gen-
eralized synchronization-based problem. In this paper, we showed that trajectories of
two systems (integer and fractional order) can be synchronized with the help of observer
composed of n nonlinear outputs. First, we defined a class, which consist of fractional as
well as integer order dynamic systems. Then, an observer (10) is designed for our proposed
class (9) in such a way that trajectories of slave system approaches to master system as
time t tends to infinity. Theorem 1 was stated and proved for obtaining the bound of error
term between systems (9) and (10), which helped in the convergence of estimated vari-
ables, while for numerical simulations an Algorithm 1 given in Section 3.1 can be followed.
Moreover, Corollaries 1–3 and Remark 2 were provided to make it clear that our proposed
observer was generalized and not confined to fractional order. To make it more clear and
precise for readers, we discussed the given analytical results through two examples, in
which the second example is explained in depth. Finally, a Table 2 was given in Section 5
for observing the accuracy of our proposed observer by comparison with other techniques.
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